Indika Kumara, Mohamed Hameez Ariz, Mohan Baruwal Chhetri, Majid Mohammadi, Willem-Jan Van Den Heuvel, Damian A. Tamburri

Journal Transactions on Services Computing



The increasing heterogeneity of the VM offerings on public IaaS clouds} gives rise to a very large number of deployment options for constructing distributed, multi-component cloud applications. However, selecting an appropriate deployment variant, i.e., a valid combination of deployment options, to meet required performance levels is non-trivial. The combinatorial explosion of the deployment space makes it infeasible to measure the performance of all deployment variants to build a comprehensive empirical performance model. To address this problem, we propose Feature-Oriented Cloud (FOCloud), a performance engineering approach for deployment configurable cloud applications. FOCloud (i) uses feature modeling to structure and constrain the valid deployment space by modeling the commonalities and variations in the different deployment options and their inter-dependencies, (ii) uses sampling and machine learning to incrementally and cost-effectively build a performance prediction model whose input variables are the deployment options, and the output variable is the performance of the resulting deployment variant, and (iii) uses Explainable AI techniques to provide explanations for the prediction outcomes of valid deployment variants in terms of the deployment options We demonstrate the practicality and feasibility of FOCloud by applying it to an extension of the RuBiS benchmark application deployed on Google Cloud.

Published in: IEEE Transactions on Services Computing ( Early Access )