C’ Sodalite

SOftware Defined AppLication Infrastructures managemenT and Engineering

Initial Implementation
and Evaluation of the
SODALITE Platform and

Use Cases

D6.2

USTUTT
31.1.2020

****j This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 825480.

Project No 825480.

‘¥ Sodalite

Deliverable data

Deliverable

Initial implementation and evaluation of the SODALITE platform and use
cases

Authors

Kamil Tokmakov (USTUTT),
Dimitris Liparas (USTUTT),

Ralf Schneider (USTUTT),
Dennis Hoppe (USTUTT),
Kalman Meth (IBM),

Elisabetta Di Nitto (POLIMI),
Paul Mundt (ADPT),

Roman Sosa Gonzalez (ATOS),
Airan Gonzalez Gémez (ATOS),
Mario Martinez Requena (ATOS),
Yosu Gorrofogoitia (ATOS),
Dragan Radolovi¢ (XLAB),

Piero Fraternali (POLIMI),

Rocio Nahime Torres (POLIMI),
Georgios Meditskos, Stefanos Vrochidis (CERTH),
Karthee Sivalingam (CRAY),
Indika Kumara (UVT/JADS)

Reviewers

Luciano Baresi (POLIMI),
Karthee Sivalingam (CRAY)

Dissemination
level

Public

History of
changes

Dimitris Liparas,
Kamil Tokmakov
USTUTT

Outline created 19 November 2019, outline

All First Draft Freated 10.01.2020
for review

All First round of 13.01.2020
reviews completed

Second Draft
All created after
corrections

22.01.2020

All Second round of 27.01.2020
reviews completed

All Final version 30.01.2020

D6.2 - Initial implementation and evaluation of the SODALITE platform and use cases - Public Page 1
© Copyright Beneficiaries of the SODALITE Project

{”*} Project No 825480. ? SOdalite

Acknowledgement

The work described in this document has been conducted within the Research & Innovation action
SODALITE (project no. 825480), started in February 2019, and co-funded by the European
Commission under the Information and Communication Technologies (ICT) theme of the H2020
framework programme (H2020-1CT-16-2018: Software Technologies)

D6.2 - Initial implementation and evaluation of the SODALITE platform and use cases - Public Page 2
© Copyright Beneficiaries of the SODALITE Project

SN Project No 825480.

‘¥ Sodalite

Table of Contents

List of Figures
List of Tables
Executive Summary
Glossary
1 Introduction

1.1 Structure of the Document

1.2 Continuation of Deliverable D6.1

1.3 SODALITE Architecture

1.3.1 SODALITE Semantic Modelling Layer

1.3.2 SODALITE Infrastructure as Code Management layer

o 0 g4 O

11
11
11
12
13
13

Figure 3 - SODALITE infrastructure as code management layer components

(WP4)
1.3.3 SODALITE Runtime layer
1.4 Objective of the First Prototype
1.5 Status of the First Prototype
2 Development Environment
2.1 Cloud and HPC Testbeds
2.2 SODALITE Repositories
2.3 CI/CD Pipeline
3 Development Status of the First Prototype
3.1 SODALITE Semantic Modelling Layer
3.1.1 SODALITE IDE
3.1.2 Semantic Reasoner

3.1.3 Semantic Knowledge Base

3.2 SODALITE Infrastructure as Code Management layer

3.2.1 Abstract Model Parser
3.2.2 1aC Blueprint Builder
3.2.3 Runtime Image Builder
3.2.4 Concrete Image Builder
3.2.5 Application Optimiser
3.2.6 1aC Verifier
3.2.7 Verification Model Builder
3.2.8 Topology Verifier
3.2.9 Provisioning Workflow Verifier
3.2.10 Bug Predictor and Fixer
3.2.11 Predictive Model Builder
3.2.12 laC Quality Assessor
3.2.13 1aC Model Repository
3.2.14 Image Registry

3.3 SODALITE Runtime layer

14
14
15
15
17
17
21
21
22
23
23
24
25
26
26
26
27
28
28
29
29
30
31
31
32
32
33
34
34

D6.2 - Initial implementation and evaluation of the SODALITE platform and use cases - Public Page 3

© Copyright Beneficiaries of the SODALITE Project

SN Project No 825480.

‘¥ Sodalite

3.3.1 Orchestrator + Drivers
3.3.2 Monitoring
3.3.3 Deployment Refactorer
3.3.4 Node Manager
3.3.5 Refactoring Option Discoverer
3.3.6 xOpera REST API
4 Development Status of the Demonstrating Use Cases
4.1 POLIMI Snow UC
4.1.1. WebCam crawler
4.1.2. Weather condition filter
4.1.3. Daily median aggregation
4.1.4. Skyline Extraction
4.1.5. 360 Panorama generation
4.1.6. Panorama Alignment
4.2 USTUTT Virtual Clinical Trial UC
4.2.1 Extraction
4.2.2 Density Mapping
4.2.3 Probabilistic Mapping
4.2.4 Applying Boundary Conditions
4.2.5 Solver
4.3 ADPT Vehicle loT UC
4.3.1. Vehicle Services
4.3.1.1. License Plate Detection Service
4.3.1.2. Drowsiness Detection Service
4.3.1.3. Intrusion and Theft Detection Service
4.3.2. Edge Gateway
4.3.3. Microservices -> Cloud Functions
4.3.4. Region-aware Gateway Routing
5 Implementation status of the First Prototype
6 Conclusions
References

34
35
37
38
38
39
40
40
41
42
43
43
44
45
47
47
50
51
51
52
52
53
54
55
55
55
56
56
58
60
61

D6.2 - Initial implementation and evaluation of the SODALITE platform and use cases - Public Page 4

© Copyright Beneficiaries of the SODALITE Project

{H*} Project No 825480. ? SOdalite

List of Figures

List Of Images

D6.2 - Initial implementation and evaluation of the SODALITE platform and use cases - Public Page 5
© Copyright Beneficiaries of the SODALITE Project

{H*} Project No 825480. ? SOdalite

List of Tables

List Of Tables

D6.2 - Initial implementation and evaluation of the SODALITE platform and use cases - Public Page 6
© Copyright Beneficiaries of the SODALITE Project

{***} Project No 825480. ’ SOdalite

Executive Summary

In this deliverable, we report on our key contributions towards the implementation and evaluation
of the SODALITE platform and use cases. Whereas Deliverable D6.1 paved the way in M6 for the
SODALITE platform by detailing the overall implementation plan and roadmap, we now report on
the current status of implementation up to M12.

Key contributions and achievements with respect to the SODALITE platform are:

e Both SODALITE testbeds, Cloud and HPC, are set up, accessible and configured
accordingly, to allow efficient execution of use cases. While setting up testbeds,
benchmarks were performed to identify bottlenecks (e.g. slower network bandwidth than
expected) and to resolve these or find workarounds.

e Following the strategy of early adoption, SODALITE components were made available
publicly on GitHub (https://github.com/SODALITE-EU) with the aim to attract more
developers outside of the consortium and increase uptake of our solutions.

e A continuous integration and deployment platform (CI/CD) based on Jenkins was set up to
further streamline integration of individual SODALITE components, and to improve the
overall code quality through automatic tests. The setup is already validated by a selected
set of components.

e Initial deployment updates are presented for the three key SODALITE layers:

o Semantic Modelling Layer: components of this layer such as the SODALITE IDE are
in their initial version developed, deployed, and integrated. The SODALITE IDE is
already released and integrated with the Semantic Reasoner Engine.

o Infrastructure as Code Management Layer: components of this layer are developed
and in the deployment stage. For example, the Verification Model Builder is
released and enables users to build semantic models to verify TOSCA topologies.

o Runtime Layer: components of this layer are developed and partially deployed;
integration is ongoing. For example, monitoring based on Prometheus is released
and capable of discovering new instances and gathering relevant metrics.

Key contributions and achievements with respect to the evaluation of the use cases are:

e POLIMI Snow Use Case: All components planned to be developed in year 1 of the project
were developed according to the implementation plan presented in D6.1.

e USTUTT Virtual Clinical Trial Use Case: Key components such as the solver were deployed
and executed successfully in the HPC testbed. The analysis revealed that the original
processing pipeline needed to be extended by additional components.

e ADPT Vehicle loT Use Case: To advance this use case, an Edge-based instance of the
backend and relevant services was prepared, and use case components were integrated
with the SODALITE stack in order to enable SODALITE to directly manage the deployment
and configuration of deployed components.

Overall, the SODALITE development environment composed of the testbeds, repositories and the
continuous integration and deployment platform are set up and made accessible to developers
and use case owners. Further, initial releases and developments were achieved across all three key
layers of the SODALITE platform according to the implementation plan up to M12. Finally, the three
use cases of SODALITE are already executed on the HPC/Cloud testbeds and have been used to
experiment with the features offered by the layers of the SODALITE platform. This deliverable is
part of a series, where the next iteration will focus on the implementation activities done in the
period M12 to M24. Specifically, D6.3 will report on component integration, discussing additional
features of the SODALITE components and use cases, as well as a more in-depth evaluation of the
improvements provided by the SODALITE platform for the use cases.

D6.2 - Initial implementation and evaluation of the SODALITE platform and use cases - Public Page 7
© Copyright Beneficiaries of the SODALITE Project

https://github.com/SODALITE-EU

SRl Project No 825450. " Sodalite
Glossary
Acronym Explanation
3D Three Dimensional
AADM Abstract Application Deployment Model
ALPR Automatic License-Plate Recognition
API Application Program Interface
Cl/cD Continuous Integration/Continuous Delivery
cLi Command-Line Interface
CRI Container Runtime Interface
CSAR Cloud Service Archive
CcT Computer Tomography
cv Computer Vision
DEM Digital Elevation Model
DICOM Digital Imaging and Communications in Medicine
DMI Daily Median Image
DSL Domain-Specific Language
DXA Dual Energy X-ray Absorptiometry
EAR Eye Aspect Ratio
ECG Electrocardiogram
EMF Eclipse Modelling Framework
EXIF Exchangeable Image File Format
FEM Finite Element Method
FOV Field of View
GA Grant Agreement
GDPR General Data Protection Regulation
GPU Graphics Processing Unit
HPC High Performance Computing
HPVM High Performance Virtual Machine
laC Infrastructure as Code
laaS Infrastructure-as-a-Service
IDE Integrated Development Environment
loT Internet of Things
IPMI Intelligent Platform Management Interface
ITK Insight Segmentation and Registration Toolkit

D6.2 - Initial implementation and evaluation of the SODALITE platform and use cases - Public Page 8

© Copyright Beneficiaries of the SODALITE Project

‘¥ Sodalite

) Project No 825480.

KB Knowledge Base

LRE Lightweight Runtime Environment
M2T Model-to-Text

MCA Marching Cubes Algorithm
MIGR Mountain Image Geo-registration
ML Machine Learning

MPI Message Passing Interface

MRI Magnetic Resonance Imaging
MTU Maximum Transmission Unit

NIC Network Interface Controller

(o]ol} Open Container Initiative

OCR Optical Character Recognition

PERCLOS Percentage of Eyelid Closure

QoS Quality of Service

RDF Resource Description Framework
REST Representational State Transfer
svc Support Vector Classifier

SVM Support Vector Machine

ToR Top-of-Rack

TOSCA Topqlogy and Orchestration Specification for Cloud
Applications

ubJ Universal Data Junction

ual User Generated Images

VIN Vehicle Identification Number
VM Virtual Machine

VTK Visualization Toolkit

WP Work Package

D6.2 - Initial implementation and evaluation of the SODALITE platform and use cases - Public Page 9
© Copyright Beneficiaries of the SODALITE Project

{***} Project No 825480. /’ SOdalite

1 Introduction

The objectives of work package WP6 are integration, evaluation and validation of the SODALITE
framework as detailed and specified in WP2; components to be integrated are developed across
work packages WP3, WP4, and WP5. Evaluation and validation is done with the support of the three
SODALITE use cases. This deliverable reports therefore on the current status of the SODALITE
platform and its use cases to assess the overall progress made in year 1 of the project.

The SODALITE platform is one of the key building blocks of SODALITE by providing the backbone
infrastructure based on HPC and Cloud testbeds. These testbeds are composed of heterogeneous
hardware components such as CPUs and GPUs, to reflect the overall vision of SODALITE to address
heterogeneity, by providing sophisticated software tools to allow for faster development,
deployment and execution of applications on different target platforms.

Faster development and deployment of individual software components and applications is
supported through the SODALITE development environment, which is composed of the Cloud and
HPC testbeds, various code repositories, and a sophisticated continuous integration and
deployment set up. Further, execution of applications is eased via the SODALITE software layers for
semantic modelling of applications, management for infrastructure as a code, and the final
runtime layer. Use cases are then prepared to be executed via the SODALITE layers on the
development infrastructure.

1.1 Structure of the Document
The structure of this deliverable is as follows:

e The remaining part of Section 1 discusses the advancements made with respect to
deliverable D6.1, highlights the SODALITE architecture and its components, as well as
presents the objectives and status of the First Prototype.

e Section 2 provides a description of the development environment, which includes the HPC
and Cloud testbeds, the repository and the CI/CD pipeline.

e Section 3 presents development status of the First Prototype, which includes the status of
the components in each layer of the SODALITE platform - Modelling, Infrastructure-as-Code
and Runtime layers.

e Section 4 provides the development status of the SODALITE demonstrating use cases.

e Section 5 highlights the implementation status of the First Prototype by describing how
demonstrating use cases have been using the features offered by the SODALITE platform.

e Section 6 concludes this report.

1.2 Continuation of Deliverable D6.1

The previous deliverable, D6.1 [1], which was due in project month M6, reported about the overall
implementation plan and roadmap to realize the SODALITE platform and the individual use cases;
follow-up deliverables then provide incremental updates and basically replace the previous ones.
The objective of D6.2 is to report on the status of the initial implementation of the SODALITE
components and their integration into the First SODALITE Prototype (due in M12 and reported in
D6.5), the initial implementation of the demonstrating use cases, as well as their status at project
month M12. It also provides detailed information about the advancements made with respect to
the SODALITE development environment, which includes the HPC and Cloud testbeds, the
SODALITE repository and the Continuous Integration/Continuous Delivery (CI/CD) pipeline for
automated components integration and testing.

In contrast to deliverable D6.1, this document does not include the thorough overview of potential
software artefacts to be used within the overall SODALITE technology stack (cf. Section 2in D6.1).
Instead, Section 3 discusses the development and integration status of selected components for

D6.2 - Initial implementation and evaluation of the SODALITE platform and use cases - Public Page 10
© Copyright Beneficiaries of the SODALITE Project

94 .
{ } Project No 825480. ’SOdallte

each technical work package, which were originally presented in the previous deliverable.
Furthermore, detailed specifications of the HPC and Cloud testbeds are only included in D6.1 (cf.
Section 3 on page 23ff), since they are not likely to change in the future. Instead, this deliverable
reports on the current setup and initial benchmarking results to assess the performance of the
overall testbeds in Section 2; this section also introduces the SODALITE code repositories and the
realization of a continuous integration and deployment platform (CI/CD), which are not discussed
in deliverable D6.1. Finally, this deliverable introduces a new section on the development status of
the First Prototype in Section 3, which is complemented by Section 5 on the implementation status
of the First Prototype.

1.3 SODALITE Architecture

For greater clarity, we reproduce a synopsis of the SODALITE architecture that is described in
Deliverable D2.1 [2]. For the details of the functional description, inputs, outputs and dependencies
of each component, please see the architecture Section (Section 3) in D2.1.

SODALITE aims to provide developers and infrastructure operators with tools that abstract their
application and infrastructure requirements to enable simpler and faster development,
deployment, operation and execution of heterogeneous applications on heterogeneous,
software-defined, high-performance and cloud infrastructures. To this end, SODALITE aims to
produce:

e a pattern-based abstraction library that includes application, infrastructure, and
performance abstractions;

e adesign and programming model for both full-stack applications and infrastructures
based on the abstraction library;

e adeployment framework that enables the static optimization of abstracted applications
onto specific infrastructure;

e anautomated run-time optimization and management of applications.

SODALITE General Architecture

. SODALITE Modeling Layer |
A Semantic _— o CEEEES L
i ReaspnerAPl _ -~ fr s e T
P | -~ use ,use * use - .use R

! &

I use ?

!

A MonitoringAPI

A}
Y
A

Torgue OpensStack Kubernetes

ImageRegistryAPI Deployment
PreparationAP|

Figure 1 - SODALITE overall Architecture

D6.2 - Initial implementation and evaluation of the SODALITE platform and use cases - Public Page 11
© Copyright Beneficiaries of the SODALITE Project

{***} Project No 825480. /’ SOdalite

The SODALITE platform is divided into three main layers, each covered by a separate work
package. These layers are the Semantic Modelling layer (WP3), the Infrastructure as Code
Management layer (WP4), and the Runtime layer (WP5). Figure 1 shows these layers together with
their relationships.

1.3.1 SODALITE Semantic Modelling Layer
The components of the SODALITE Semantic Modelling Layer are presented in Figure 2.

WP3 Architecture Overview

Semantic Knowledge Base\

RDF Triplestore Semantic Reasoner\

(GraphDB)
%(' -1 isamantic Reasoning Engine
ndpoipt

SRt
]

SPARQ

SODALITE IDE\'

" SemanticRgasonerAP|
.

Semantic Modelling & Abstraction
Application Ontology

Infrastructure Ontology
Performance Optimization Ontology
Deployment & Lifecycle Ontology

f

= Domain Ontologies

i Semantic Population Engine

= o o o) g

DeploymentPreparationAPl DefectPredictionCorrectionAP| MonitoringAP1 laCVerificationAP| QrchestratorAPI

Figure 2 - SODALITE semantic modelling layer components (WP3).

The SODALITE IDE provides complete support for the authoring lifecycle of abstract application
deployment models (see D2.1 for details) and assistance in composing application and resource
models via GUI and DSL editor. The Semantic Knowledge Base (KB) is SODALITE’s semantic
repository that hosts the models (ontologies) created in WP3. The Semantic Reasoner is a
middleware facilitating the interaction with the KB. In particular, it provides an API to support the
population and retrieval of knowledge to/from the KB, and the application of rule-based semantic
reasoning over the data stored in the KB. A broader description, implementation details and the
development status of the components of the SODALITE Modelling Layer can be found in the
technical deliverable D3.1 [3].

1.3.2 SODALITE Infrastructure as Code Management layer

The components of the SODALITE Infrastructure as Code (laC) Management Layer are depicted in
Figure 3.

The main task of the laC Management layer is to take the modelling information provided by the
SODALITE IDE (WP3) and produce an laC blueprint. Deployment Preparation involves operations to
build an 1aC blueprint. These operations are handled by sub-components depicted in Figure 3 and
are detailed in deliverable D2.1. A part of the architecture for the Infrastructure as a Code layer was
redesigned. It now provides a single source of information from the SODALITE Knowledge Base
instead of two independent repositories (namely IaC Repository and Knowledge Base), in order to
eliminate the issues of synchronization between different sources. Additional components are
envisioned to verify correctness of the provided model, to predict possible bugs in the provided
model, and to optimise the application for a given target execution platform. A more detailed view
on the components of the IaC Management layer is described in deliverable D4.1 [4].

D6.2 - Initial implementation and evaluation of the SODALITE platform and use cases - Public Page 12
© Copyright Beneficiaries of the SODALITE Project

.
* *
R roiect o 525450 Sodalite
* 4k
WP4 Architecture Overview
Deployment
Preparation
Abstract Model an SODALITE IDE
Parser =
-7 i ! T ~
N - | ~
N - ~
- “use | ~
[N I N
w7 | S
N ~
AR ! N
«REST» -~ | | ~
&« | ! ~
use N use
! | ~
Deployment ! | N
PreparationAPI : | ~
[! ~
I ~
; ‘ .
. N — -
Image Bullder\ : |aC Verification Defect Prediction and Correction
\ «REST» J{iEST»
Concrete Image laC Blueprint I 7 3 Bug Predictor
Builder builder use Q 0 (Sl and Fixer
! laCVerificationAPT N DefectPredicti
) ! [e ionAPI
| ”) ’ | N rrection, ’ \\
!
:use //use :use ! 7 use :use “use Juse use
y
| / 1 : ’ | N ' \\
| + |Performance) . | N /’ N
) ,/ | optimisation | L | N I v
| ’) 7 | N 1] v
! ! | 4 | N v \
«REST) «REST» | k x 4 =
Runtime Image O‘ ! Verification Topology Provisioning Predictive laC Quality
Builder l\ Model Builder Verifier Workflow Verifier Model Builder Assessor
Runtimg Application \ b
\ ImageAHI OptimiserAPI| v -
A / -
\ ‘\ f -
use v ‘use ~ - “use
A}

\
\

.
registry Image data

access

Application
Optimiser

SemanticReasonerAPI

Figure 3 - SODALITE infrastructure as code management layer components (WP4)

1.3.3 SODALITE Runtime layer

The components of the SODALITE Runtime Layer are depicted in Figure 4.

The Runtime layer of SODALITE orchestrates the deployment of an application, monitors its
execution and proposes changes to the application's runtime. It is composed of three main blocks:
Orchestrator, Monitoring and Refactoring. The Orchestrator manages the lifecycle of an application
deployed in heterogeneous infrastructures. The Monitoring component gathers metrics from the
heterogeneous infrastructures. These metrics are used to determine if the application is running as
expected. The Deployment Refactorer refactors the deployment model of an application in
response to violations in the application goals. Deliverable D5.1 [5] describes the implementation

details of the components of the Runtime layer.

D6.2 - Initial implementation and evaluation of the SODALITE platform and use cases - Public Page 13

© Copyright Beneficiaries of the SODALITE Project

4 .
{ } Project No 825480. ’SOdallte

WP5 Architecture Overview

Refactoring \
vl ”
y N
B <REST» . £
SODALTE ’ g 5 s e
v
IDE e i \ S
' : RefaCtoringAP! \ &
7 5 f ¥ N
2 1 | 1
, \ ‘ i 1 &
/ use A} Fuse £ | se
/ \
’ \ ; i |
Orchestrator\ Bid \ i \ ! g
«RESI)! o | h | ¥ ‘\
Orchestrator Q b, use ' i Node Manager i Refactoring Option Discoverer 4
LT ~CrchestratdrAP % i < '

- T ol e i it A o

u / S e e i \ s i ~ /

- “use /use wuse ~oufe T = _ USE ¥ \ juse ~ _use = uze
7 5 W ’ - ’ L0 5 =

W @ S - =

«) ~ & &

5 1Y Bt ki =k
o Q
" onitoringAPI DeploymentPreparationAP| SemanticReasonerAP|

5 \
\ \ N \use

=, ’ Al ~
’ \ .
L "% A S
E KBS driver ETorque driver EOS driver

\ .
% i «ﬁfsn
\ (3 \ T
\ \ G 7_7_,_,_:-Exporter O
S g L Exporterap|

\
‘
’
‘
Kubernetes U Torque D [Openstack D

Figure 4 - SODALITE runtime layer components (WP5)

1.4 Objective of the First Prototype

In the First Prototype, most of the SODALITE components are expected to be released as initial and
stable versions, and form the initial implementation of the SODALITE platform. The First Prototype
is used to deploy and execute the initial implementation of the demonstrating use cases and aims
to achieve goals that can be consolidated from the objectives of the SODALITE Architecture layers:

e Semantic Modelling Layer: the initial implementation of the semantic models, the
repository and the IDE for supporting users in modelling the application and infrastructure.

e Infrastructure as Code (laC) Management layer: the initial version of the deployment
preparation for the selected infrastructure management systems and performance
optimization; initial implementation of the analytics for the quality of the l1aC - verification
and bug prediction of deployment models.

e Runtime layer: the initial implementation of the cross-platform orchestrating tools,
collection of monitoring metrics and initial version of predictive deployment refactoring.

1.5 Status of the First Prototype

The status of the SODALITE First Prototype at the end of project month M12 is presented in Table 1
and can be summarized as follows:

- The SODALITE development environment (composed of the HPC and Cloud testbeds, the
SODALITE repository and the CI/CD pipeline) has been partially implemented and set up
(more details are provided in Section 2 of this document). Several components of the First
Prototype use the CI/CD pipeline to remotely build their artifacts. The components that do
not require remote environments are built, tested and integrated manually on the local
environments and deployments. Other components of the First Prototype do not utilize the
CI/CD pipeline due to ongoing integration.

D6.2 - Initial implementation and evaluation of the SODALITE platform and use cases - Public Page 14
© Copyright Beneficiaries of the SODALITE Project

{***} Project No 825480. ’ SOdalite

- In all three main layers of the SODALITE platform (Semantic Modelling, Infrastructure as
Code Management, Runtime), the initial versions of the components have been released.
Most of the components are partially deployed and integrated.

- The three demonstrating use cases of SODALITE have been defined and can be partially
executed on the Prototype. More specifically, the developed components of the POLIMI
Snow use case is executed on both Cloud and HPC testbeds using the SODALITE
components of all the three layers of the Prototype; the developed components of the
USTUTT Virtual Clinical Trial use case is executed on HPC testbed using only Infrastructure
as Code Management and Runtime layers of the First Prototype; the developed
components of the ADPT Vehicle 10T use case is executed on the Cloud testbed using only
Infrastructure as Code Management and Runtime layers.

Table 1 - Overall status of the development environment, First Prototype and demonstrating use
cases at M12

Components Status

HPC and Cloud testbeds were set up.

SODALITE repositories were structured and host the
Development Environment source code for SODALITE components.

CI/CD server and pipeline were set up to remotely build
software artifacts.

Semantic Modelling Layer: the initial versions were
developed and released, locally deployed and integrated.

Infrastructure as Code Management Layer: the initial
versions were developed and released. The deployment

First Prototype Components . . .
! yp P and integration are partial for most of the components.

Runtime Layer: the initial versions were developed and
released. Most of the components are partially deployed
and integrated.

POLIMI Snow: the components were released as
scheduled.

USTUTT Virtual Clinical Trial: the components were
released as scheduled. The original processing pipeline
Demonstrating Use Cases needed to be extended by additional components.

ADPT Vehicle loT: the components were released as
scheduled. The focus on refactoring for the Y1 demo further
necessitated extension of the region routing component
ahead of schedule.

It should be noted that this deliverable is the second iteration of four deliverables in total within
Work Package 6 that report on the status of the SODALITE platform and the integration and
evaluation of its use cases at regular intervals between project month M6 and M36. As detailed in

D6.2 - Initial implementation and evaluation of the SODALITE platform and use cases - Public Page 15
© Copyright Beneficiaries of the SODALITE Project

4 .
{ } Project No 825480. ’SOdallte

the first deliverable of WP6 [1], the following reporting period, specifically M12 to M24, will focus on
component integration, delivery of more advanced features, as well as the initial evaluation of the
improvement provided by the SODALITE platform for the demonstrating use cases. Finally, during
the third year of the project, iterative measurements of the results produced by the SODALITE
platform will be taken and based on these measurements, additional improvements will be
applied to the SODALITE system.

2 Development Environment

For the development of SODALITE platform and its components, we introduce the project's
development environment, which includes HPC and Cloud testbeds for provisioning virtual and
bare-metal compute resources, SODALITE repository for storing the source code, infrastructure
scripts and documentation of the SODALITE components and CI/CD pipeline for the automated
testing and integration of the components.

In the following sections, the status of the development environment is described. Section 2.1
presents the current state of the HPC and Cloud testbeds. The structure of the SODALITE repository
and CI/CD are presented in Section 2.2 and Section 2.3, respectively.

2.1 Cloud and HPC Testbeds

Figure 5 presents an overview on HPC and Cloud testbeds, their components, resources and the
supported platforms for the experimentation with cross-system orchestration and monitoring.

The intention of the HPC testbed is to provide to developers and use case providers bare-metal
compute resources (e.g. CPUs, GPUs) managed by the workload managers, such as Torque' (or its
extension - vTorque?®), whereas the Cloud testbed provisions virtualized resources (e.g. virtual
machines, containers) managed by OpenStack® and Kubernetes®. Furthermore, the Cloud testbed
hosts the development environment (DevCloud), which contains CI/CD server and deployed
SODALITE components. The support for edge computing backends and serverless platforms (e.g.
OpenWhisk®) is foreseen in the next iteration of the project.

HPC testbed. The HPC testbed is hosted in USTUTT and its functional description is presented in
Figure 6. Three nodes were deployed: a front-end node and two compute nodes. The specification
of the front-end node is 20 cores of Intel Xeon E5-2630v4 CPU, 192GB of DDR4 RAM and 37TB of
RAID-60 HDD storage; for the compute nodes, it is 20 cores of Intel Xeon E5-2630v4 CPU, 128GB of
DDR4 RAM and 1.8TB of SW RAID-1 SSD storage per each node. A full version of the specifications
can be found in deliverable D6.1, Section 3.1.2.

! https://adaptivecomputing.com/cherry-services/torque-resource-manager/

2 https://www.mikelangelo-project.eu/technology/vtorque-virtualization-support-for-torque/
3 https://www.openstack.org/

* https://kubernetes.io/

5 https://openwhisk.apache.org/

D6.2 - Initial implementation and evaluation of the SODALITE platform and use cases - Public Page 16
© Copyright Beneficiaries of the SODALITE Project

https://adaptivecomputing.com/cherry-services/torque-resource-manager/
https://www.mikelangelo-project.eu/technology/vtorque-virtualization-support-for-torque/
https://www.openstack.org/
https://kubernetes.io/
https://openwhisk.apache.org/

{***} Project No 825480. ? SOdalite

SODALITE
Repository

£iaud Internet HPe
Testbed Testhed
DevCloud cloud Resources HPC Resources
i /
SODALITE |
Modeling Layer OpenStack Torque
Components
SODALITE
Infrastructure as Code Layer Kubernetes vTorque
Components
SODALITE
Runtime Layer eyt i
Components = - - - (%]
S K E I E [}
CIJ"?D [T T
(Jenkins) VMs & Cloud Virtual HPC Shared GPU
\ Containers Storage Networks / Qluster Storage C1U5tey

Figure 5- HPC and Cloud testbeds overview

The front-end node hosts the Ironic® service - an OpenStack service to provision bare-metal nodes -
in order to provide flexible and on-the-fly reconfiguration of the compute nodes, e.g. changing
base operating system of the nodes. Moreover, it runs a Torque server (pbs_server) to manage the
compute resources of the testbed and serves as a Torque client in order to submit PBS jobs to be
run on the compute nodes. Additionally, the front-end node runs an LDAP server for centralized
user authentication, shares an NFS storage with other nodes and hosts a local Singularity’ registry,
which allows building and pulling container images. The front-end node can be accessed at
sodalite-fe.hlrs.de remotely via SSH, providing an endpoint for the SODALITE Runtime Layer.

The two compute nodes were deployed via Ironic and host Torque compute clients (Machine
Oriented Mini-server, pbs_mom) in order to provide management endpoints to be used by the
Torque server. The compute nodes support MPI for process parallelization and Singularity runtime
as a low-overhead, lightweight and secure runtime specifically developed for HPC workloads (see
the deliverable D5.1, Section 5 about various lightweight runtime environments). Additionally, the
compute nodes contain GPUs attached via PCle slot, providing hardware acceleration in graphics
and image processing.

¢ https://wiki.openstack.org/wiki/lronic
" https://singularity.lbl.gov/

D6.2 - Initial implementation and evaluation of the SODALITE platform and use cases - Public Page 17
© Copyright Beneficiaries of the SODALITE Project

https://wiki.openstack.org/wiki/Ironic
https://singularity.lbl.gov/

94 .
{ } Project No 825480. ’SOdallte

HPC testbed

ﬁ Torque Compute Nodes
Internet ssh-endpoint with GPU + Singularity
sodalite-fe.hlrs.de
- Front-end via ssh
- Shared Storage (NFS) f 1
- OpenStack Controller
- Torque Submit/Head ﬁ
- LDAP]
- Local Singularity registry FETELT W
(FEFTLT »| Compute
7 &) L] Nede 1
External &
(public) net

Internal (private) net: | FIFLET ®
- 1GE management ELLLLI) Compute

Frontend - 40GE storage Node 2
Node - 46GE MPI

Figure 6 - A functional description of HPC testbed

The reason for such a small scale (3 nodes out of available 9 nodes) of the testbed is to experiment
and obtain requirements, perform tuning, optimization for the SODALITE infrastructure before a
large scale testbed is deployed for performance oriented tasks. As such, benchmarks to model the
performance of the infrastructure described in the deliverable D3.3 [6] were preliminary evaluated
on the current state of the testbed, helping to diagnose the issues with the testbed infrastructure.
In particular, the results of the Effective Bandwidth® (b_eff) benchmark, shown in Table 2, have
identified a communication bottleneck (poor Randomly Ordered-Ring Bandwidth). Therefore, a
dedicated faster interconnect (40GE) between the nodes of the HPC testbed was installed and the
bandwidth has increased by a factor of 16.

Table 2 - Bandwidth improvements by changing the interconnect in the HPC testbed

Interconnect 1GE Ethernet 40GE Ethernet

Randomly Ordered-Ring Bandwidth, GBps 0.115635 1.92319

Nevertheless, while the compute resources were enough to run the initial implementation of the
SODALITE use cases, it wasn't sufficient to run the benchmarks at the fullest extent to derive the
performance model, hence for the next stages of the project, the number of nodes will be
increased.

HPC testbed has been used to run the entire Virtual Clinical Trials use case running Density
Mapping, Probabilistic Mapping and Solver components, and to train Skyline extraction CNN
model of the Snow Use Case using GPUs. The baseline measurements of the performance of the
use cases can be found in Section 4 and in deliverable D3.3 (Section 6).

Cloud testbed. The Cloud testbed hosted in ATOS consists of three nodes: two compute nodes and
one storage node with similar specs - 16 cores of Intel Xeon E5-2670 with 64GB DRR3 RAM, however,

8 https://fs.hlrs.de/projects/par/mpi//b_eff/

D6.2 - Initial implementation and evaluation of the SODALITE platform and use cases - Public Page 18
© Copyright Beneficiaries of the SODALITE Project

https://fs.hlrs.de/projects/par/mpi//b_eff/

94 .
{ } Project No 825480. ’SOdallte

for compute nodes the internal storage size is 12TB each, whereas for storage node, it is 18TB. A
more detailed specification can be found in the deliverable D6.1 (Section 3.1.1).

Functional components of the Cloud testbed are presented in Figure 7. It is backed with OpenStack
that provides virtual laaS resources via OpenStack services: virtual machines (VMs) via Nova
Compute, block storage via Cinder and networking via Neutron. Furthermore, these resources are
used to deploy a Kubernetes cluster consisting of two VMs - one controller and one worker node.
The testbed internally provides interfaces, such as IPMI, and tools, such as Skydive, for basic
monitoring of the infrastructure and dynamic runtime environments. Therefore, the Cloud testbed
provides OpenStack and Kubernetes endpoints for the orchestration, as well as the endpoints for
monitoring through the SODALITE Runtime Layer. Please refer to the deliverable D5.1 about
orchestrating and monitoring capabilities of the SODALITE platform.

Cloud testhed

DevCloud
SODALITE
Modeling Layer
Components
SODALITE S =
Infrastructure as Code Layer ! Kubernetes Endpoints
Components | - : F
' : N S
SODALITE : Kubernetes Kubernetes |
Runtime Layer @ = f=---- Controller Nodes
Components (VM) (VMs) i
i = = S g
! - L
SRS s =3
LRy~ .— Cloud Monitoring [Ny
: Endpoints OpenStack OpenStack
OpenStack Endpoints Compute Storage
P S N
R
OpenStack |

Controller |

e

L J Internal o
(private) net l

External
(public) net

Figure 7 - A functional description of Cloud testbed.

The development environment (DevCloud) for the deployment and integration of SODALITE
components resides in the Cloud testbed. For the first iteration of the project, the components
were deployed on virtual machines sharing the resources with the demonstrating use cases. For
the next iterations, an isolated and containerized environment will be provided to avoid the
resource contention and provide versioning (e.g. development, production) and staging (e.g. test,
integration) of the developed components. Table 3 outlines the SODALITE components that were
deployed on the Cloud testbed.

Table 3- SODALITE components in Cloud testbed

Name WP | Description Resources
(vCPUs | RAM | Storage)

Image Registry | 4 A private Docker’® image registry to store | 2| 4GB | 40GB

° https://www.docker.com/

D6.2 - Initial implementation and evaluation of the SODALITE platform and use cases - Public Page 19
© Copyright Beneficiaries of the SODALITE Project

https://www.docker.com/

SN Project No 825480.

‘¥ Sodalite

the images (artifacts) of the
components of the demonstrating use
cases. See the deliverable D4.1 (Section
3.2.3) for more details.

collector, Skydive analyzer and
Prometheus exporters

xOpera A REST API for xOpera'® orchestrator 2|4GB|40GB
REST API that manages the lifecycle of the

applications
xOpera A PostgreSQL™ database that stores the | 2| 4GB |40GB
Persistence internal deployment states of xOpera
Engine orchestrator
Monitoring A monitoring server that contains 1|2GB|20GB
Server Prometheus" server as a metrics

Jenkins server

A Jenkins® server that hosts and runs
Cl/CD pipelines

4]16GB | 200 GB

Worker Node

containerized workloads

Kubernetes A Kubernetes control node that exposes | 2 |8GB | 80GB
Master Node the Kubernetes API
Kubernetes A Kubernetes worker node that runs 8|16GB | 50GB

The Cloud testbed provisions resources on-demand for most of the components of Snow and
Vehicle loT use cases. The baseline performance of the use cases deployed in the Cloud testbed can
be found in Section 4 and in the deliverable D3.3 (Section 6).

2.2 SODALITE Repositories

The adopted organization mimics the structure behind the conceived architecture and provides a
dedicated repository for each component in the project. The consortium created the SODALITE-EU
organization (https://github.com/SODALITE-EU) on GitHub and identified 19 repositories for the
components planned and released so far. This decision was made to better manage the different
contributions and ease the management of different and heterogeneous technologies. All these
components are currently released under the Apache 2 license scheme. Different license models
might be used and integrated in the project in the next phases. The artifacts produced by
SODALITE are stored in a set of dedicated GitHub repositories. The interested reader is referred to
deliverable D2.4 [7] for additional information and detailed guidelines on how to contribute to the
project.

2.3 CI/CD Pipeline

Jenkins was chosen as the CI/CD integration tool for SODALITE. A Jenkins server was installed in
the cloud testbed to handle the CI/CD process. At this stage of the project, several of the SODALITE

10 https://github.com/xlab-si/xopera-opera
1 https://www.postgresgl.org/

2 https://prometheus.io/

13 https://jenkins.io/

D6.2 - Initial implementation and evaluation of the SODALITE platform and use cases - Public Page 20
© Copyright Beneficiaries of the SODALITE Project

https://github.com/SODALITE-EU
https://github.com/xlab-si/xopera-opera
https://www.postgresql.org/
https://prometheus.io/
https://jenkins.io/

{***} Project No 825480. ’ SOdalite

components (e.g. Semantic Reasoner* and Defect Prediction®) have been incorporated into the
Jenkins CI/CD pipeline to verify its proper functionality. As the project progresses and additional
automated tests are built, we expect to add other repositories to the pipeline and automate more
of the process using Jenkins. It is envisioned that as the changes of the source code of the
components are submitted to the SODALITE repository by the developers via GitHub Pull Requests,
it then triggers Jenkins to run the CI/CD pipeline, where automated unit, integration and functional
tests of SODALITE components are scheduled. If all tests pass, the Pull Request is marked as
successful on GitHub and can then be merged into the master branch of the repository. The
SODALITE components are then ready for deployment (as a new production version of the
SODALITE platform) and are subsequently available to users.

3 Development Status of the First Prototype

This section describes the development status of the First Prototype and its constituent
components and modules. Table 4 highlights the overall view on the initial development,
deployment and integration of the SODALITE components done during Y1 of the project. The initial
versions of all the components are developed and they are ready to be used. For most of the
components, there is ongoing work on the deployment in the testbeds and integration to the
overall platform. The deployment and integration work for the components that are expected to be
released in M18 (Application Optimiser, laC Model Repository and Node Manager) has not yet
started.

Table 4 - Development status of the First Prototype

Semantic Modelling Layer

Component Development Deployment Integration
SODALITE IDE
Semantic Reasoner
Semantic KB

laC Management Layer

Component Development Deployment Integration
Abstract Model Parser
laC Blueprint Builder
Runtime Image Builder
Concrete Image Builder
Application Optimiser
laC Verifier
Verification Model Builder
Topology Verifier
Provisioning Workflow Verifier
Bug Predictor and Fixer
Predictive Model Builder
laC Quality Assessor
laC Model Repository
Image Registry

L

Runtime Layer

Component | Development | Deployment | Integration

14 https://github.com/SODALITE-EU/semantic-reasoner
15 https://github.com/SODALITE-EU/defect-prediction

D6.2 - Initial implementation and evaluation of the SODALITE platform and use cases - Public Page 21
© Copyright Beneficiaries of the SODALITE Project

https://github.com/SODALITE-EU/semantic-reasoner
https://github.com/SODALITE-EU/defect-prediction

94 .
{ } Project No 825480. ’SOdallte

Orchestrator + Drivers
xOpera REST API
Monitoring
Deployment Refactorer

Node Manager F
Refactoring Option Discoverer
Table legend Completed Partial -

The following subsections provide a detailed description of the development status of each layer
of the First Prototype, additionally presenting the source code location in the SODALITE repository,
issues and steps towards the next prototype.

3.1 SODALITE Semantic Modelling Layer

The Semantic Modelling layer provides the framework for semantically representing abstractions
of a) applications, capturing higher-level information that will enable the conceptual description of
artifacts, code, functional and non-functional requirements, software dependencies etc.; b)
infrastructures, available services and service capabilities in terms of functionalities, resources and
business characteristics offered, and QoS; and c) application and infrastructure performance
optimisation in terms of application models reflecting their classification to a set of known
performance qualities and infrastructure models representing performance features of the
hardware. These semantic abstractions are realised in the form of Resource Description
Framework (RDF) Knowledge Graphs', aiming at the formal representation and linking of
application and infrastructure requirements that enables semantic reasoning framework to be
developed on top of the RDF graphs to support search, discovery, validation and reuse. The
Semantic Modelling Layer also provides the textual editor (IDE) of SODALITE that allows end users
to define Abstract Application Deployment Models (AADMs) by reusing components and resources
from the KB.

The following subsections provide details on the status of the components of the Semantic
Modelling Layer.
3.1.1 SODALITE IDE

The SODALITE IDE that provides the GUI and the DSL Editor to assist end users in composing
resource and application models.

Table 5 - Development status of SODALITE IDE

Module name SODALITE IDE
Github location https://github.com/SODALITE-EU/ide

IDE is a standalone client, intended to be installed for
Deployment status each Sodalite AOEs/REs on their computer. IDE is not
deployed in any (virtualized) infrastructure

16 http://www.w3.org/RDF/

D6.2 - Initial implementation and evaluation of the SODALITE platform and use cases - Public Page 22
© Copyright Beneficiaries of the SODALITE Project

https://github.com/SODALITE-EU/ide
http://www.w3.org/RDF/

SN Project No 825480.

¥ Sodalite

Integration status

IDE is integrated with the Semantic Reasoner Engine
through exposed REST API

Integration issues/dependencies

IDE integrates with the Semantic Reasoner API (v0.6). IDE
will require integration with the laC layer

Next steps

IDE extension for AADM and RM authoring. Seamless
integration with new releases of the Reasoner API.
Integration of loC Layer.

3.1.2 Semantic Reasoner

The Semantic Reasoner, which is a logical middleware that facilitates the interaction with the KB
through the REST API (Semantic Reasoning Engine module - SRE), as well as the population of the
KB with information coming from the SODALITE IDE users (Semantic Population Engine module -

SPE).

Table 6 - Development status of Semantic Reasoning Engine

Module name

Semantic Reasoning Engine

Github location https://github.com/SODALITE-EU/semantic-reasoner
Released version - v1.0 (provides the basic reasoning
infrastructure to WP4 for developing searching and

Development status validation services; it provides the REST API that can be
used to save and get data from the semantic triple store)
Deployed locally (the REST API is fully functional and

Deployment status

deployed locally in a web container)

Integration status

Integrated locally with SODALITE IDE and Semantic
Knowledge Base (all components are able to
communicate with the REST API through HTTP calls)

Integration issues/dependencies

The Semantic Reasoning Engine depends on the
Semantic Knowledge Base

Next steps

Enriching REST API

Table 7 - Development status of Semantic Population Engine

Module name

Semantic Population Engine

Github location

hIIpS“gEh |b CQm/SQ JALITE-EU/semantic-reasoner

Development status

Released version - v1.0 (the component is able to map
the SODALITE DSL to the conceptual model (ontologies)
of SODALITE)

D6.2 - Initial implementation and evaluation of the SODALITE platform and use cases - Public Page 23
© Copyright Beneficiaries of the SODALITE Project

https://github.com/SODALITE-EU/semantic-reasoner
https://github.com/SODALITE-EU/semantic-reasoner

SN Project No 825480.

¥ Sodalite

Deployment status

Deployed locally (the component can be invoked through
the reasoner REST API)

Integration status

Integrated locally with SODALITE IDE and Semantic
Knowledge Base (IDE is able to push DSL definitions
using the REST API through HTTP calls)

Integration issues/dependencies

The Semantic Reasoning Engine depends on the
Semantic Knowledge Base

Next steps

Support more sophisticated KB population capabilities

3.1.3 Semantic Knowledge Base

The Semantic Knowledge Base (KB), which is SODALITE’s semantic repository (RDF triple store)
that hosts the models (domain ontologies), created in WP3.

Table 8 - Development status of RDF Triple Store

Module name

RDF Triple Store

Github location

N/A (third-party semantic repository)

Development status N/A
Deployed locally (a third-party RDF triple store has been
Deployment status deployed to a local machine, providing a native SPARQL

endpoint used by the Semantic Reasoner)

Integration status

Integrated locally with the Semantic Reasoner (the RDF
triple store is accessible through HTTP calls)

Integration issues/dependencies

N/A

Next steps

N/A

Table 9 - Development status of Domain Ontologies

Module name

Domain Ontologies

Github location

jttps“glth |b CQm/SQ DALITE-EL fsemantic_mgde S

Development status

Released version - v1.0

Deployment status

Deployed locally

Integration status

Ontologies have been imported into the RDF triple store,
implementing the conceptual model of SODALITE

D6.2 - Initial implementation and evaluation of the SODALITE platform and use cases - Public Page 24
© Copyright Beneficiaries of the SODALITE Project

https://github.com/SODALITE-EU/semantic-models

¢ .
{ } Project No 825480. ’SOdallte

N/A. There are no dependencies. Ontologies need to be
inline with the conceptual model of SODALITE and the
Semantic Population Engine (that is responsible for
populating the triple store with instances)

Integration issues/dependencies

Updates on the vocabulary, according to the modelling

Next steps .
requirements

3.2 SODALITE Infrastructure as Code Management layer

The main task of the laC Management layer is to take the modelling information provided by the
SODALITE IDE (WP3) and produce an laC blueprint that will be consumed by the Runtime layer.

In the following subsections, the status of the modules of the [aC Management layer is presented.

3.2.1 Abstract Model Parser

The Abstract Model Parser is the central component for the preparation of the deployable IaC
blueprint and related Actuation scripts. Its main function is to abstract the parsing of the abstract
deployment model from building the deployable IaC. It feeds the laC Builder component with all
the data provided by the App Ops Expert and is needed for the selection and building of laC Nodes
(Blueprint) and preparation of the Actuation scripts (playbooks).

Table 10 - Development status of Abstract Model Parser

Module name Abstract Model Parser

Github location -//oi _EU/iac- int-

Development status Released version - v0.1

Deployment status Deployed locally

Integration status Partially integrated

The Abstract Model Parser is dependent on the SODALITE
Integration issues/dependencies IDE.

Define a parsing grammar to parse the abstract model
Next steps provided by SODALITE IDE and saved in the KB

3.2.21aC Blueprint Builder

This component internally produces the laC blueprint based on the abstract application
deployment model and the data parsed by the Abstract Model Parser.

D6.2 - Initial implementation and evaluation of the SODALITE platform and use cases - Public Page 25
© Copyright Beneficiaries of the SODALITE Project

https://github.com/SODALITE-EU/iac-blueprint-builder

SN Project No 825480.

‘¥ Sodalite

Table 11 - Development status of 1aC Blueprint Builder

Module name

1aC Blueprint Builder

Github location

Development status

Released version - v0.1

Deployment status

Deployed locally

Integration status

Partially integrated

Integration issues/dependencies

The 1aC Blueprint Builder is dependent on SODALITE IDE
and the Abstract Model Parser.

Next steps

Provide a consolidated prototype.

Study the extensibility of the approach to other
languages rather than TOSCA (e.g., Ansible).

3.2.3 Runtime Image Builder

Runtime image builder builds the runtime images based on Target architecture and artifact
definition. A runtime image is equipped with configuration, artifact executable binary,
configuration metadata and a monitoring artifact.

Table 12 - Development status of Runtime Image Builder

Module name

Runtime Image Builder

Github location

s EUJimage-build

Released version - v0.1.

Development status Initial TOSCA/Ansible blueprints for building of the
images, REST APl endpoints
Deployment status Deployed on the testbed

Integration status

Partially integrated

Integration issues/dependencies

The Runtime Image Builder is dependent on Image
Registry, Semantic Knowledge Base (API), IDE, and
Concrete Image Builder.

Next steps

Provide an extension for docker and singularity image
building with integration to application optimizer

D6.2 - Initial implementation and evaluation of the SODALITE platform and use cases - Public Page 26
© Copyright Beneficiaries of the SODALITE Project

https://github.com/SODALITE-EU/iac-blueprint-builder
https://github.com/SODALITE-EU/image-builder

> .
{***} Project No 825480. ’ SOdallte

3.2.4 Concrete Image Builder

It is used for the implementation of a concrete image builder for the execution platform to handle
the specific implementation regarding configuration, deployment or monitoring. Since there could
be significant differences between the images for various execution platforms
(HPC/Cloud/Kubernetes), Concrete Image Builder builds platform specific images.

Table 13 - Development status of Concrete Image Builder

Module name Concrete Image Builder

Github location https://github.com/SODALITE-EU/image-builder
Development status Released version - v0.1.

Deployment status Deployed on the testbed

Integration status Partially integrated

The Concrete Image Builder is dependent on Runtime

Integration issues/dependencies Image Builder and the Image Registry

Identify an adapter pattern to satisfy and bridge the
different approaches for targeting

HPC/Cloud/Kubernetes execution platforms;
Next steps

Analyze the post deployment configuration done by the
Orchestrator. Setup a separate connection to singularity
image registry

3.2.5 Application Optimiser

Static Application Optimiser optimises application for a given target platform based on the
optimisation options selected.

Table 14 - Development status of Application Optimiser

Module name Application Optimiser
Github location e
on

Released version - v0.1.

Baseline version of Skyline Extraction training built and
Development status profiled.

Density Mapping and Solver (Code Aster) components of
Clinical trials built and profiled.

Deployment status NOT STARTED

D6.2 - Initial implementation and evaluation of the SODALITE platform and use cases - Public Page 27
© Copyright Beneficiaries of the SODALITE Project

https://github.com/SODALITE-EU/image-builder
https://github.com/SODALITE-EU/application-optimisation
https://github.com/SODALITE-EU/application-optimisation

SN Project No 825480.

‘¥ Sodalite

Integration status

NOT STARTED

Integration issues/dependencies

The Application optimiser is dependent on the laC Model
repository and the Image registry

Next steps

Identify Application performance features or parameters
that influence performance;

Map application features to infrastructure and actual
application optimisation;

Build optimised containers for applications: Al training,
Big data Analytics and Traditional HPC (Solver) to enable
optimisation

3.2.6 laC Verifier

This component acts as a facade to the Topology Verifier and Provisioning Workflow Verifier, and
coordinates the processes of verification of the application deployment topology and provisioning

workflow.

Table 15 - Development status of 1aC Verifier

Module name

laC Verifier

Github location

e) ficati

Development status

Released version - v0.1
Basic REST API

Deployment status

Deployed locally and on Cloud Testbed

Integration status

Partially integrated
Integrated with Topology Verifier

Integration issues/dependencies

This module uses other modules Verification Model
Builder, Topology Verifier, and Provisioning Workflow
Verifier.

Next steps

Integrate provisioning workflow verification;

Update REST API as new verification capabilities are
added.

3.2.7 Verification Model Builder

This component builds the models required to verify the deployment model and its provisioning
workflow, for example, a knowledge base instance for ontological (semantic) reasoning on the
topology, and a petri net representation for the provisioning (deployment) workflow.

D6.2 - Initial implementation and evaluation of the SODALITE platform and use cases - Public Page 28
© Copyright Beneficiaries of the SODALITE Project

https://github.com/SODALITE-EU/verification

SN Project No 825480.

‘¥ Sodalite

Table 16 - Development status of Verification Model Builder

Module name

Verification Model Builder

Github location

o ALITE-FU/verificati

Released version - v0.1
Build semantic models for TOSCA topology verification
Initial mappings of Ansible workflows to Petri Net were

Development status done.
Ongoing work to build the model transformer for
translating Ansible workflows into Petri Net.

Deployment status Deployed locally and on Cloud Testbed

Integration status

Partially integrated
Integrated with Semantic Reasoning Engine

Integration issues/dependencies

This module uses Semantic Knowledge Base, and
Semantic Reasoner.

Next steps

Support building a formal model for verifying the
provisioning workflow described in IaC artifacts;

Update the semantic model used by the Topology Verifier

3.2.8 Topology Verifier

This component verifies the constraints over the structures of the TOSCA blueprints and Ansible
scripts. This will implement the verification of the requirements of the nodes, the
node-relationships, the capabilities of the nodes, and node substitutability.

Table 17 - Development status of Topology Verifier

Module name

Topology Verifier

Github location

e) ficati

Development status

Released version - v0.1
Initial support for TOSCA topology verification

Deployment status

Deployed locally and Cloud Testbed

Integration status

Partially integrated
Integrated with Verification Model Builder

Integration issues/dependencies

This module depends on the formal model built by the
Verification Model Builder;

Next steps

Complete the verification of the deployment topology
described in the TOSCA blueprint;

D6.2 - Initial implementation and evaluation of the SODALITE platform and use cases - Public Page 29
© Copyright Beneficiaries of the SODALITE Project

https://github.com/SODALITE-EU/verification
https://github.com/SODALITE-EU/verification

SN Project No 825480.

¥ Sodalite

Add the support for checking substitutability of the
nodes in the deployment topology (TOSCA substitution
mappings)

3.2.9 Provisioning Workflow Verifier

This component verifies the constraints over the deployment (provisioning) workflow of the
application using one of the widely used techniques for verifying workflows such as Petri Nets [8].
The workflow is described in the Ansible scripts in terms of tasks, roles, plays, and variables.

Table 18 - Development status of Provisioning Workflow Verifier

Module name

Provisioning Workflow Verifier

Github location

e) ficati

Development status

Ongoing work to create and verify Petri-net models
programmatically and via the ProM tool’

Deployment status

Ongoing work to deploy and test the Petri-net based
verifier locally.

Integration status

Ongoing work to integrate with the Predictive Model
Builder

Integration issues/dependencies

This module depends on the formal model built by
Verification Model Builder.

Next steps

Complete the verification of the soundness and
well-structuredness of a provisioning workflow

3.2.10 Bug Predictor and Fixer

Bug Predictor and Fixer detects the smells in TOSCA and Ansible artifacts and suggests corrections

or fixes for each smell.

Table 19 - Development status of Bug Predictor and Fixer.

Module name

Bug Predictor and Fixer

Github location

e EU/defect-predicti

Released version - v0.1
Detect code, design, and security smells for Ansible

Development status Detect security smells for TOSCA
Web-based User Interface for checking bugs in TOSCA
and Ansible files.

Deployment status Deployed locally and on Cloud Testbed

7 http://www.promtools.org/doku.php

D6.2 - Initial implementation and evaluation of the SODALITE platform and use cases - Public Page 30
© Copyright Beneficiaries of the SODALITE Project

https://github.com/SODALITE-EU/verification
https://github.com/SODALITE-EU/defect-prediction
http://www.promtools.org/doku.php

SN Project No 825480.

‘¥ Sodalite

Integration status

Partially integrated
Integrated with Predictive Model Builder

Integration issues/dependencies

This module depends on the modules Predictive Model
Builder, IaC Quality Assessor, and Semantic Knowledge
Base.

Next steps

Complete data-driven approaches to predicting
named-based and module usage related bugs in Ansible;
Add correction support for a subset of bugs

3.2.11 Predictive Model Builder

This component builds the models that can find the smells in TOSCA and Ansible artifacts.

Table 20 - Development status of Predictive Model Builder

Module name

Predictive Model Builder

Github location

o _FU/defect-predicti

Released version - v0.1
Build semantic models for detecting security smells for

Development status TOSCA;
Build rule-based and heuristics based model for
detecting smells in Ansible

Deployment status Deployed locally and on Cloud Testbed

Integration status

Partially integrated
Integrated with Semantic Reasoning Engine

Integration issues/dependencies

This module uses Semantic Knowledge Base, and
Semantic Reasoner.

Next steps

Complete a number of ongoing tasks on machine
learning based models for defect prediction;

Improve semantic prediction models for new types of
bugs

3.2.12 laC Quality Assessor

This component can calculate different software quality metrics for TOSCA and Ansible artifacts.

Table 21 - Development status of 1aC Quality Assessor

Module name

l1aC Quality Assessor

Github location

D6.2 - Initial implementation and evaluation of the SODALITE platform and use cases - Public Page 31
© Copyright Beneficiaries of the SODALITE Project

https://github.com/SODALITE-EU/defect-prediction
https://github.com/SODALITE-EU/iac-quality-framework

SN Project No 825480.

‘¥ Sodalite

Released version - v0.1

Development status Can calculate the laC metrics required by the design
smell detection for Ansible
Deployment status Deployed locally and on Cloud Testbed

Integration status

Partially integrated
Used by Ansible smell detection

Integration issues/dependencies

The metrics calculated by this module are used by the
heuristic based models for predicting different types of
smells.

Next steps

Support new types of laC metrics for TOSCA and Ansible
(as required by the bug prediction tools)

3.2.13 laC Model Repository

laC Model repository is a part of the Knowledge Base and will contain:

1. Performance Model of an infrastructure based on benchmarks.
2. Performance Model of an Application based on scaling runs done in the past.
3. Mapping of optimisations and applications and their suitability for a particular

infrastructure.

4. Optimisation recipe for a particular deployment. This contains selected optimisations by
the user for an application and infrastructure target.

Table 22 - Development status of 1aC Model Repository

Module name

laC Model Repository

Github location

Released version - v0.1

Integration status

Development status Prototype of application and infrastructure model
developed

Deployment status NOT STARTED
NOT STARTED

Integration issues/dependencies

laC Model repository interacts with the SODALITE IDE
and contains the Performance Model of infrastructure
and application (offline analysis).

Next steps

Develop the schema for the Model Repository and define
API for accessing the model repository;
Develop the full Application and performance Model.

D6.2 - Initial implementation and evaluation of the SODALITE platform and use cases - Public Page 32
© Copyright Beneficiaries of the SODALITE Project

https://github.com/SODALITE-EU/iac-management
https://github.com/SODALITE-EU/application-optimisation
https://github.com/SODALITE-EU/application-optimisation

9% .
{ } Project No 825480. ’SOdallte

3.2.14 Image Registry

Image Registry will store the executable runtime image of the artifact defined in the application
design process and built in the SODALITE deployment preparation process.

Table 23 - Development status of Image Registry

Module name Image Registry

Github location https://github.com/SODALITE-EU/iac-management
Released version - v0.1

Development status Prototype of a private internal and secured docker

registry deployed through IaC

Partially deployed: Only Docker image registry is
Deployment status deployed in the Cloud testbed

Partially integrated: Only Docker images can be retrieved

Integration status by the Orchestrator

TLS access key distribution to other components (eg.
orchestrator and image builder);

Integration issues/dependencies REST API:

xOpera as the l1aC blueprint execution engine

Next steps Singularity image registry to be deployed and integrated.

3.3 SODALITE Runtime layer

The Runtime layer of SODALITE is in charge of the deployment of SODALITE applications into
heterogeneous infrastructures, its monitoring and the refactoring of the deployment in response to
violations in the application goals.

The subsections below describe the status of the initial implementation of the components of
Runtime layer.

3.3.1 Orchestrator + Drivers

The Orchestrator of the Runtime Layer is in charge of managing the lifecycle of applications
deployed in heterogeneous infrastructures. The drivers/plugins facilitate the management of a
specific infrastructure, e.g. ALDE' provides an abstraction for the orchestrator for
platform-independent application lifecycle management in HPC environment.

Table 24 - Development status of Orchestrator

Module name Orchestrator

Github location Orchestrator xOpera referenced as a git submodule

'8 https://github.com/TANGO-Project/alde

D6.2 - Initial implementation and evaluation of the SODALITE platform and use cases - Public Page 33
© Copyright Beneficiaries of the SODALITE Project

https://github.com/SODALITE-EU/iac-management
https://github.com/SODALITE-EU/orchestrator
https://github.com/TANGO-Project/alde

Project No 825480.

‘¥ Sodalite

Released version - v0.1

Development status Initial version of xOpera and REST APl bundled and
dockerized
Deployment status Deployed in the Cloud testbed

Integration status

Partially integrated

Integration issues/dependencies

xOpera orchestrator / xOpera REST APl / Image Registry /
Postgres for blueprint persistence

Extend the support of other execution platforms (e.g.

Next steps Slurm, Docker Swarm).
Support TOSCA Workflows.
Table 25 - Development status of ALDE
Module name ALDE

Integration status

Github location https://github.com/SODALITE-EU/orchestrator
Released version - v1.0

Development status Outcome of TANGO®

Deployment status NOT STARTED
NOT STARTED

Integration issues/dependencies

Adapt to the SODALITE Infrastructure

Next steps

Torque support, integrate with HPC testbed.

Support for HPC workflows, provisioning of security
layer.

3.3.2 Monitoring

The Monitoring is responsible for collecting metrics at the level of application and infrastructure.
This is done with a conjunction of two elements: exporters situated in each service or machine that
wants to be monitored that expose the required metrics and a central monitoring service
(Prometheus) that collects and gathers the metrics provided by the exporters. The following
repositories include Prometheus configuration files from the working monitoring system and a

custom IPMI exporter.

1 http://www.tango-project.eu/

D6.2 - Initial implementation and evaluation of the SODALITE platform and use cases - Public Page 34
© Copyright Beneficiaries of the SODALITE Project

https://github.com/SODALITE-EU/orchestrator
http://www.tango-project.eu/

SN Project No 825480.

‘¥ Sodalite

Table 26 - Development status of Monitoring system

Module name

Monitoring system

Github location

Released version - v1.0

Development status System functioning, capable of discovering new
instances and providing metrics.
Deployment status Deployed in the Cloud testbed

Integration status

Partially integrated

Dependencies

Prometheus and various exporters

Next steps

Include new metrics.
Develop a monitoring platform/GUI.

Table 27 - Development status on IPMI exporter

Module name

IPMI exporter

Github location

e SC

Released version - v1.0

Development status Functioning. Capable of exposing power measurements
from physical nodes.
Deployment status Deployed in the Cloud testbed

Integration status

Partially integrated

Dependencies

Prometheus

Next steps

Include additional metrics.

Table 28 - Development status on HPC exporter

Module name

HPC exporter

Github location

Development status

Development not yet started

D6.2 - Initial implementation and evaluation of the SODALITE platform and use cases - Public Page 35
© Copyright Beneficiaries of the SODALITE Project

https://github.com/SODALITE-EU/monitoring-system
https://github.com/SODALITE-EU/ipmi-exporter
https://github.com/SODALITE-EU/hpc-exporter

SN Project No 825480.

‘¥ Sodalite

Deployment status NOT STARTED
Integration status NOT STARTED
Dependencies Prometheus
Start development of Prometheus exporter that monitor
Next steps different metrics from HPC infrastructure and

applications running on it.

Table 29 - Development status on HPC exporter

Module name

LRE exporter

Github location

Development status Development not yet started
Deployment status NOT STARTED

Integration status NOT STARTED
Dependencies Prometheus

Next steps

Start development of Prometheus exporter that monitor
different metrics at the level of LRE.

3.3.3 Deployment Refactorer

The deployment refactorer can modify the deployment model of an application at runtime to
prevent the violations of the application performance goals.

Table 30 - Development status of Deployment Refactorer

Module name

Deployment Refactorer

Github location https://github.com/SODALITE-EU/refactoring-ml
Released version - v0.1
Rule-based refactoring;

Development status Extension to RuBiS Cloud benchmark application;
Preliminary Machine learning based performance
prediction model

Deployment status Deployed locally and in the Cloud Testbed

D6.2 - Initial implementation and evaluation of the SODALITE platform and use cases - Public Page 36
© Copyright Beneficiaries of the SODALITE Project

https://github.com/SODALITE-EU/monitoring-lre-agent
https://github.com/SODALITE-EU/refactoring-ml

9% .
{ } Project No 825480. ’SOdallte

. Partially Integrated
Integration status Integrated with Refactoring Option Discoverer

This module depends on Refactoring Option Discoverer,
Integration issues/dependencies Node Manager, Deployment Preparation API, Semantic
Knowledge Base, Semantic Reasoner, Monitoring Agent

Integrate with Node Manager and Monitoring Agent;
Complete the first milestone of the machine learning

Next steps based approach for refactoring decision making;
Complete the refactoring logic required for Vehicle loT
Use case.
3.3.4 Node Manager

This component is deployed on each machine deployed in the Cloud and oversees the
performance of running containers. It performs vertical resource scalability in order to fulfill goals
assigned by the Deployment Refactorer. Given proper collected monitoring metrics it exploits
control-theory to plan next allocations.

Table 31 - Development status of Node Manager

Module name Node Manager

Github location https://github.com/SODALITE-EU/refactoring-ct

Released version - v0.1
Implemented a working version integrated with

Development status Kubernetes that supports the control of TensorFlow
applications by means of GPUs and CPUs vertical
scalability.

Deployment status NOT STARTED

Integration status NOT STARTED

This module depends on Deployment Refactorer,

Integration i ndenci o
tegration issues/dependencies Orchestrator, and Monitoring Agent.

Complete the integration with Monitoring Agent and
Next steps Deployment Refactorer

3.3.5 Refactoring Option Discoverer

The refactoring option discoverer can discover the substitutable nodes (refactoring options) for
the nodes in the deployment model of an application .

D6.2 - Initial implementation and evaluation of the SODALITE platform and use cases - Public Page 37
© Copyright Beneficiaries of the SODALITE Project

https://github.com/SODALITE-EU/refactoring-ct

94 .
{ } Project No 825480. ’SOdallte

Table 32 - Development status of Refactoring Option Discoverer

Module name Refactoring Option Discoverer

Github location
coverer

Released version - v0.1
Development status Discover compute and software nodes matching a given
set of constraints

Deployment status Deployed locally and in the Cloud Testbed

Partially Integrated
Integration status Integrated with the Semantic Reasoning Engine.
Used by the Deployment Refactorer.

This module depends on the Semantic Knowledge Base

Integration issues/dependencies and Semantic Reasoner.

Improve the constraint-based discovery of new
deployment options (semantic-matchmaking);

Support pattern-based discovery of new deployment
options.

Next steps

3.3.6 xOpera REST API

The xOpera orchestrator is a light-weight TOSCA compliant orchestrator with a CLI interface. For a
easier integration with other SODALITE components a REST APl was developed to enable this kind
of integration. The xOpera REST APl was also dockerized and deployed with xOpera on the
SODALITE cloud testbed.

Table 33 - Development status of xOpera REST API

Module name xOpera REST API

Github location

Released version - v0.1

Prototype of the REST API for xOpera orchestrator
Development status featuring blueprint registration and persistence, session
management, status of deployment, history of
deployment, documented with swagger

Deployment status Deployed in the Cloud testbed

Integration status Partially integrated

D6.2 - Initial implementation and evaluation of the SODALITE platform and use cases - Public Page 38
© Copyright Beneficiaries of the SODALITE Project

https://github.com/SODALITE-EU/refactoring-option-discoverer
https://github.com/SODALITE-EU/refactoring-option-discoverer
https://github.com/SODALITE-EU/orchestrator
https://github.com/SODALITE-EU/xopera-rest-api

{***} Project No 825480. ? SOdalite

Integration issues/dependencies xOpera orchestrator

Extend support for TOSCA CSAR files, follow the xOpera
Next steps development by introducing features with special focus
on security.

4 Development Status of the Demonstrating Use Cases

This section provides the development status of the three demonstrating use cases of SODALITE:
POLIMI Snow, USTUTT Virtual Clinical Trial and ADPT Vehicle loT.

4.1 POLIMI Snow UC

The goal of this use case is to exploit the operational value of information derived from public web
media content, specifically from mountain images contributed by users and existing webcams, to
support environmental decision making in a snow-dominated context. An automatic system crawls
geo-located images from heterogeneous sources at scale, checks the presence of mountains in
each photo and extracts a snow mask from the portion of the image denoting a mountain.

Two main image sources are used: touristic webcams in the Alpine area and geo-tagged
user-generated mountain photos in Flickr in a 300 x 160 km Alpine region. Figure 8 shows the
different components of the pipeline.

Data stream : User Generated Content

Mountain
—> Relevance
Classifier

Photograph
crawling

Data processing

360
Skyline E Panorama " Snow Mask Snow Index

Extract panorana Ali t Computation || Computati
Xtractor generator ignmen omputation omputation

I

Data stream : Webcam images

Weather _—
Webcam Daily image
|

| i _— condition aggregation
mage Crawler Filtering seree

Figure 8 - Components of the Snow Use Case pipeline.

For the first year, a reduced version of the pipeline is delivered, which contains a relevant subset of
the components as presented in Figure 9.

Data stream : Webcam images Data processing
Weather 2 i :
Webcam Image L] ——— |, Dailyimage Skyline || 360panorama | | Panorama
Crawler Filtering aggregation Extractor generator Alignment

Figure 9 - Initial version of the pipeline as a sub-group of the components of the original one.

Our work so far is based on the implementation plan presented in deliverable D6.1 SODALITE
Platform and Use Case Implementation Plan. In Figure 10 we present the planned schedule with

D6.2 - Initial implementation and evaluation of the SODALITE platform and use cases - Public Page 39
© Copyright Beneficiaries of the SODALITE Project

SN Project No 825480.

‘¥ Sodalite

the released components highlighted. All components planned for the Y1 were developed

according to the schedule.

ACTIVITY

Starl

Y1 Y2
End

WP6 (Integration and validation)

Deliverable M1 /M2 M3 M4 |[M5 M6 (M7 M8 M9 M1|I;M11 M12| M13| M14| M15| M

T6.3 Use Case Implementation (Snow UC)
User Generated image Crawler (UGIC)

6 M1T|M18 M19| M20| M21| M22| M23

M24,

16 D6.3

Mountain relevance classifier (MRC)

15 | 17 D6.3

SIS L s o o I |
Weather condition filter (WCF) 8 | 11 D6.3 |

% & = m |
Daily median image aggregation (DMIA) 1] 12 D82 |
Skyline Extraction (MIGR-SE) 51 [e [
360 pancrama generation (MIGR-360 PG) 3|8 D6.2 |
Peak Alignement (MIGR-PA) 5| 7 D6.3 |

Snow Mask Computation (SMC)

15 D6.3

Snow Index Computation

16 D6.3

Pipeline coodination

22 D6.3

Use Case and Architecture Evaluation

Baseline Measurements

15 D6.2, D6.3

Continuous Benchmarking

36 DE.3, D6.4

Validation and Evaluation of the SODALITE
Architecture

36 |D6.2, D6.3, D64

Figure 10 - Implementation Plan of Snow use case.

A review of the developed components, which are being deployed in the testbeds, is presented in

the subsequent sections.

4.1.1. WebCam crawler

Public webcams expose a URL which returns the most recent available image. The webcam

crawler:

e Loads the list of all the webcams in the dataset and starts asynchronous loops, one for

each webcam.

e At each loop iteration, it checks the corresponding webcam image and adds the image to

the dataset if it is changed w.r.t. the previous iteration, then idles and starts over again.

Since downloading the entire image for each iteration would consume unnecessary

bandwidth, the check is performed only on a portion of the image. For example, only the

first 5KB of the image are downloaded, hashed and compared to the previous webcam

hash: if the hash is different, it is saved as the new hash and the rest of the image is

downloaded. After the crawler boots, the first image acquired from every webcam is

discarded, as there are no guarantees on its timestamp (some webcams, due to failures,
propose the same images for days or months).

In Table 34, a summary of the webcam image crawler (WIC) component is provided.

Table 34 - Webcam image crawler component summary

Input

A list of webcams’ endpoints

Processing

For each webcam:

e Connect to the each webcam service to download the
first 5KB of an image

e Generate the hash of the downloaded portion and
compare with last downloaded image

e Compare hash of the two images, if the two hashes are
equal, skip

e Download and save the entire image

D6.2 - Initial implementation and evaluation of the SODALITE platform and use cases - Public Page 40
© Copyright Beneficiaries of the SODALITE Project

{***} Project No 825480. ? SOdalite

e Waitl’
Output Images for each webcam saved on disk
Implementation e JavaScript
technologies and languages ® NodeJsS

Examples of WebCam images are shown in Figure 11

Figure 11 - Webcam images examples.

4.1.2. Weather condition filter

Due to bad weather conditions that can significantly affect short and long-range visibility (e.g.,
clouds, heavy rains and snowfalls), only a fraction of the images can be exploited as a reliable
source of information for estimating snow cover. Examples of images with good and bad weather
are shown in Figure 12. The weather condition filter is based on the assumption that if visibility is
sufficiently good, the skyline mountain profile is not occluded (Table 35).

Figure 12 - Webcam image with good weather (first two on the left) and bad weather (two on the
right)

Table 35 - Weather filter component summary

Input A webcam image
The binary mask corresponds to a particular webcam.

Processing e The edge map of the input image is computed.
e The skyline visibility value is computed by comparing
with the binary mask

Output The database is updated by setting the visibility (boolean) of the
image to 0 (bad weather) or 1 (good weather).

Implementation e Python
technologies and languages

D6.2 - Initial implementation and evaluation of the SODALITE platform and use cases - Public Page 41
© Copyright Beneficiaries of the SODALITE Project

{***} Project No 825480. ? SOdalite

4.1.3. Daily median aggregation

Good weather images might suffer from challenging illumination conditions (such as solar glare
and shadows) and moving obstacles (such as clouds and persons in front of the webcam). At the
same time, snow cover changes slowly over time, so that one measurement per day is sufficient.
Therefore, the Daily Median Image Aggregation (DMIA) aggregates the images collected by a
webcam over one day, to obtain a single representative image to be used for further analysis. A
median of the images can deal with images taken in different conditions, removing transient
occlusions and glares. Given N good daily weather images the Daily Median Image (DMI) is obtained
by applying the median operator along the temporal dimension. The component is summarized in
Table 36.

Table 36 - Daily median image aggregation component summary

Input A list of images obtained within one day for each single webcam

Processing e Calculate the global offset of each image with respect to
the first image of the day

e Adjust each image based on the calculated offset

e C(Calculate and save DMI

Output DMI for each webcam

Implementation e Python
technologies and languages

Examples of images with the calculated DMI are shown in Figure 13.

Figure 13 - Example of DMIA applied on three webcam images.

4.1.4. Skyline Extraction

To compute the alignment of the photo and the virtual panorama, these two images should have
the same scale, i.e. the same pixel size. Since the photograph and the virtual panorama are
taken/generated from the same location, the angular size of the mountains on the photograph and
that of the mountains on the panorama are equal by definition. The horizontal FOV (Field Of View)
of the photograph is calculated from the focal length and the size of the camera sensor. Then, the
photograph is rescaled as the width of the panorama corresponds to a 360° FOV. The next step is
to obtain the landscape skyline of a photograph, i.e., the set of all the points that represent the
boundary between the terrain slopes and the sky. For this purpose, the image is fed to a binary
classifier in the form of patches and it returns its prediction. The training and validation of the
classifier is performed using a mountain images dataset, with annotated skyline presence feeding
the model with positive and negative patches of a fixed size [9].

In Table 37, a summary of the skyline extraction (MIGR-SE) component is presented.

D6.2 - Initial implementation and evaluation of the SODALITE platform and use cases - Public Page 42
© Copyright Beneficiaries of the SODALITE Project

94 .
{ } Project No 825480. ’SOdallte

Table 37 - Skyline extraction component summary

Input Image

Processing e Provide the image to the classifier that will output a
mask indicating for each pixel whether it corresponds to
the skyline or not.

Output Skyline mask
Implementation e Java
technologies and languages e OPENCV

Example of skyline extraction is presented in Figure 14.

Figure 14 - Example of skyline extracted from webcam image.

To measure its processing and response time, a small set of 20 images was created. Such images
are on average 1MB in size. We measure the time that it takes from sending the request to writing
the result to the file system. In this case, the resulting image in jpg format contains the skyline
mask.

On an average, the component takes 1.5 seconds to process an image of size 1MB. If we subtract
the time the client needs to prepare the request (0.2s) from the total time it took to send, process
the request and write the results, the component takes 1.3 seconds on average.

4.1.5. 360 Panorama generation

From the coordinates of the picture, we process the 360° panoramic view of the terrain using the
Digital Elevation Model (DEM) of the publicly available terrain. The functionality is exposed as a
service.

The rendering model is composed of a C++ program that exploits hardware-accelerated graphics
capabilities by invoking shader programs to perform the rendering operations.

This component uses the DEM files provided by NASA.

In Table 38, the 360° panorama generation (MIGR-360PG) component is summarized.

D6.2 - Initial implementation and evaluation of the SODALITE platform and use cases - Public Page 43
© Copyright Beneficiaries of the SODALITE Project

94 .
{ } Project No 825480. ’SOdallte

Table 38 - ° panorama generation component summary.

Input Latitude and Longitude

Terrain Model Precision (3" or1'")

Relative altitude of the viewer (meters from the ground)
Maximum visible distance

Processing e Loadingof DEM,
e |Initialisation or OpenGL rendering,
e Execution of OpenGL rendering,
e Extraction and conversion of results
Output 360° panorama
Implementation e C++14compliant

e OPENGL, EGL
e Java, JavaScript and NodeJS (to make the panorama
web-accessible)

technologies and languages

Examples of render generated images based on latitude and longitude of a webcam image are
shown in Figure 15. The alignment between the panorama and the skyline of the mountain image
is the next step.

Figure 15 - Example of render-generated from webcam coordinates with the webcam image of
reference.

4.1.6. Panorama Alignment

The alignment can be seen as the search for the correct overlap between two cylinders (assuming
the zero tilt of the photograph): one containing the 360° panorama and the other one containing
the photo, suitably scaled. It is useful to obtain the mountain mask that will be the input to the
successive components to calculate the Snow Index.

In Table 39 the peak alignment (MIGR-PA) component is described.

Table 39 - Peak alignment component summary

Input An image with its corresponding skyline annotation and the 360°
panorama corresponding to its location

Processing e Perform global alignment between skyline and
panorama

D6.2 - Initial implementation and evaluation of the SODALITE platform and use cases - Public Page 44
© Copyright Beneficiaries of the SODALITE Project

{***} Project No 825480. /’ SOda].ite

Output M = A mask indicating pixels that correspond to the mountain
surface.

Implementation e Java

technologies and e OPENCV

languages

Examples of mountain mask images computed from a webcam image are presented in Figure 16.

Figure 16 - Example of mountain mask extracted from webcam image based on the skyline.

To measure its processing and response time, the same set of 20 images used in the Skyline
Extractor component was employed.

We measure the time that it takes to send the request and write the result to the file system. In this
case, the result is a json file containing the mountain mask (along with other attributes) that will be
used to compute the snow index at a later point.

On average, the component takes 13.2 seconds to process a 1MB image. This time can be split into
different parts of the process. If the time the client needed to prepare the request (0.2s) is
subtracted from the total time it took to send, process the request and write the results, the
component takes on average 13 seconds.

D6.2 - Initial implementation and evaluation of the SODALITE platform and use cases - Public Page 45
© Copyright Beneficiaries of the SODALITE Project

¢ .
{ } Project No 825480. ’SOdallte

4,2 USTUTT Virtual Clinical Trial UC

The “In-silico clinical trials for spinal operations” use case targets the development of a simulation
process chain supporting in-silico clinical trials of bone-implant-systems in Neurosurgery,
Orthopedics and Osteosynthesis. It deals with the analysis and assessment of screw-rod fixation
systems for instrumented mono- and bi-segmental fusion of the lumbar spine by means of
continuum mechanical simulation methods. The components of the complete simulation process
chain as depicted in Figure 17 are described in the deliverable D6.1 [1] (Section 4.2).

In this document we describe the implementation and development done so far as well as
additional steps, which had to be introduced into the processing pipeline. These steps had to be
introduced before the “Extraction” step due to in depth analysis of the “Imaging Data”. In addition,
it became necessary to reorganize the data flow around the components "Density Mapping",
"Applying Boundary Conditions" and "Probabilistic Mapping", since the original program versions
had to be modified to allow the use of Code_Aster. Some of the components, namely Density
Mapping, Probabilistic Mapping and Solver, were deployed and run in the HPC testbed, and their
baseline performance was measured and reported in the deliverable D3.3 "Prototype of
application and infrastructure performance models - First version".

& 1 | P2

Iz Fizdl| | Fe
Imaging BT s Agilngrnr Solution Data
hata (Solver Input Deck) C(ode quter’}

[

Probabilistic
Mapping

hd T
: Enhanced
Surface Density
: Meshed Geometry
e i,

Cloud Dat
. Component Gl
. . Meshed Geometry ARV
Discretization (Input Deck) Boundary
Conditions [HPC] Pisagas

‘ Extraction ‘

Component

—

T

Figure 17 - Schema of the Virtual Clinical Trial use case pipeline.

4.2.1 Extraction

Since the initial step “Extraction” is directly based on the clinical imaging datasets, they were first
analysed with respect to their content as well as their quality using 3D Slicer®.

Both datasets are provided by the clinic for neurosurgery at the university medical center
Knappschaftskrankenhaus Bochum, Germany* as DICOM?* (Digital Imaging and Communications
in Medicine) datasets. While there is no standard on how DICOM datasets have to be stored
physically, they are organized logically by header information stored within each image. In Figure
18 it can be seen that the datasets are logically organized firstly by patient and secondly by so
called studies, which in turn can contain several series.

Even though the datasets contain several imaging modalities like full body X-ray images, dual
energy X-ray absorptiometry (DXA) scans, magnetic resonance imaging (MRI) data as well as

20 https://www.slicer.org/

2 https://www.kk-bochum.de/en/Clinics-Centers-Departments/Clinics/Neurosurgery Clinic/index.php

2 https://www.dicomstandard.org/ - “DICOM is the international standard to transmit, store, retrieve, print, process,
and display medical imaging information”

D6.2 - Initial implementation and evaluation of the SODALITE platform and use cases - Public Page 46
© Copyright Beneficiaries of the SODALITE Project

https://www.slicer.org/
https://www.kk-bochum.de/en/Clinics-Centers-Departments/Clinics/Neurosurgery_Clinic/index.php
https://www.dicomstandard.org/

{***} Project No 825480. ? SOdalite

computer tomography (CT) images, we currently concentrate on the CT-images as they are the
basis for the three dimensional (3D) reconstruction of the spine’s bone structures.

PatientsName PatiantiDy PatientsBirthDate Patient=girth Tinm Patientssex PatientsAge

Ancnymized Patient 15393311972483 1900-01-01 0 o
Anonymized Patient 15393318018467 1900-01-01 (1] o
Anonymized Pattent 15393295521671 1900-01-01 0 o
Anonymized Patient 15393299274254 1300-01-01 0 O
StudylD StudyDate StudyTime \coessionNumber ModahtiesinStudy nstitutionMame

15393209244852 2018-10-12 093845 15393296083154 Anonymized Hospital
15393313543880 2018-10-12 100235 1535331 354384948 Anonymized Hospital
15393296083155 2018-10-12 093329 15393296083154 anonymized Hospital
15393318018468 2018-10-12 101012 1539331801 8466 Anonymized Hospital
153832009274255 2018-10-12 093850 15393299274253 Anonymized Hospital
15393313203887 2018B-10-12 100254 1539331357884] aAnonymized Hospital

SerasNumber SeresDake SeriesTime SenasDescripbion Modality BodyFart
| 2018-10-12 a93337 BWS LW5 20 MPR ax | NECK
1 2018-10-12 093331 Topogramm 0.6 Te0f CT MECK
2 2018-10-12 09333 LWS LAT WD/AU/RE DX LSPINE
1 2018-10-12 0933249 LWS AP WDyAu/Ra DX LSPINE
502 2018-10-12 093328 Patientenprotokol cT
501 2018-10-12 093328 Dosisbericht SR

Figure 18 - Logical organization of patient datasets.

The analysis of the datasets revealed that, for each patient, three studies contain 5-8 series with
CT-data, which are recorded pre-operatively (without the implant), directly after surgery (with the
implant) and after several weeks during clinical control examination. Further on, it was found that
out of the 5-8 series, each study contains at least three CT-series each with a different
reconstruction plane. The remaining CT-series contained different information like dose reports or
in some cases additional CT-series treated with different smoothing kernels.

The left subfigures of Figure 19 show an isosurface along with two cutting planes and resulting
contour lines. As a basis for this feature extraction, the CT-series from the pre-operative study,
reconstructed in the x-y-plane was taken. In the bottom-right subfigure the contour line of a
vertebra in the x-y-plane is shown in detail. It can be seen that the vertebra’s contour was extracted
smoothly. In the top-right subfigure the contour line of the same vertebra, taken on the y-z cutting
plane is shown. Here it can be seen that the vertebra’s contour could not be extracted smoothly
due to the low resolution of this CT-series in the y-z- direction.

-z cut
)c/ontour Non smooth
contour
x-y cut
contour

Figure 19 - y-z cut contour line and x-y cut contour line - x-y reconstructed dataset.

D6.2 - Initial implementation and evaluation of the SODALITE platform and use cases - Public Page 47
© Copyright Beneficiaries of the SODALITE Project

{***} Project No 825480. ? SOdalite

For the results shown in Figure 20 the same feature extraction as shown in Figure 19 was applied to
the CT-series from the pre-operative study reconstructed in the y-z plane. In contrast to Figure 19,
in the top right subfigure of Figure 20 it can be seen that the contour line on the y-z cutting plane in
that case reproduces the vertebra’s contour smoothly. In the lower right subfigure of Figure 20,
however it can be seen that the contour in the x-y plane is no longer reproduced smoothly once the
feature extraction is based on the CT-series reconstructed in the y-z plane.

: y-z cut
A contour

’ ?\ Y Q—:i'd‘;%\ 3}4—% }\
 — =3 {
X-y cut f ;% e S Non

r— e — 3
contour \ TZ L L=y) smooth
J T T =5 contour
Z { ST & S

o

Figure 20 - y-z cut contour line and x-y cut contour line - y-z reconstructed dataset.

From these analyses it was concluded that exploiting only one CT-series for geometry extraction is
not feasible and additional image processing steps have to be introduced.

We consider to exploit different reconstruction planes in combination with polynomial
interpolation and anisotropic diffusion image filtering. This is based on image analysis and also
past experiences in the implementation of a merge filter for the three CT-series in each study.
These two filtering steps will be introduced right before the Extraction as part of the Image
Processing and Filtering and will produce an “Enhanced Image-Data”, as shown in Figure 21.

Due to the higher complexity of the reconstruction and discretization steps, it was decided to
postpone the implementation of the automatic extraction and discretization steps for the first
prototype and to initially perform manual segmentation, geometry extraction and discretization.
This means that the simulation process chain currently starts at the "Density Mapping" step, the
development status of which is described in the next subsection.

D6.2 - Initial implementation and evaluation of the SODALITE platform and use cases - Public Page 48
© Copyright Beneficiaries of the SODALITE Project

9% .
{ } Project No 825480. ’SOdallte

xy-resolved
CT-series

C (E] T P
| | A I [-
- 5 Solver
v \ Lsoorfjeortrlonﬁ:ft "Dzscrl} (ABAQUS or Solution Data U
Merge & Anisotropic } Image Processing Code Aster)

yz-resolved
CT-series

xz-resolved
CT-series

Interploate Filtering and Filtering [

/ 5

I
¥

Extracti Enahnced
SRR Image-Data

!

: N Enhanced
Surface 3:“?“:3«' Pro;:mlﬁstlc Meshed Geometry
Geometry pping PPiNg {Input Deck)
Y [
v Cloud
Anplvi [Component Rt
% < 3 Meshed Geometry PPRLy1ng
Discretization (Input Deck) BDur_wdgry
Conditions [HPC] [Brocage

Ty

CE—

Component

L—

Figure 21 - Schema of the Virtual Clinical Trial use case pipeline with additional steps.

4.2.2 Density Mapping

In this step, the three input decks as well as the three CT data sets are taken as input. By means of
direct geometrical mapping, the grayscale distribution of the respective CT data set is mapped
onto the volume mesh provided by the discretization. After the mapping, each element in the
volume mesh holds a density value. The “Density Mapping” step is written in Fortran 2003. Its initial
implementation was started in 2007 and is documented by Schneider [10]. The algorithmic
principles are published by Schneider et al. [11]

Since the original implementation relied on an internal data format and was not able to load
DICOM datasets with the given complex structure, the data input part had to be modified. 3D Slicer,
which was used for the analysis of the datasets, has a very advanced DICOM reader implemented
and is also able to export the loaded data as VTK STRUCTURED_POINTS®. Because of these
features and since it is planned to implement the “Anisotropic filtering” step for image
improvement based on VTK , it was decided to add the capability to load VTK
STRUCTURED_POINTS data in VTK XML format to the “Density Mapping” component.

By this extension, the “Density Mapping” step is now able to map the density distribution from the
CT-data on the “Meshed Geometry”. This results basically in one density value per element.

To give an impression of the resulting density distribution, the final mapping result is visualized
side by side with the original data in Figure 22. Since the probabilistic mapping step acts locally on
each element, no topological information has to be passed on between the density mapping
component and the probabilistic mapping component. Everything that has to be passed is a list
that contains one integer value per element representing its averaged density value. These values
have to be passed as a file containing binary 64-bit integer values.

The initial version of Density Mapping was encapsulated into a Singularity container and was run
on the HPC testbed, taking on average 122.4 seconds to complete.

3 https://vtk.org/wp-content/uploads/2015/04/file-formats.pdf

D6.2 - Initial implementation and evaluation of the SODALITE platform and use cases - Public Page 49
© Copyright Beneficiaries of the SODALITE Project

https://vtk.org/wp-content/uploads/2015/04/file-formats.pdf

Project No 825480. ? SOda].ite

Figure 22 - Density Mapping component - Left: Input data - Right: Mapping result.

4.2.3 Probabilistic Mapping

Based on the input from the “Density Mapping” component, the “Probabilistic Mapping”
component produces three probability distributions per element, one for each of the three elastic
moduli of an orthotropic stiffness matrix. This is done by means of the transfer functions between
density and orthotropic elastic moduli given in Schneider et al. [11]. The low and high bounds and
the mode of 95% confidence interval are computed from the aforementioned probability
distributions. This finally results in the output of three files where each file contains three elastic
moduli for each element.

Since these outputs have to be extended by shear moduli and poisson ratios to form complete,
orthotropic material distributions and then become integrated with the “Meshed Geometry” to
form a complete Input Deck, i.e. the “Enhanced Meshed Geometry”, the data path in the simulation
process chain was changed, as can be seen in Figure 21. Instead of treating the “Enhanced Meshed
Geometry” directly with the “Probabilistic Mapping” component and passing its output directly to
the “Solver” component, its output is now sent to the “Applying Boundary Conditions” component.
This change in the data flow was decided during the parallel development of the "Probabilistic
Mapping" component and the prototype of the Code_Aster* model, which now forms the basis for
the current ongoing development of the "Applying Boundary Conditions" component. During the
development, it was recognized that it would amount to less effort to add the integration of the
results from the “Probabilistic Mapping” component to the "Applying Boundary Conditions"
component than to implement the treatment of the “Enhanced Meshed Geometry” by the
“Probabilistic Mapping” component. This is due to the fact that in the "Density Mapping"
component, from which we derive the "Applying Boundary Conditions" component, the
algorithmic part is already implemented and only the output part needs to be changed.

The initial implementation of Probabilistic Mapping allows parallelisation via MPI. MPI was utilized
over different cores within a single node of the HPC testbed. Better performance was achieved
when running it with a 16 MPI ranks configuration, taking on average 21.42 seconds to complete.

4.2.4 Applying Boundary Conditions

The “Applying Boundary Conditions” component is derived from the original implementation of
the “Density Mapping” component. The component will integrate each of the three output files of
the “Probabilistic Mapping” component with the “Meshed Geometry” and additional information

% https://www.code-aster.org/

D6.2 - Initial implementation and evaluation of the SODALITE platform and use cases - Public Page 50
© Copyright Beneficiaries of the SODALITE Project

https://www.code-aster.org/

{***} Project No 825480. ? SOdalite

needed by the “Solver” component. This will result in three input decks, which can then be loaded
by the “Solver” component directly.

4.2.5 Solver

In the “Solver” component, a reference model prototype had been developed for ABAQUS® and its
fully featured transfer to Code_Aster is currently under development. Initial results of this
development are displayed in Figure 23.

Displacement - Magnituce
Equivalent stress - PRIN_3

g88
—
« &

0.0e+00

@A L/}

Figure 23 - Displacement (left) and 3rd principal stress (right) results of the Code_Aster prototype
model.

Additionally, the coupling of the "Applying Boundary Conditions" component to the “Solver”
component is currently under development. The implementation of the coupling requires basically
the implementation of the mesh output in Code_Aster’'s HDF5-based MED-format®® and the
implementation of the output of Code_Aster’s input parameter file to the "Applying Boundary
Conditions" component.

The Code_Aster based solver was also containerized with Singularity and run on the HPC testbed
using only a single core. The future configuration will include MPI parallelisation and will be able to
run on multiple cores. To execute the Solver, it took 789.17 seconds on average.

4.3 ADPT Vehicle loT UC

The Vehicle IoT use case focuses on situationally-aware processing of data subject to various
latency, security, and regulatory constraints within a connected vehicle. The precise requirements
of the workload are subject to change based on factors such as the regulatory environment, the
privacy preferences of the driver, resource availability, requisite processing power, connectivity
state, etc. This use case targets mixed Cloud/Edge deployment models and focuses on dynamic
adaptation and run-time redeployment/reconfiguration in order to satisfy both its performance
and compliance requirements.

The implementation plan for the UC is outlined in Figure 24 below. At present, all of the planned Y1
work was carried out on schedule, with Y2 work beginning as planned. It is not expected that there
will be any significant deviations or changes required for Y2.

5 https://www.3ds.com/de/produkte-und-services/simulia/produkte/abaqus/
% https://docs.salome-platform.org/latest/dev/MEDCoupling/developer/index.html

D6.2 - Initial implementation and evaluation of the SODALITE platform and use cases - Public Page 51
© Copyright Beneficiaries of the SODALITE Project

https://www.3ds.com/de/produkte-und-services/simulia/produkte/abaqus/
https://docs.salome-platform.org/latest/dev/MEDCoupling/developer/index.html

{***} Project No 825480. ? SOdalite

While the existing application components are capable of dynamic adaptation and reconfiguration
of the application-level (e.g. turning on/off certain features, dynamically switching between
backend instances, etc.), little work has been done on extending this to run-time reconfiguration of
the infrastructure and deployment itself.

ACTIVITY) : _Y1 o) . _ Y2 _))
WPS (Integration and validation) StartEnd Deliverable M1 _MZ}MS WA 1S 106 N7 B WS 150 M11 12|13 118 W15 W16 W17 W18 1o lmzu M21 W22 M23 M24
T6.3 Use Case Implementation (Vehicle loT UC) 4 |36 TFIFE ‘ _| ‘ _| | | ‘ [‘ I : ‘ | ‘ E
[lcense Plate Detection Service - Initial 4 [6 il D6.2 [T ‘ {
Drowsiness Detection Service - Initial 6 I 8 ‘ D6.2] 1
Intrusion and Theft Detection Service - Initial 7|10 D6.2
Edge Gateway Implementation - Initial 8 I 12 ‘ D6.2 [| ‘
Cloud Function Implementation and Cloud Deployment 5 |11 D6.2 | ‘ ‘ I \
License Plate Detection Service - Intermediate 13 I 15 ‘ D6.3] I _[. 1 ‘
Drowsiness Detection Service - Intermediate - 15 I 17 - D6.3 [T - . [T] - | i
Intrusion and Theft Detection Service - Intermediate - 16 | 19 D6.3 . . []
Edge Gateway Implementation - Intermediate 13 I 24 ‘ D6.3 [] [1] [I I
Cloud Function Edge Deployment and Federation - 16 . 24 - D6.3 [T - . . [.
Component Integration and Optimization 6 . 36 ‘ D6.2, D6.3, D6.4
T6.4 Use Case and Architecture Evaluation 7 3%
Baseline Measurements 7 7 . 12 D6.2
Continuous Benchmarking 13 |24 D6.3
Validation and Evaluation of the SODALITE Architecture [13 | 36 D63, D64

Figure 24 - Vehicle loT UC Implementation Plan

4.3.1. Vehicle Services

A number of vehicle services, dedicated microservices taken from ADPT’s KnowGo Car’” platform,
are leveraged within this use case. These are briefly expanded upon in the subsections below.
While the functionality for each of these services is self-contained within a microservice, they are,
at present, only used on a Cloud backend (specifically, GCP) in production.

In the initial implementation at the end of Y1, all vehicle services are up and running on the
SODALITE Cloud testbed, through Ansible Playbooks converted from a Docker Compose file. An
Edge instance of a corresponding service can be triggered on-demand via accessing the OpenFaa$
function path on the Edge gateway directly.

The deployment pattern at the start of SODALITE, with a single Cloud backend implementing the
API Gateway pattern is shown in Figure 25 below:

2 https://www.knowgo.io

D6.2 - Initial implementation and evaluation of the SODALITE platform and use cases - Public Page 52
© Copyright Beneficiaries of the SODALITE Project

https://www.knowgo.io/

Project No 825480. a SOdalite

First Sligp = Edge-barsod
Inteligence

Figure 25 - Schema of the Vehicle loT use case deployment phases

During Y1 of the project, the focus has been on two key areas: (1) preparing an Edge-based instance
of the backend and relevant services, and (2) tying the existing use case components into the
SODALITE stack in order to enable SODALITE to directly manage the deployment and configuration
of deployed components.

4.3.1.1. License Plate Detection Service

The license plate detection service exposes a simple REST APl in which plate image data is
submitted, and the text-based plate number returned, together with a measure of confidence in
prediction. Images fall into 3 different categories - detectable (confidence >= 90%), partially
detectable (able to identify the plate, but unable to extract the plate number accurately,
confidence <90%), and undetectable (unable to detect a plate in the provided image).

For the underlying ML models, two different cases exist: (1) The detection of a plate within the
image; and (2) Textual extraction of the plate number from the detected plate. In the case of (1) the
OpenCV model itself must be retrained - this is currently not handled, but remains an exercise for
Y2, and in the case of partial detection, plates are saved off for manual tagging and re-generation of
a Tesseract OCR training sheet. Both re-training scenarios are manual, and while they can support
a degree of parallelization at computation time, are unsuited for online learning.

Partially detectable and undetectable images are saved off to storage volumes for periodic
scraping for model training.

D6.2 - Initial implementation and evaluation of the SODALITE platform and use cases - Public Page 53
© Copyright Beneficiaries of the SODALITE Project

{'**} Project No 825480. ’ SOdalite

4.3.1.2. Drowsiness Detection Service

The initial version of the drowsiness detection service implements two components: (1) the video
stream producer, which is responsible for connecting to the hardware-specific camera and
obtaining a video stream to communicate via a dedicated Kafka queue, and (2) a dedicated
microservice that consumes the video stream and carries out real-time analytics on the video
frames, tracking the percentage of eye closure over a period of time (in this case, a number of
consecutive video frames). At the end of Y1, both components are implemented, and a basic
analysis on both Edge Gateway hardware targets is possible. In Y2, it is expected to: (1) expand the
stream producer for a wider range of sources; (2) to implement topic authorization on the Kafka
topic through the API Gateway; and (3) to support detection on each Edge Gateway configuration,
with service deployment adapting to the unique Gateway-specific platform capabilities.

4.3.1.3. Intrusion and Theft Detection Service

The intrusion and theft detection service builds on the face detection model from the drowsiness
detection service in order to provide a facial recognition capability specific to the authorized user
of the vehicle. In the initial implementation of this component, the user is able to generate their
own customized SVC classifier, trained with a number of sample images submitted by the user, and
is capable of recognizing the individual’s face. The service itself is implemented as a dedicated
microservice, which takes an image as input and provides a JSON-encoded response with the
results. It is up to the caller to take action based off of the returned detection results, which is left
to be elaborated in Y2. The initial implementation has been validated on the Edge Gateway, using
cameras directly connected to the Gateway device (elaborated in the following section).

During Y2, we will look to: (1) deploy this service onto the differing Edge Gateway configurations
and have the deployment adapt to the unique hardware capabilities of the platform; (2) enable
online learning/training of the classifier to mitigate false negatives; and (3) facilitate classifier
portability, allowing the vehicle owner to grant authorization to other individuals.

4.3.2. Edge Gateway

A number of different hardware platforms with unique capabilities and configurations are being
experimented with for the Edge Gateway implementation, enabling SODALITE to consider the
availability of heterogeneous hardware resources not only at the Cloud infrastructure level, but
also directly at the Edge.

During Y1, an initial Edge Gateway has been instantiated on a Raspberry Pi 3B+ and an NVIDIA
Jetson Nano, as per the hardware evaluation Table 40 below. The implementation of the Edge
Gateway has necessitated changes for multi-arch Docker images in the existing application
components, as well as a number of changes to the OpenFaa$S runtime to support policy-based
access control for Cloud Functions through Open Policy Agent (https://openpolicyagent.org) and
various language run-times used by the use case (Golang, Dart) - these aspects are further detailed
in D7.3.

In Y2, focus will instead shift towards performance and capability-based assessment of the Edge
Gateway hardware, allowing deployment patterns to be adapted to reflect the specific capabilities
of the specific Edge Gateway implementation.

D6.2 - Initial implementation and evaluation of the SODALITE platform and use cases - Public Page 54
© Copyright Beneficiaries of the SODALITE Project

https://openpolicyagent.org/

Project No 825480.

¥ Sodalite

Table 40 - Differing hardware configurations for the Edge Gateway (Vehicle loT UC)

RPi 3B+ RPi 3B+ + Intel NVIDIA Jetson Google Coral Dev
Neural Compute Nano Board
Stick 2 (NCS2)
CPU 1.4 GHz 64-bit Quad-Core ARM 1.4 GHz 64-bit 1.5 GHz 64-bit
Cortex-A53 Quad-Core ARM Quad-Core ARM
Cortex-A57 Cortex-A53, plus
MPCore Cortex-M4F
GPU Broadcom VideoCore IV 128-Core NVIDIA | Vivante GC7000
Maxwell Lite
ML Accelerator | None Intel NCS2 None Google Edge TPU
RAM 1GB LPDDR2 4GB LPDDR4 1GB LPDDR4
Performance 21.4 GFLOPS 21.4 GFLOPS (GPU) | 472 GFLOPS 32 GFLOPS (GPU)
4 TOPS (NCS2) /
4 TOPS (TPU)
Camera Raspberry Pi Camera Module V2 (8MP) Coral Camera
Raspberry Pi Pi NoIR Camera V2 - infrared version (5MP)
Networking WiFi: 802.11ac, Bluetooth: 4.2

4.3.3. Microservices -> Cloud Functions

During Y1 of the project, the initial set of vehicle microservices have each been wrapped into
deployable Cloud Functions under OpenFaaS, allowing them to be deployed on-demand directly
on the Edge Gateway in response to client-initiated events.

4.3.4. Region-aware Gateway Routing

The Vehicle loT use case makes use of multiple region-specific backend Gateways for both
compliance and QoS purposes, and uses region-aware routing through a single entry point into the
AP| Gateway in order to: (a) determine the appropriate backend for a specific client request; (b)
deploy new region instances when no suitable backend exists; and (c) force the client to
reconfigure or otherwise disable specific application logic which would bring it out of compliance
in the current environment.

This functionality is implemented through an open source (Apache 2.0 licensed) region router,
developed by ADPT (://gi - -region-), which makes use of
HashiCorp’s Consul (https://consul.io) service registry to monitor the deployment state of backend
instances and matches the in-bound client request with a suitable backend. The client may set the
region identifier in its request header directly based on reverse geocoding of geolocation at the

D6.2 - Initial implementation and evaluation of the SODALITE platform and use cases - Public Page 55
© Copyright Beneficiaries of the SODALITE Project

https://github.com/adaptant-labs/go-region-router/tree/notification
https://consul.io/

{***} Project No 825480. ? SOdalite

client side or may be queried by the router based on the inbound requesting IP. An overview of
location-aware routing in a production capacity is outlined in Figure 26 below:

Most Accurate: Location Self-Determination O Fadenafion |
[within 2-6rm accuracy) Reguon O Elechon
T ' - . L
oo % B B o c T . P — -

E; En“sul
—
1 MNGIMX
Gha 150 31662 WWM .r -t -
Domderditd Coariry Code i AP Gabeway {DE)
With HTTP Raquist Hande
X-Country-Code: de
= AT Fiegion DC —
[Foegeon Fouter =
a— G o

e NFoewaTEFOr) sonw: = NGIMX
R [P | iy Codde B .

| P change i detectien klerasl | c e
Eanad on ahoresi-pain bovder arabes || - AP aalivway (AT

[I
. " P Least Accurate: IP Lookup
{within S0km accuracy]

Figure 26 - Location-aware Multi-DC Region Routing

Under SODALITE in Y1, the router has been extended to include notifications to a designated REST
APl endpoint in the case where no suitable deployment is found, allowing for the SODALITE
refactorer to dynamically initiate a new region deployment based on the defined TOSCA blueprint.
The following payload is included in the POST body to the notification endpoint (locations are ISO
3166-1 alpha-2 encoded, in this case, demonstrating a need to deploy a new instance in Italy):

"event_type": "DeploymentNeeded",

"new_location": "it"

In Y2, it is expected that the router will be further enhanced with a suitable pub/sub interface which
will integrate directly with the SODALITE run-time monitor. It may also be extended to acquire
knowledge of deployment facts from other sources, depending on the technical direction
ultimately taken by SODALITE.

D6.2 - Initial implementation and evaluation of the SODALITE platform and use cases - Public Page 56
© Copyright Beneficiaries of the SODALITE Project

Project No 825480. ’ SOda].ite

5 Implementation status of the First Prototype

Table 41 depicts the actual coverage of the SODALITE UML use cases, which were introduced within
the context of deliverable D2.1 “Requirements, KPIs, evaluation plan and architecture - First
version” (see Section 2 “Requirement Elicitation and Analysis”) [2] and will be run as part of the
evaluation of the SODALITE platform, by the three SODALITE demonstrating use cases at the end of
project month M12. Please note that not all of the defined UML cases were tested by the
demonstrating use case owners during the first project year, as the initial versions for some of
them (UC12, UC14 and UC15) will be released in M18 of the project. With respect to the ones (i.e.
initial versions of UML cases) that were released in M12:

1.

The Virtual Clinical Trial use case focused on UC5 (Predict and Correct Bugs) and has
demonstrated that the current implementation of this UC has been able to correct the
initial TOSCA blueprints and Ansible playbooks prepared for the Virtual Clinical Trial.
Moreover, this use case has also experimented with UC6 (Execute Provisioning,
Deployment and Configuration) and UC7 (Start Application) showing that the corrected set
of blueprints and playbooks can actually support the deployment and the execution of the
Virtual Clinical Trial application on the HPC testbed.

The Snow use case focused on the modeling activities showing that it is possible to define a
deployment model that fulfills the needs of the application (UC1), to select the resources to
be used at runtime (UC2), to obtain generated laC artefacts (UC3, UC4) and runtime images
in the private image registry (UC16), and finally run and monitor the deployment (UC6-UC8)
on the Cloud testbed. Additionally, partial redeployment (UC10) was executed by means of
the WP5 toolset.

The Vehicle 10T use case focused on the runtime monitoring and refactoring aspects and
has identified and applied refactoring options at runtime (UC9), providing notice to the
runtime monitoring (UC8), and triggering redeployment and re-configuration (UC6) of the
deployed components on the Cloud testbed.

Testbed Providers, acting as Resource Experts and Quality Experts, modeled the Cloud and
HPC resources available in the testbed and added them into the Knowledge Base (UC13),
as well as contribute to the Knowledge Base with the classification of typical bugs and their
resolutions (UC11).

Table 41 - Coverage of the SODALITE UML use cases by the project’s demonstrating use cases by

M12

Virtual

Clinical Testbed
UML Use Case Trial Snow |VehicleloT| Providers

UC1 Define Application Deployment Model (WP3)

UC2 Select Resources (WP3)

UC3 Generate laC code (WP4)

UC4 Verify IaC (WP4)

UC5 Predict and Correct Bugs (WP4)

UC6 Execute Provisioning, Deployment and Configuration (WP5)

UCT Start Application (WP5)

UC8 Monitor Runtime (WP5)

UC9 Identify Refactoring Options (WP5)

D6.2 - Initial implementation and evaluation of the SODALITE platform and use cases - Public Page 57
© Copyright Beneficiaries of the SODALITE Project

{'**} Project No 825480. /’ SOdalite

UC10 Execute Partial Redeployment (WP5)

UC11 Define laC Bugs Taxonomy (WP4)

UC12 Map Resources and Optimisations (WP3) Will be released in M18

UC13 Model Resources (WP3)

UC14 Estimate Quality Characteristics of Applications and
Workload (WP3) Will be released in M18

UC15 Statically Optimize Application and Deployment (WP4) Will be released in M18

UC16 Build Runtime images (WP4)

At the end of Y1, all of the use cases are able to partially run on the testbeds (in-line with the
expected state at MS3-1st SODALITE Prototype), and baselines for the individual use cases have
been gathered and elaborated in D3.3. The future plan is to ensure that all the use cases provide
increasing coverage of the individual UML use cases and are able to continuously evaluate them
against the Y1 baselines. Below is the description of how the use case providers have experienced
the development with the SODALITE platform.

Virtual Clinical Trial UC

For the Virtual Clinical Trial use case, we have prepared Singularity images for each component
and developed TOSCA blueprints and Ansible playbooks. Since this use case is HPC oriented, we
experienced a steep learning curve during the development due to the current focus of SODALITE
platform to the cloud infrastructure with respect to 1aC generation and image building. However, it
helped to identify additional requirements for the Runtime layer, such as support for TOSCA
workflows, which is now part of ongoing work of the SODALITE Orchestrator.

The developed blueprints and playbooks were submitted to the Bug Predictor component, which
checked them and identified several bugs, especially in the Ansible playbooks, which were
iteratively solved. For example, for getting the job status, we used pipe commands (gstat
command piped with grep command), but did not consider possible failures in the pipeline causing
the wrong exit status. Therefore, we included the pipefail option (set -o pipefail) before the
commands run to ensure correct failure handling.

Snow UC

For the Snow use case, we partially modeled the pipeline using the knowledge base-empowered
SODALITE IDE. The result is a JSON file, containing all the data and meta-data needed for the
deployment and links to proper Ansible playbooks, that enable the setup and management of
Snow components. This JSON is then sent to the iac-blueprint-builder component that converts it
to a proper TOSCA blueprint (in the near future more formats will be supported) that can be used
by an orchestrator (e.g., xOpera) to enact the deployment.

Currently, the main open issue is to connect the various components of the pipeline. The original
and current deployment of Snow was limited to two VMs, and components were connected using
local hard-drives and ad-hoc methods. In the next months, we are going to address this issue by
using more scalable and de-coupled ways to connect components (e.g., using queues or
distributed DBs) so that the portability of the use case and its runtime management could be more
effective.

At runtime, we verified that the generated blueprints could actually automate the deployment and
configuration of the whole pipeline and we started and monitored such pipeline. Furthermore, we
focused on the Skyline Extraction component by testing how it could be dynamically scaled in
order to fulfill requirements on the response time. The current approach implemented in the Node

D6.2 - Initial implementation and evaluation of the SODALITE platform and use cases - Public Page 58
© Copyright Beneficiaries of the SODALITE Project

{'**} Project No 825480. ’ SOdalite

Manager exploits heuristics and control-theory to dynamically change the CPU and GPU allocations
according to the workload and context changes. The results retrieved with Skyline Extraction are
promising and we plan to extend it to all the other components of the pipeline that can be
executed on heterogeneous resources (CPU/GPU).

Vehicle loT UC

For the Vehicle IoT use case, we have ensured that use case components are deployable from the
SODALITE container registry, and developed TOSCA blueprints and Ansible playbooks (converted
from an existing Docker Compose stack) to enable deployment on the Cloud testbed. One of the
key use case components (the region-aware router that sits in front of the APl Gateway) has been
extended to provide deployment hints to the run-time monitor and refactorer, which in turn
communicates with xOpera to obtain the TOSCA blueprint and trigger a new deployment when the
vehicle enters a country where no deployment exists. This is an important milestone for the use
case, as it allows the use case deployment to be managed directly by SODALITE, and provides
linkage between Infrastructure-level adaptation (reconfiguration/re-deployment) and the
pre-existing service-level adaptation capabilities built in to the existing use case components
(building on the state of the art attained at the end of the RestAssured H2020 project®®).

6 Conclusions

This deliverable presents the next iteration of the SODALITE platform, and specifically describes
the initial implementation of the components making up the platform and of the project’s three
demonstrating use cases. D6.2, along with the other SODALITE technical deliverables which will be
submitted by the end of the first project year (i.e., in M12; D2.4 “Guidelines for contributors to the
SODALITE framework”, D3.1 “First version of ontologies and semantic repository”, D3.3 “Prototype
of application and infrastructure performance models”, D4.1 “laC Management - initial version”,
D5.1 “Application deployment and dynamic runtime - Initial version” and D6.5 “SODALITE
framework - First version”), explains the current status of the SODALITE system in terms of
repositories, functionalities, procedures and workflows of the First Prototype. Specifically,
deliverable D6.2 introduced new insights with respect to the SODALITE development environment
such as the testbed setup and configuration, code repositories and the newly introduced
continuous integration and deployment platform (Section 2). Furthermore, this document
discussed the first prototype implementation of the overall SODALITE platform in Section 3, which
was accompanied by the implementation status of the prototype evaluated by the demonstrators
in Section 5. In between, Section 4 highlighted the initial development status of key components
from each technical work package.

The updates of the current document, namely deliverables D6.3 “Intermediate implementation
and evaluation of the SODALITE platform and use cases” and D6.4 “Final implementation and
evaluation of the SODALITE platform and use cases” that will be provided at the end of the second
and third project year, respectively, will present the second (intermediate) and third (final)
iterations of the SODALITE platform. These incremental deliverables will report on more advanced
features and functionalities, as well as the evaluation of the improvements provided by the
SODALITE platform for the project’s Demonstrating Use Cases.

B https://restassuredh2020.eu/

D6.2 - Initial implementation and evaluation of the SODALITE platform and use cases - Public Page 59
© Copyright Beneficiaries of the SODALITE Project

https://restassuredh2020.eu/

94 .
{ } Project No 825480. ’SOdallte

References

[1] D6.1 - SODALITE platform and use cases implementation plan. SODALITE Technical Deliverable
2019.

[2] D2.1 Requirements, KPIs, evaluation plan and architecture. SODALITE Technical Deliverable
2019.

[3] D3.1 - First version of ontologies and semantic repository. SODALITE Technical Deliverable 2020.
[4] D4.1 - laC Management - initial version. SODALITE Technical Deliverable 2020.

[5] D5.1 - Application deployment and dynamic runtime - initial version. SODALITE Technical
Deliverable 2020.

[6] D3.3 - Prototype of application and infrastructure performance models - First version. SODALITE
Technical Deliverable 2019.

[7] D2.4 - Guidelines for contributors to the SODALITE framework. SODALITE Deliverable 2020.
[8] Petri, Carl Adam. "Kommunikation mit automaten." (1962).

[9] Frajberg, D., Fraternali, P., & Torres, R. N. (2017, September). Convolutional neural network for
pixel-wise skyline detection. In International Conference on Artificial Neural Networks (pp. 12-20).
Springer, Cham.

[10] Schneider, R., Modellierung des inhomogenen orthotropen Materialverhaltens der kortikalen
Femurstruktur auf der Basis klinischer CT- bzw. Dichte-Daten, Thesis, Institute of Mechanics,
Structural Analysis, and Dynamics of Aerospace Structures (ISD), University of Stuttgart, 2007.

[11] Schneider, R., Faust, G., Hindenlang, U., Helwig, P.: Inhomogeneous, orthotropic material
model for the cortical structure of long bones modelled on the basis of clinical CT or density data.
Computer Methods in Applied Mechanics and Engineering. 198, 2167 - 2174 (2009).

D6.2 - Initial implementation and evaluation of the SODALITE platform and use cases - Public Page 60
© Copyright Beneficiaries of the SODALITE Project

