

A preliminary analysis of Infrastructure as Code in open source repositories

Luciano Baresi, Elisabetta Di Nitto, Michele Guerriero, Giovanni Quattrocchi

Politecnico di Milano

Infrastructure as Code (IaC) is a novel paradigm that makes system administrators’ work quite similar to

the work of programmers. In fact, today system administrators (sysadmins) do not have to manually

perform the provisioning, configuration, and deployment processes as they can exploit some IaC

languages to write pieces of code which automate such processes and can be executed more and more

times.

Thanks to this possibility, infrastructural code can become part of the whole codebase associated to a

certain software system and can, therefore, be maintained, verified, fixed and optimized using

approaches similar to those adopted for traditional software code.

IaC languages are always associated to corresponding engines that interpret the IaC code and execute

it. In almost all cases each language is specific to a particular engine. The only exception is TOSCA,

which is a standard language supported by a variety of engines, e.g., Cloudify, Opera and Brooklyn (this

last one supports also another language).

The combination of IaC languages and the corresponding engines allow people without sysadmin skills,

e.g., application logic developers, to execute the set up of a whole software system, thus easily

replicating the application operational environment. This capability is an important enabling factor for

DevOps practices as it improves the ability of developers to run complete complex systems, get a clue

about their actual behavior, and identify possible optimizations. Moreover, it allows the Dev and Ops

sub-teams to work in a coordinated way and to be aware of each other's activities.

Since open source software development is often the place where innovative approaches and practices

are applied, we have been trying to assess the adoption of IaC in open source projects.

With this objective in mind, we have analysed the situation in GitHub. We have considered the

population of active repositories, i.e., the highly rated (ten stars) repositories with at least one commit

from 2018, these are 460,155. Within this population, we have searched for those that include in their

description some reference to well-known IaC languages. In Table 1, the first and second columns show

the results of this analysis with reference to those languages that, according to [1], are the most well-

known and used. In total, about 1.3% of the repositories in the initial population includes some reference

to IaC in their description. This number can be considered a sort of lower bound for the actual number as

we expect that there are repositories storing IaC but not referring to this explicitly in their description.

This is because IaC is a support code and, as such, not necessarily mentioned among the most relevant

characteristics of an application. Moreover, this percentage, even if small, is still significant considering

that IaC is a relatively new technology. To give an idea, according to [2], Matlab is the 10th most used

programming language with a share of 2%.

In terms of popularity of the various IaC languages, the analysis confirms the findings published in [1]

and based on the results of a survey with 44 respondents. The most referenced languages are

Kubernetes (2,269 repositories), Ansible (1,620 repositories) and Terraform (561 repositories) (see the

second column of Table 1). Conversely, TOSCA, which is the only standardization effort in the list, still

features a limited adoption in the open source context we have considered.

While an in depth analysis of IaC bugs is the subject of our future work, we have started analysing the

commit history of some of those repositories that include IaC. Due to the limitations of the querying API

offered by GitHub, we could select at most 1,000 repositories for each of the IaC languages we have

considered. This has allowed us to consider 4,240 repositories (see the third column in Table 1). These

show an average percentage of IaC code that vary from being less than 1% to about 15% (see the

seventh column in Table 1), with an average number of LOC for IaC software which is below 200 (see

the sixth column in Table 1). It is interesting to see that some maintenance activities are specifically

dedicated to IaC, with an average number of commits due to bug fixing on IaC code that varies between

the 121 of Puppet (20 commits per year) and the 4 of Brooklyn (0.67 per year) (see the fifth column of

Table 1), with most repositories that see at least one commit per year from the time the first IaC file has

appeared in the repository (eighth column) to the current time. Looking at the specific characteristics of

the languages we have considered, it seems that configuration languages such as Puppet and Chef

need more files compared to those other languages which are focusing on orchestrating a complete

deployment process.

Language/tool

Total

population

per IaC

language

Number of

extracted

repositories

Total

number of

bug

commits

Avg

number of

bug

commits in

repo

Avg

number of

LOC in IaC

files

Avg

percentage

IaC files in

repo

First IaC

file

addition in

repo

Salt 74 74 732 13.81 50.20 9.48% 2013-04-26

Brooklyn 14 14 4 4.00 67.45 0.33% 2015-12-16

TOSCA 23 23 27 6.75 111.25 1.34% 2015-10-26

Cloudformation 223 223 105 6.18 219.58 6.53% 2014-04-19

Terraform 561 561 4233 14.35 81.19 9.72% 2015-02-03

Docker Compose 332 332 436 4.89 38.25 3.45% 2015-02-27

Packer 179 179 866 20.14 172.52 4.85% 2013-07-18

Puppet 180 180 18595 120.75 79.91 11.84% 2007-08-07

Kubernetes 2269 1000 5218 64.42 159.29 2.68% 2015-09-01

Chef 290 290 9201 38.49 81.81 14.54% 2009-01-17

Vagrant 364 364 223 4.37 55.43 2.75% 2012-02-14

Ansible 1,620 1000 8212 28.22 61.98 5.63% 2012-10-19

Total 6129 4240 47852 326.36 1178.87

Table 1. Analysis of IaC languages adoption in GitHub.

We do not yet know the causes and the implications of the differences we have highlighted, but our

analysis certainly shows a significant interest in the open source community around IaC. Also, it shows

the presence of a significant number of languages, some of which were born only recently (for instance,

from Table 1 we can see that the first Kubernetes file has been included in a repository in 2015, but are

already quite well-known and adopted.

The SODALITE project will enter in this scenario with the objective of offering tools that make possible

the adoption of multiple IaC languages and tools for managing complex and highly heterogeneous

software systems and that, at the same time, allows users to abstract from the peculiarities of such

languages by exploiting a high level modeling language and inference mechanisms that guide the IaC

definition process.

References

[1] M. Guerriero, M. Garriga, D.A. Tamburri, F. Palomba, “Adoption, Support, and Challenges of

Infrastructure-as-Code: Insights from Industry”, International Conference on Software Maintenance and

Evolution (ICSME) 2019.

[2] Ahsen Saeed, Here Are the Ten Best Programming Languages to Learn in 2019. Blog post.

https://codinginfinite.com/best-programming-languages-to-learn-2019/

https://codinginfinite.com/best-programming-languages-to-learn-2019/

