
Graph compilers for AI training and

inference
Karthee Sivalingam, Nina Mujkanovic

– CRAY EMEA Research Lab

Figure 1 The structure of the feed-forward artificial Deep Neural Network (DNN) (image credit)

Introduction

Artificial Intelligence, the attempt to create an intelligent agent, gained popularity with the success

of AlexNet for image recognition in 2012. The proposed combination of stacked neural networks

(called Deep Neural network) and the use of GPUs to drastically reduce network training times

compared to previous iterations, led to a boom in the use of such networks for image recognition

and speech recognition.

The many frameworks since developed for Machine Learning (ML) – especially Deep Learning

(DL) - have enjoyed varying levels of success. With dataflow at the heart of most of these

computations, efforts have been made to improve performance through graph compilation

techniques. In this blog post, we review the currently most popular ML frameworks, as well as the

https://www.intechopen.com/books/metallurgy-advances-in-materials-and-processes/artificial-intelligence-techniques-for-modelling-of-temperature-in-the-metal-cutting-process

2

supported graph compilers, with a view towards using lessons learned for the creation of an

application optimiser component.

DL Frameworks

Deep Learning is a subset of Machine Learning centered on the use of Deep Neural Networks

(DNN), or multiple layers of neural networks (as shown in Figure 1), which progressively extract

higher level features from raw data. This makes them particularly useful for image recognition,

speech recognition, natural language processing, and similar problems.

DNN models are usually represented as computational graphs, with nodes representing tensor

operators, and edges the data dependencies between them. This computational graph is then used to

further optimise for different hardware back-ends. Optimisations may include operator fusion,

memory latency hiding, and mapping to hardware primitives.

DL Frameworks, which aid in the designing, training, and validating of DNNs, depend on

optimized libraries for most tensor operations, which is not ideal, as the libraries do not always

support the new operators created through kernel fusion optimisations. This is further complicated

by the diversity in memory hierarchy and accelerator hardware, as well as the layout and

dimensionality of input data. Autotuning based approaches are very costly as the search space of

optimisation is very high and there is no accurate model for modern hardware.

Table 1 maps popular DL frameworks to their support of graph compilers for training (T) and

inference (I). Training refers to the use of labelled or unlabeled data to learn model parameters,

whereas Inference refers to the use of the trained model to perform predictions on previously

unseen data. Training a model is computationally intensive and may require multiple days on

multiple GPUs. Inference is usually performed on an edge device, such as a mobile or car, and

should ideally complete within milliseconds. Despite differences regarding computational

requirements and time to solution, Inference and Training share the same computation graph and

graph compiler based optimisation techniques.

Popular Machine/Deep Learning frameworks include Google’s TensorFlow, Facebook’s PyTorch,

Apache’s MXNet (supported by cloud services including AWS and Microsoft Azure), Microsoft’s

Cognitive Toolkit, MILA’s Theano (currently not in active development), and the INRIA

supported Scikit-learn. TensorFlow, likely most popular of those listed, provides a low-level API

for graph construction, but recommends using the high-level Keras API. Facebook’s Caffe2 is

another popular DL framework that has now been merged with PyTorch.

https://www.tensorflow.org/
https://pytorch.org/
https://mxnet.apache.org/
https://github.com/microsoft/CNTK
https://github.com/Theano/Theano
https://scikit-learn.org/
https://keras.io/

3

Graph Compilers

Graph compilers optimises the DNN graph and then generates an optimised code for a target

hardware/backend, thus accelerating the training and deployment of DL models. We have reviewed

a number of compilers, including XLA, TC, TVM, ONNC, GLOW, Intel nGraph, PlaidML, and

TensorRT.

The XLA [1] (Accelerated Linear Algebra) compiler accelerates linear algebra computations in

TensorFlow models and achieves a 1.15x speedup when enabled on standard benchmarks.

Table 1 Popular AI frameworks and support for graph compilers

Tensor Comprehensions (TC) [3] aims to improve performance of custom new operators that are

not yet fully supported. It provides a mathematics-like language to represent operators, using

Framework /

JIT Compilers
XLA TC TVM ONNC

GLO

W

Intel nG

raph

Plaid

ML

Tensor

RT

TensorFlow T N I I N T I T I + I

PyTorch N T I * I I T T I N I

MXNet N N I I N T I N I

CNTK N N I I N N N I

Theano N N N N N N N N

Keras N N I I N N T N

SciKit N N N I N N N N

T – Training I - Inference N – No support

* requires rewrite + added to Intel nGraph

4

polyhedral JIT compilation and autotuning. TC supports Caffe2 and PyTorch and mainly focuses

on optimisation across operators, and for data layout and size. TC has been evaluated on multiple

popular kernels and achieves up to 4x speedup compared to Caffe2 + CUBLAS.

The TVM [2] compiler is based on Halide’s compute/schedule separation concept. TVM

introduces a new tensor expression language (DSL) to construct tensor operators, which is then

converted to optimised kernels for different target hardware. TVM currently supports TensorFlow,

MXNet, PyTorch, Keras, and CNTK on CPUs, GPUs, and FPGAs (embedded and server). It

achieves portable performance of about 1.2x to 3.8x.

ONNX (Open Neural Network Exchange) is a standard open format for defining and representing

deep learning models. This allows AI developers to port models across DL frameworks or use

combinations that best suit their needs. This community project, created by Facebook and

Microsoft, has gained support by a number of industry partners. ONNC[5] (Open Neural Network

Compiler) is a retargetable compiler (built on top of LLVM) that supports compiling ONNX based

models to any supported hardware like CPU, GPU, FPGA, DSP.

GLOW [4] optimises Neural Networks by lowering the graph to two intermediate representations.

Glow works with PyTorch and supports multiple operators and targets. Glow can consume ONNX

(open standard for serializing AI model) as an input and thus can support other frameworks.

GLOW has been found to offer 2.7x speedup over TensorFlow (with XLA) and 1.3x over TVM

(no autotuning) for ResNet50.

Intel nGraph is an end-to-end compiler for training and inference and supports TensorFlow,

MXNet, ONNX, and PaddlePaddle. nGraph can deliver as much as a 45x increase in normalized

inference throughput leveraging MKL-DNN on Intel Xeon Scalable processors.

PlaidML, a compiler for deep learning, is also available as a component of the Intel nGrpah

compiler stack. PlaidML supports Keras, ONNX and accelerates by auto generating tiled code with

performance comparable to CUDA on NVIDIA GPUs. This is useful mainly for supporting new

kernels that are not supported by libraries.

NVIDIA’s TensorRT compiler is built on top of CUDA and optimises inference by providing high

throughput and low latency for deep learning inference applications. TensorRT supports ONNX,

thus by extension supporting models trained by different frameworks. Providing optimisations

based on reduced precision, these TensorRT models are found to provide 40x faster performance

compared to CPU-only platforms during inference.

https://onnx.ai/
https://onnc.ai/
https://www.intel.ai/ngraph/
https://www.intel.ai/plaidml/
https://developer.nvidia.com/tensorrt

5

Figure 2 Production deployment workflow for an AI application

DL Benchmarks

Having good performance comparison based on standard benchmarks will help the community in

selecting tools for specific deep learning models. There is an abundance of benchmarks a

researcher can choose from and obtaining portable performance measurements on different

frameworks and hardware is mostly an exercise in trial and error. Benchmarks[6] like MLPerf,

DeepBench, and DAWNBench have been helpful in such efforts. MLPerf [7] can benchmark a

broad range of DL applications, such as Image Classification, Object Detection, Translation,

Recommendation, Sentiment Analysis, and Reinforcement Learning. MLPerf has separate suites of

benchmarks for Training and Inference. Comparably, DAWNBench supports only two types of

application classes - namely Image Classification and Question-Answering –, focusing instead on

optimisation strategies and hyperparameter tuning. DeepBench focuses on underlying kernels and

operations like dense matrix multiplication, convolutions, recurrent layers, and communication,

instead of using the entire application.

6

DL Deployment

Figure 2 shows the workflow of deploying a DL application in production. The complexity of

heterogenous infrastructure (HPC, Cloud) and hardware (CPU, GPU, FPGA) should be abstracted

for the data scientist to enable seamless research. Container technologies like Docker and

Singularity provide portable runtime for applications to run on heterogenous infrastructures. With

multiple options for DL frameworks, Graph compilers, and libraries, the optimisation of an

application and its deployment becomes even more important for both scientific throughput and

savings in resource cost and energy.

In the SODALITE EU Project, we aim to solve these challenges by developing an Application

Optimiser component that uses the performance model of an application based on DL benchmarks

to optimise its runtime and deployment for heterogenous infrastructure and hardware. Based on the

inputs from the data scientist about the configuration of the application and the optimisations to be

enabled, the application optimiser component will select the optimised framework, compiler, and

libraries, and build an optimised container. Also, the application parameters and hyperparameters

will be chosen based on the performance model or auto tuned during run time. This optimised

application in a container will then be deployed to cloud or HPC infrastructure.

References

[1] C. Leary and T. Wang, “Xla: Tensorflow, compiled,” TensorFlow Dev Summit, 2017.

[2] T. Chen, T. Moreau, Z. Jiang, H. Shen, E. Q. Yan, L. Wang, Y. Hu, L. Ceze, C. Guestrin, and A.

Krishnamurthy, “Tvm: end-to-end opti- mization stack for deep learning,” arXiv preprint

arXiv:1802.04799, pp. 1–15, 2018.

[3] N. Vasilache, O. Zinenko, T. Theodoridis, P. Goyal, Z. DeVito, W. S. Moses, S. Verdoolaege, A. Adams, and

A. Cohen, “Tensor comprehen- sions: Framework-agnostic high-performance machine learning abstrac-

tions,” arXiv preprint arXiv:1802.04730, 2018.

[4] N. Rotem, J. Fix, S. Abdulrasool, S. Deng, R. Dzhabarov, J. Hegeman, R. Levenstein, B. Maher, N. Satish, J.

Olesen, J. Park, A. Rakhov, and M. Smelyanskiy, “Glow: Graph lowering compiler techniques for neural

networks,” CoRR, vol. abs/1805.00907, 2018. [Online]. Available: http://arxiv.org/abs/1805.00907

[5] W. F. Lin, D. Y. Tsai, L. Tang, C. T. Hsieh, C. Y. Chou, P. H. Chang, and L. Hsu, “ONNC: A compilation

framework connecting ONNX to proprietary deep learning accelerators,” in IEEE International Conference on

Artificial Intelligence Circuits and Systems (AICAS 2019). IEEE, 2019.

[6] S. Verma, Q. Wu, B. Hanindhito, G. Jha, E. B. John, R. Radhakrishnan, and L. K. John, “Demystifying the

mlperf benchmark suite,” arXiv preprint arXiv:1908.09207, 2019.

[7] Mattson, P., Cheng, C., Coleman, C., Diamos, G., Micikevicius, P., Patterson, D., ... & Brooks, D. (2019).

MLPerf Training Benchmark. arXiv preprint arXiv:1910.01500.

	Introduction
	DL Frameworks
	Graph Compilers
	DL Benchmarks
	DL Deployment

