C’ Sodalite

SOftware Defined AppLication Infrastructures managemenT and Engineering

SODALITE Framework -
First Version

D6.5

IBM
31.7.2020

* X %

E This project has received funding from the European Union’s Horizon 2020 research and innovation

* *

Fak programme under grant agreement No 825480.

9% .
{ } Project No 825480. ’SOdallte

Deliverable data
Deliverable D6.5 SODALITE framework - First version
Kalman Meth (IBM)
Indika Kumara (JADS)
Anastasios Karakostas, Stefanos Vrochidis, loannis Kompatsiaris (CERTH)
Authors Yosu Gorrofiogoitia (ATOS)
Roman Sosa Gonzalez (ATOS)
Giovanni Quattrocchi (PMI)
Dragan Radolovi¢ (XLAB)
Nejc Bat (XLAB)
Reviewers Piero Fraternali (POLIMI)
Daniel Vladusic (XLAB)
Dissemination Public, DEM
level
Name Change Date
Kalman Meth (IBM) Outline created 17.11.2019
All Components added 07.01.2020
Piero Fratern?.ll, Daniel First quality check & review 09.01.2020
Vladusic
Kalman Meth (IBM) Addressed issues from review 22.01.2020
History of Added section 1.2 “SODALITE
changes Context and Goals” to address
comments from reviewers.
In introduction, added a
statement on what is and what
Kalman Meth (1BM) | 'S 1Ot accomplished in this | =g ;7 55
version, and what we plan for
Cl/CD.
In section 1.3, added an
explanation on the
innovations of each layer after
each layer figure.
Acknowledgement

The work described in this document has been conducted within the Research & Innovation action
SODALITE (project no. 825480), started in February 2019, and co-funded by the European
Commission under the Information and Communication Technologies (ICT) theme of the H2020
framework programme (H2020-1CT-16-2018: Software Technologies)

D6.5 SODALITE framework - First version Page 1
© Copyright Beneficiaries of the SODALITE Project

SN Project No 825480.

‘¥ Sodalite

Table of Contents

Executive Summary
Glossary

1 Introduction
1.1 Structure of the Document
1.2 SODALITE Context and Goals
1.3 Overview of SODALITE architecture
1.3.1 Modelling Layer
1.3.2 Infrastructure as Code (laC) Layer
1.3.3 Runtime Layer

2 Modelling Layer

2.1 Semantic Knowledge Base

2.1.1 Description of component

2.1.2 Status of implementation

2.1.3 Location of repository and how to build the code
2.2 Semantic Reasoner

2.2.1 Description of component

2.2.2 Status of implementation

2.2.3 Location of repository and how to build the code
2.3 SODALITE IDE

2.3.1 Description of component

2.3.2 Status of implementation

2.3.3 Location of repository and how to build the code

3 laC Management Components

3.1 Abstract Model Parser

3.1.1 Description of component

3.1.2 Status of implementation

3.1.3 Location of repository and how to build the code
3.2 1aC Blueprint Builder

3.2.1 Description of component

3.2.2 Status of implementation

3.2.3 Location of repository and how to build the code
3.3 Runtime Image Builder

3.3.1 Description of component

3.3.2 Status of implementation

3.3.3 Location of repository and how to build the code
3.4 Concrete Image Builder

3.4.1 Description of component

3.4.2 Status of implementation

10
10
11
12
13

15
15
15
15
15
15
15
15
16
16
16
16
16

17
17
17
17
17
17
17
17
17
17
17
18
18
18
18
18

D6.5 SODALITE framework - First version
© Copyright Beneficiaries of the SODALITE Project

Page 2

3 Project No 825480.

3.4.3 Location of repository and how to build the code
3.5Image Registry

3.5.1 Description of component

3.5.2 Status of implementation

3.5.3 Location of repository and how to build the code
3.6 Application Optimiser

3.6.1 Description of component

3.6.2 Status of implementation

3.6.3 Location of repository and how to build the code
3.7 1aC Verifier

3.7.1 Description of component

3.7.2 Status of implementation

3.7.3 Location of repository and how to build the code
3.8 Verification Model Builder

3.8.1 Description of component

3.8.2 Status of implementation

3.8.3 Location of repository and how to build the code
3.9 Topology Verifier

3.9.1 Description of component

3.9.2 Status of implementation

3.9.3 Location of repository and how to build the code
3.10 Provisioning Workflow Verifier

3.10.1 Description of component

3.10.2 Status of implementation

3.10.3 Location of repository and how to build the code
3.11 Bug Predictor and Fixer

3.11.1 Description of component

3.11.2 Status of implementation

3.11.3 Location of repository and how to build the code
3.12 Predictive Model Builder

3.12.1 Description of component

3.12.2 Status of implementation

3.12.3 Location of repository and how to build the code
3.13 laC Quality Assessor

3.13.1 Description of component

3.13.2 Status of implementation

3.13.3 Location of repository and how to build the code

4 Runtime Layer Components

4.1 Orchestrator -> xOpera
4.1.1 Description of component
4.1.2 Status of implementation
4.1.3 Location of repository and how to build the code

‘¥ Sodalite

18
18
18
18
18
19
19
19
19
19
19
19
19
19
19
19
19
20
20
20
20
20
20
20
20
20
20
20
21
21
21
21
21
21
21
21
21

22
22
22
22
22

D6.5 SODALITE framework - First version
© Copyright Beneficiaries of the SODALITE Project

SN Project No 825480.

‘¥ Sodalite

4.2 xOpera REST API

4.2.1 Description of component

4.2.2 Status of implementation

4.2.3 Location of repository and how to build the code
4.3 Deployment Refactorer

4.3.1 Description of component

4.3.2 Status of implementation

4.3.3 Location of repository and how to build the code
4.4 Node Manager

4.4.1 Description of component

4.4.2 Status of implementation

4.4.3 Location of repository and how to build the code
4.5 Refactoring Option Discoverer

4.5.1 Description of component

4.5.2 Status of implementation

4.5.3 Location of repository and how to build the code
4.6 ALDE

4.6.1 Description of component

4.6.2 Status of implementation

4.6.3 Location of repository and how to build the code
4.7 Prometheus

4.7.1 Description of component

4.7.2 Status of implementation

4.7.3 Location of repository and how to build the code
4.8 Node exporter

4.8.1 Description of component

4.8.2 Status of implementation

4.8.3 Location of repository and how to build the code
4.9 IPMI exporter

4.9.1 Description of component

4.9.2 Status of implementation

4.9.3 Location of repository and how to build the code
4.10.1 Skydive

4.10.1 Description of component

4.10.2 Status of implementation

4.10.3 Location of repository and how to build the code

5 Conclusion

22
22
22
22
22
22
23
23
23
23
23
23
23
23
23
24
24
24
24
24
24
24
24
24
24
24
25
25
25
25
25
25
25
25
25
25

27

D6.5 SODALITE framework - First version
© Copyright Beneficiaries of the SODALITE Project

Page 4

{H*} Project No 825480. ? SOdalite

D6.5 SODALITE framework - First version Page 5
© Copyright Beneficiaries of the SODALITE Project

{***} Project No 825480. \? SOdalite

Executive Summary

The SODALITE Framework is the software system that includes all SODALITE stable components.
This deliverable includes the description of the software that makes up the SODALITE stack, while
the actual software is available through GitHub SODALITE repository
(https://github.com/SODALITE-EU). The document thus serves as an accompanying textual
document, describing the components delivered by the SODALITE consortium at the end of the
first year of the project. This comprises what has been achieved for the first SODALITE prototype
embodied in Milestone 4 (MS4) of the project which was defined as:

e Laboratory prototype that is “up-and-running”. Use-Cases are defined and can be partially

executed on the prototype. Public release.

The SODALITE architecture is divided into 3 main layers: Modelling layer, Infrastructure as Code
layer, and Runtime layer. This document summarizes the available stable components in each of
these layers, and points to instructions on how these components can be accessed and built.

This document represents the status at the end of Year 1 of the project and will be updated with
future releases of the framework at the end of Year 2 (D6.6) and Year 3 (D6.7).

D6.5 SODALITE framework - First version Page 6
© Copyright Beneficiaries of the SODALITE Project

https://github.com/SODALITE-EU

{***} Project No 825480. ? SOdalite

Glossary
Acronym Explanation
AADM Abstract Application Deployment Model
ALDE Application Lifecycle Deploy Engine
AOE Application Ops Experts
API Application Program Interface
DSL Domain Specific Language
laC Infrastructure as Code
IDE Integrated Development Environment
KB Knowledge Base
KPI Key Performance Indicator
RDF Resource Description Framework
REST Representational State Transfer
TOSCA Topology and Orchestration Specification for Cloud Applications

D6.5 SODALITE framework - First version Page 7
© Copyright Beneficiaries of the SODALITE Project

{***} Project No 825480. ’ SOdalite

1 Introduction

The SODALITE Framework is the software system that includes all SODALITE stable components.
This deliverable presents the status and location of the software that make up the SODALITE
stack, describing the components delivered by the SODALITE consortium at the end of the
first year of the project. This is mainly a software deliverable and comprises what has been
achieved for the first SODALITE prototype embodied in Milestone 4 (MS4) of the project which was
defined as:

e Laboratory prototype that is “up-and-running”. Use-Cases are defined and can be partially

executed on the prototype. Public release.

Although several components of this First Prototype already use the CI/CD pipeline to
automatically build their artifacts, at this stage (M12) many of the components are still built, tested
and integrated manually on the local environments and deployments. Instructions are provided
individually for each component on how to compile and use the component. Some of the
components still lack unit tests. For the next release of the Sodalite Framework (scheduled at M18
of the project) we intend to provide an integrated end-to-end Sodalite stack, including tests, built
and deployed using CI/CD tools.

Specific build instructions, with the accompanying examples, are provided on the component’s
GitHub page, as we treat them as a living document. Furthermore, the M18 release, as the first
release of the platform, will be accompanied with the build blueprint, allowing to set-up the
complete SODALITE platform in a straightforward manner.

Instructions on how to contribute to the SODALITE stack are provided in deliverable D2.4,
Guidelines for contributors to the SODALITE framework, where additional software quality checks
are also described (e.g. CI/CD).

The SODALITE architecture is divided into 3 main layers: Modelling layer, Infrastructure as Code
layer, and Runtime layer. A laboratory prototype of the SODALITE Framework is running on the
SODALITE testbed, and the SODALITE Use-Cases can be partially executed on the prototype. This
document summarizes the available stable components in each of the layers, and points to
instructions on how they can be accessed and built.

Video demonstrations of many of these components are presented on the Project’s youtube
channel'.

Additional details of various components can be found in other Year 1 deliverables.
e D2.1 Requirements, KPIs, evaluation plan and architecture - First version
o This deliverable includes the definition of SODALITE requirements and KPlIs, the
plan for assessing the fulfillment of requirements and KPIs in the context of the
SODALITE case studies, and the initial outline of the SODALITE architecture.
e D2.4 Guidelines for contributors to the SODALITE framework
o This document defines the guidelines that external contributors may follow in
order to submit their extensions and fixes to the main project baseline. It also
contains a brief overview of the repositories whose status are reported here-in.

! https://www.youtube.com/watch?v=8YC11JFSWC4

D6.5 SODALITE framework - First version Page 8
© Copyright Beneficiaries of the SODALITE Project

{***} Project No 825480. ’ SOdalite

e D3.1Firstversion of ontologies and semantic repository
o This deliverable describes the first iteration of the semantic models defined by
SODALITE, and describes the first version of the Semantic Reasoner module that
populates the SODALITE Knowledge Base with the resource models and Abstract
Application Deployment Models composed through the textual editor (Application
Developer IDE).
e D4.1/aC Management - initial version
o This deliverable describes the first iteration of development of the Infrastructure as
Code (lIaC) layer within the SODALITE platform, and describes the deployment
preparation process and performance optimisation tasks of infrastructure-as-code
produced before deployment.
e D5.1Application deployment and dynamic runtime - Initial version
o This deliverable describes the first iteration of the SODALITE Runtime Layer, which
is responsible for orchestrating the deployment of applications on heterogeneous
infrastructures, collecting runtime monitoring information and enabling
adaptation of the application to improve its performance.
e D6.2 Initial implementation and evaluation of the SODALITE platform and use cases

o This document reports on the initial implementation of the fundamental
components that make up the SODALITE platform, reviews the first prototypes
developed for each of the project’s three Demonstrating Use Cases, as well as their
evaluation and validation.

Throughout the document, we are using the terms Application Ops Experts (AOE), Resource
Experts (RE) and Quality Experts (QE). The following table provides a mapping between these roles
and the processes defined in the ISO/IEC/IEEE standard 12207 Systems and software engineering —
Software life cycle processes:

SODALITE Roles ISO/IEC/IEEE standard 12207 processes

Application Ops Experts (AOE) |Operation processes and maintenance processes

Infrastructure management and Configuration management

Resource Experts (RE)
processes

Quality Experts (QE) Quality Management and Quality assurance processes

This document represents the status at the end of Year 1 of the project and will be updated with
future releases of the framework at the end of Year 2 (D6.6) and middle of Year 3 (D6.7).

1.1 Structure of the Document

The next subsections reproduce (mainly from D2.1) an overview of the SODALITE Context and
Goals followed by the SODALITE architecture and components that make up the SODALITE
Framework. The following sections of the document list the components (grouped according to the
architecture structure) that make up the SODALITE Platform. For each component, we provide a
short description, status, and pointers to source code repository and instructions on how to build
the code.

1.2 SODALITE Context and Goals

The SODALITE vision is to support Digital Transformation of European Industry through (1)
increasing design and runtime effectiveness of software-defined infrastructures, to ensure

D6.5 SODALITE framework - First version Page 9
© Copyright Beneficiaries of the SODALITE Project

{***} Project No 825480. /’ SOdalite

high-performance execution over dynamic heterogeneous execution environments; (2) increasing
simplicity of modelling applications and infrastructures, to improve manageability, collaboration,
and time to market.

Within this vision, SODALITE provides application developers and infrastructure operators with tools
that (a) abstract their application and infrastructure requirements to (b) enable simpler and faster
development, deployment, operation, and execution of heterogeneous applications reflecting diverse
circumstances over (c) heterogeneous, software-defined, high-performance, cloud infrastructures,
with a particular focus on performance, quality, manageability, and reliability.

In particular, SODALITE is focusing on supporting the entire life cycle of the so-called Infrastructure
as Code (lIaC). 1aC means limiting the need to manually provision resources, configuring them and
deploying an application by offering to DevOps teams the possibility to code such tasks into proper
scripts that are then executed by proper orchestrators, thus introducing significant automation in
the application life cycle.

The following innovations are envisioned:

1. Application Deployment Modeling and Infrastructure as Code Modeling - Build deployment
patterns based on preexisting models.

2. Ease of Deployment, Orchestration, and Provisioning.

3. Verification and Bug Prediction - Support for a subset of smells, anti-patterns, and bugs in
laC scripts (TOSCA and Ansible).

4. Monitoring and Reconfiguration - Monitoring of metrics relevant for Cloud, HPC, and Edge
computing environments and applications; Basic event-driven deployment refactoring
decision making; Support for detecting and fixing performance anti-patterns.

5. Performance Optimization - Static application optimisation for Cloud, HPC and Edge;
Support for modelling performance.

1.3 Overview of SODALITE architecture

We reproduce here the figures and overview of the SODALITE architecture for simple reference.
Additional details of the figures can be found in the Architecture section of D2.1 (Requirements,
KPIs, evaluation plan and architecture - First version).

The SODALITE platform is divided into three main layers. These layers are the Modelling layer, the
Infrastructure as Code layer, and the Runtime layer. Figure 1 shows these layers together with their
relationships defined in terms of interfaces. The Modelling layer exploits the interfaces offered by
the other two layers to offer to the end users (Application Ops Experts, Resource Experts and
Quality Experts) the needed information concerning the application deployment configuration and
the corresponding runtime. In turn, it offers to the other layers the possibility to access the
ontology and the application deployment model through the SemanticReasoningAPl. The
Infrastructure as Code Layer offers to the Modelling layer the APIs for preparing the deployment,
for verifying the 1aC and for predicting defects. Finally, the Runtime layer offers APIs for controlling
the orchestration of an application deployment and for monitoring the status of the system. In
turn, this layer relies on the interfaces offered by the underlying technologies with particular
reference to the ones shown in the figure.

D6.5 SODALITE framework - First version Page 10
© Copyright Beneficiaries of the SODALITE Project

**** . .
B Project No 825430. ? Sodalite
SODALITE General Architecture
I SODALITE Modeling Layer
,”’/ Semantic — S Tt
e ReaspnerAPl _ -~ !' S RN Tt~ oL
7 . -~ use ,use * use S Luse RN
7 - ~ ~
’ L7 ! N S S
-7 i S
// - |I) \\ -~ \\

OpenStack

Kubernetes

ImageRegistryAPI

Deployment

PreparationAPI

Figure 1 - SODALITE Overall Architecture.

1.3.1 Modelling Layer

Figure 2 shows the internal architecture of the SODALITE Modelling layer.

The SODALITE IDE provides complete support for the authoring lifecycle of abstract application
deployment models. The Semantic Knowledge Base (KB) is SODALITE’s semantic repository that
hosts the models (ontologies). The Semantic Reasoner is a middleware facilitating the interaction
with the KB. In particular, it provides an API to support the insertion and retrieval of knowledge
to/from the KB, and the application of rule-based semantic reasoning over the data stored in the

KB.

WP3 - Modeling Layer Architecture Overview

Semantic Knowledge Base\

T

RDF Triplestore
(GraphDB)

SPARG

(—Semantic Modelling & Abstraction
Application Ontology

Infrastructure Ontology

Performance Optimization Ontology
Deployment & Lifecycle Ontology

Domain Ontologies

i &

[T ee—

DeploymentPreparationAP|

Semantic Reasonsr\

i Semantic Reasoning Engine I

. use <)(»
N
» SemanticRgasonerAPI
\

N
N
N
\
N
N

iSemamic Population Engine

1T psL Editor

SODALITE IDE

o8

DefectPredictionCorrectionAPI

MonitoringAPI

Figure 2 - Modelling Layer Architecture.

S use S . use
- ~ T~ ~ o
~ ~
~ ~.
he! e
laCVerificationAPI OrchestratorAP|

D6.5 SODALITE framework - First version
© Copyright Beneficiaries of the SODALITE Project

Page 11

9% .
{***} Project No 825480. ’ SOdallte

SODALITE IDE goes beyond existing approaches, by extending the modeling support to both Cloud
and HPC domains, and by incorporating specific modeling assistance for the optimization of
application deployments.

Beyond providing a simplified DSL for Resource Model authoring, SODALITE releases the Resource
Experts from the complexity of the TOSCA YAML specification.

Additional details can be found in deliverable D3.1.

1.3.2 Infrastructure as Code (1aC) Layer

The main task of the laC layer is to take the modelling information provided by the SODALITE IDE
and produce an laC blueprint. Deployment Preparation involves a number of operations to build
an laC blueprint. These operations are handled by sub-components depicted in Figure 3.
Additional components verify correctness of the provided model, predict possible bugs in the
provided model, and optimise the application for a given target execution platform. During
development a part of the architecture was redesigned which was also reported in deliverable
D4.1.

WP4 Architecture Overview

Deployment
Preparation

Abstract Model
Parser

T SODALITE IDE

- \
«REST» -~ \
Ve | ~
i use .. use
Deployment !
PreparationAPI :
! N
I | ~
) N
Image Bullder\ : 1aC Verification ~ |Defect Prediction and Correction
| «RESTy fR‘EST»
Concrete Image laC Blueprint | 7 3 Bug Predictor
Builder builder use Q] 1aC Verifier and Fixer
! laCVerificationAPT N QefgctPredicti
! AN dorrgctionAP| o
| n i) ’ ! N / \
"use ,use use ! /use luse “use Juse wuse
| ’ | A
| / 1 | ’ | N ’
| 7 |Performance h K I N /’ \\
| ;| optimigation | . | . J
| : | | / : \ ' \
«REST «REST» | L = 3 ¥ o
Runtime Image O" ! Verification Topology Provisioning Predictive laC Quality
Builder “ Model Builder Verifier Workflow Verifier Model Builder Assessor
Runtimqg Application \
v ImageAHI OptimiserAP| \ ~
A \ / PR -
\ N ‘ -
Tuse | ‘use _ -~ "use
\ \ ’ P
A \ / -
‘ _ -
> «REST» .
Application _use -7
Q Optimiser
registry Image data SemanticReasonerAPI
access

Figure 3 - Infrastructure as Code Layer Architecture.

SODALITE allows use of heterogeneous execution environments ranging from edge devices to
classical clouds and HPC clusters. Our deployment preparation and infrastructure management
framework focuses on the optimization of execution containers and on the verification and
improvement of laC.

The automation of application optimisation on both HPC and cloud systems requires models that
can be used for performance prediction and to study how different hardware components affect

D6.5 SODALITE framework - First version Page 12
© Copyright Beneficiaries of the SODALITE Project

4 .
{ } Project No 825480. ’SOdallte

performance. SODALITE prepares and uses these models for both pre-deployment (static)
performance optimization and runtime (dynamic) performance optimization.

SODALITE develops a bug and smell taxonomy for laC as well as cloud and HPC applications based
on a systematic literature review and a qualitative analysis of bug fix commit messages. We employ
semantic technologies for verifying structural constraints and semantics of 1aC, and also support
explaining errors and their causes, recommending the resolutions, (semi) automating the
correction of erroneous laC code through model-to-model transformations.

Additional details can be found in deliverable D4.1.

1.3.3 Runtime Layer

The Runtime layer of SODALITE, shown in Figure 4, orchestrates the deployment of an application,
monitors its execution and proposes changes to the application's runtime. It is composed of three
main blocks: Orchestrator, Monitoring and Refactoring. The Orchestrator manages the lifecycle of
an application deployed in heterogeneous infrastructures. The Monitoring component gathers
metrics from the heterogeneous infrastructures. These metrics are used to determine to what
extent the application is running as expected. The Deployment Refactorer refactors the
deployment model of an application in response to violations in the application goals.

WP5 - Runtime Layer Architecture Overview

Refactoring \

T Deployment Refactorer

.
.
SODALITE .7
IDE ’
.

’ ! !

. X
1

-
- \

’ \ ,

Orchestrator\ “ \)

«REST N |

= - N
Orchestrator O N L use ‘

T o N 1
P N
\

z
=]
Q
Iv]
=
Q
=]
o
&
]

L ’ == - [
- “use suse wuse ~Luge - - . _ _use N \
- \ ~ == e

/ PEON
/ A ~
K ¥ 9 . TREST ~ T
Y &5 it Sa
K8S driver Torque driver OS driver O Monitoring O O
ImageRegistryAPI . Monitoringh\Pl DeploymentPreparationAP| SemanticReasonerAPI

A\ \ D
\ \ N
N N \use
.

v Al «RESTy
i

\
Y * N .. —----4d Exporter @)
N N PR e ExporterAP)|
‘
'

| Kubernetes I] | Torgue Ij | OpenStack Ij

Figure 4 - Runtime Layer Architecture.

The SODALITE Orchestrator differs from other approaches that follow an intrusive architecture that
require modifications to the infrastructure configuration. Our approach is to orchestrate resources
via the existing resource managers and execution platforms.

D6.5 SODALITE framework - First version Page 13
© Copyright Beneficiaries of the SODALITE Project

{***} Project No 825480. ? SOdalite

We have a novel approach for the deployment optimization problem by combining rule-based,
machine-learning based, and control-theory based techniques. We adopt the dynamic software
product lines view, finding the optimal deployment variant between a set of allowed variants. To
this end, we develop machine-learning based predictors that accurately predict performance of
the whole population of the deployment variants based on a small sample of measured
deployment variants. This allowed set of deployment variants is evolved at runtime by discovering
and integrating new resources, nodes, and components. Moreover, we develop control-theory
based planners to support fast vertical elasticity for containerized applications. We also aim to
detect performance anti-patterns, being able to correct them in application deployments at
runtime.

Additional details can be found in deliverable D5.1.

D6.5 SODALITE framework - First version Page 14
© Copyright Beneficiaries of the SODALITE Project

¢ .
{ } Project No 825480. ’SOdallte

2 Modelling Layer

This section lists the components of the Modelling layer, describing each component’s function,
implementation status, and code repository.

2.1 Semantic Knowledge Base

2.1.1 Description of component

The Semantic Knowledge Base (KB) is the semantic database management system of SODALITE
that enables storing, querying and managing structured data. It follows the semantic data schema
paradigm, called ontology, which is stored and managed independently from the data (see D3.1,
First version of ontologies and semantic repository, for more details).

2.1.2 Status of implementation
KB uses an existing RDF triple store (GraphDB?) to persist and index the first version of the
ontologies developed in T3.1 (Application Semantic Modelling) and T3.2 (Infrastructure Semantic
Modelling) regarding the modelling of applications and resources. The current version of the
ontologies include modules that provide:
o The formal schema, i.e. c3:lasses and properties that can be used to capture application and
resource models (TOSCA ontology).
e The ontology pattern that should be followed (SODALITE meta-model) in order to define
modular and reusable knowledge graphs.

2.1.3 Location of repository and how to build the code
This component is in the following Github repository. The readme file of the repository includes
the build instructions.

https://github.com/SODALITE-EU/semantic-models

2.2 Semantic Reasoner

2.2.1 Description of component

The population of the KB, i.e. the instantiation of the respective ontology patterns to capture
resources and applications (AADM), is performed by the Semantic Reasoner, which encapsulates
the necessary logic to translate the DSL composed in the IDE by the users to the conceptual model
of SODALITE. In addition, the Semantic Reasoner provides all the necessary interfaces to retrieve
data from the KB, as well as to expose reasoning functionality developed in the laC layer with
respect to searching and validation services (see D3.1, First version of ontologies and semantic
repository, for more details).

2.2.2 Status of implementation

A number of REST APl endpoints have been developed in order to assist users in defining models in
the IDE. It should be noted that this REST APl exposes functionality that has been mainly
developed in T4.4 (Analytics and Semantic Decision Support) relevant to searching and validation.
More details on the backend implementation of the REST API are provided in D4.1 (laC
Management - initial version). The component also supports the population of the KB with node
templates.

2 http://graphdb.ontotext.com/
3 https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca

D6.5 SODALITE framework - First version Page 15
© Copyright Beneficiaries of the SODALITE Project

https://github.com/SODALITE-EU/semantic-models
http://graphdb.ontotext.com/
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca

4 .
{ } Project No 825480. ’SOdallte

2.2.3 Location of repository and how to build the code
This component is in the following Github repository. The readme file of the repository includes
the build instructions.

https://github.com/SODALITE-EU/semantic-reasoner

2.3 SODALITE IDE

2.3.1 Description of component
The SODALITE IDE is the visual programming interface between the end users, namely the
Application Ops Experts (AOEs) and the Resource Experts (REs), and the SODALITE Infrastructure as
Code (1aC) Layer. The IDE enables:

e Application Ops Experts to:
o Define an Abstract Application Deployment Model (AADM),
o Select suitable infrastructure/platform resources from the KB that
satisfy the requirements of the AADM nodes,
o Store the AADM into the KB,
o Initiates the deployment of the AADM within the IAC layer.
e Resource Experts (REs) to:
o Modelinfrastructure/platform resources to be stored into the KB,
o Map resources and optimizations.

2.3.2 Status of implementation

The development status of the IDE is as follows:

DSL specification: current version provides a grammar for both the AADM and the RM. They are
simplified versions of the TOSCA specification for node templates. They include the required
modelling elements to fully specify an AADM for the Snow and HPC use cases.

DSL editor: current version implements the following features:

e Modelling support for designing AADMs: current version supports the modelling of
application node instances (e.g. node templates), their type, properties, attributes and
requirements.

e Modelling support for designing RMs: current version supports the modelling of data types,
artifact types, capability types, interface types, relationship_types, node_types and policy

types.

2.3.3 Location of repository and how to build the code
This component is in the following Github repository: https://github.com/SODALITE-EU/ide.

The readme file of the repository includes instructions to build and install this IDE within an
Eclipse instance.

D6.5 SODALITE framework - First version Page 16
© Copyright Beneficiaries of the SODALITE Project

https://github.com/SODALITE-EU/semantic-reasoner
https://github.com/SODALITE-EU/ide

94 .
{ } Project No 825480. ’SOdallte

3 laC Management Components

This section lists the components of the 1aC Management layer, describing each component’s
function, implementation status, and code repository.

3.1 Abstract Model Parser

3.1.1 Description of component

This component parses the abstract application deployment model (AADM) retrieved from the
Semantic Reasoner and prepares an internal representation of topology tree based on the model
retrieved. See D2.1 (Requirements, KPIs, evaluation plan and architecture - First version) and D4.1
(laC Management - initial version) for more information.

3.1.2 Status of implementation
The preliminary version of the component was implemented.

3.1.3 Location of repository and how to build the code

The initial version of the component is implemented inside the following Github repository:

3.2 1aC Blueprint Builder

3.2.1 Description of component

This component generates a TOSCA/Ansible* blueprint based on the inner abstract tree provided
by the Abstract Model Parser. After the blueprint is generated it calls the orchestrator REST API
endpoint to register the blueprint thus making it ready for deployment.

See D2.1 (Requirements, KPIs, evaluation plan and architecture - First version) and D4.1 (laC
Management - initial version) for more information.

3.2.2 Status of implementation
The preliminary version of the component was implemented.

3.2.3 Location of repository and how to build the code

The initial version of the component is implemented inside the following Github repository:

3.3 Runtime Image Builder

3.3.1 Description of component

This component encapsulates the process of building a SODALITE runtime image based on the
data provided by the user (Application Ops Expert). The image is then pushed to the Image Registry
to be later pulled and deployed by the orchestrator at deploy time.

See D2.1 (Requirements, KPIs, evaluation plan and architecture - First version) and D4.1 (laC
Management - initial version) for more information.

*https://www.ansible.com/

D6.5 SODALITE framework - First version Page 17
© Copyright Beneficiaries of the SODALITE Project

https://github.com/SODALITE-EU/iac-blueprint-builder
https://github.com/SODALITE-EU/iac-blueprint-builder
https://www.ansible.com/

¢ .
{ } Project No 825480. ’SOdallte

3.3.2 Status of implementation

The initial version of the component that comprises the laC TOSCA/Ansible definitions of sources
and targets and a REST API endpoint for invoking the Image Builder was implemented.

3.3.3 Location of repository and how to build the code

The initial version of the component is implemented inside this Github repository:

3.4 Concrete Image Builder

3.4.1 Description of component
This component is a specific implementation of a runtime image (docker - for instance). The built
image is then pushed to the Image Registry to be later pulled and deployed by the orchestrator at
deploy time.

See D2.1 (Requirements, KPIs, evaluation plan and architecture - First version) and D4.1 (laC
Management - initial version) for more information.

3.4.2 Status of implementation

The initial version of the component that comprises the laC TOSCA/Ansible definitions of sources
and targets and a REST API endpoint for invoking the Image Builder was implemented for building
docker images and pushing them to the SODALITE Image Registry. The plan is to setup a singularity
registry and integrate a singularity image builder component.

3.4.3 Location of repository and how to build the code

The initial version of the component is implemented inside this Github repository:

httos://eithul C o builder.

3.5 Image Registry

3.5.1 Description of component

This component implements a private SODALITE image registry. The images built within SODALITE
are stored in the registry and later on pulled and deployed by the orchestrator at deploy time.

See D2.1 (Requirements, KPIs, evaluation plan and architecture - First version) and D4.1 (laC
Management - initial version) for more information.

3.5.2 Status of implementation

The initial version of the private docker registry was set up, configured and secured with TLS using
laC TOSCA/Ansible blueprint, which was deployed using xOpera. A similar implementation is
planned for the singularity registry.

3.5.3 Location of repository and how to build the code
The initial version of the component is implemented as laC inside this Github repository:

https://github.com/SODALITE-EU/iac-management. This repository also comprises examples and
deployment blueprints for SODALITE use cases deployed through SODALITE platform.

D6.5 SODALITE framework - First version Page 18
© Copyright Beneficiaries of the SODALITE Project

https://github.com/SODALITE-EU/image-builder
https://github.com/SODALITE-EU/image-builder
https://github.com/SODALITE-EU/iac-management

94 .
{ } Project No 825480. ’SOdallte

3.6 Application Optimiser

3.6.1 Description of component

This component tries to build a performance optimized runtime given the target platform and
configuration and predefined optimisation options.

See D2.1 (Requirements, KPIs, evaluation plan and architecture - First version) and D4.1 (laC
Management - initial version) for more information.

3.6.2 Status of implementation
The initial version of performance model training is released for building a performance model.

3.6.3 Location of repository and how to build the code
The initial version of the component is implemented and described inside this Github repository:

3.7 laC Verifier

3.7.1 Description of component

This component coordinates the verification of the application deployment topology and the
provisioning workflow described in the laC artifacts. It provides a uniformed REST API for all types
of verifications. See D2.1 (Requirements, KPIs, evaluation plan and architecture - First version) and
D4.1 (laC Management - initial version) for more information.

3.7.2 Status of implementation
The preliminary version of REST APl was implemented.

3.7.3 Location of repository and how to build the code
This component is a sub-project under the following Github repository. The readme file of the
project includes the build instructions.

https://github.com/SODALITE-EU/verification

3.8 Verification Model Builder

3.8.1 Description of component

This component builds the formal models required for the verification of a given set of 1aC artifacts
(TOSCA and Ansible). See D2.1 (Requirements, KPIs, evaluation plan and architecture - First
version)and D4.1 (laC Management - initial version) for more information.

3.8.2 Status of implementation

The current version of this component can build semantic models required for verifying the
deployment topology described in a TOSCA file.

3.8.3 Location of repository and how to build the code

This component is a sub-project under the following Github repository. The readme file of the
project includes the build instructions.

hitps://eithul) ficati

D6.5 SODALITE framework - First version Page 19
© Copyright Beneficiaries of the SODALITE Project

https://github.com/SODALITE-EU/application-optimisation
https://github.com/SODALITE-EU/verification
https://github.com/SODALITE-EU/verification

9% .
{ } Project No 825480. ’SOdallte

3.9 Topology Verifier

3.9.1 Description of component

This component verifies the constraints over the structures of the TOSCA blueprints and Ansible
scripts. This includes assessing the substitutability of the nodes in the deployment topology
(TOSCA substitution mappings). It also provides the infrastructure for semantic search and reuse of
content from the KB. See D2.1 (Requirements, KPIs, evaluation plan and architecture - First version)
and D4.1 (laC Management - initial version) for more information.

3.9.2 Status of implementation
Preliminary support for verification of TOSCA topology has been implemented.

3.9.3 Location of repository and how to build the code

This component is a sub-project under the following Github repository. The readme file of the
project includes the build instructions.

httos://eithul) ficati

3.10 Provisioning Workflow Verifier

3.10.1 Description of component

This component verifies the constraints over the deployment workflow of the application
described in the Ansible (IaC) scripts. As of now, we employ Petri net as the formal modelling
language, which is widely used for verifying workflows and business processes. See D2.1
(Requirements, KPIs, evaluation plan and architecture - First version) and D4.1 (laC Management -
initial version) for more information.

3.10.2 Status of implementation
The mappings from Ansible to Petri net have been defined to support the verification of the
workflow described in the Ansible playbooks and roles. The implementation of the automated
mapping tool is work-in-progress.

3.10.3 Location of repository and how to build the code

This component is a sub-project under the following Github repository. The readme file of the
project includes the build instructions.

httos://eithul) ficati

3.11 Bug Predictor and Fixer

3.11.1 Description of component

This component predicts the different types of bugs in laC (including TOSCA). This includes a bug
taxonomy covering a wide-range of bugs and software smells for lac such as code smells, design
smells, security smells, and linguistic anti-patterns. Then, the tools support for detecting and
correcting those bugs are also developed. See D2.1 (Requirements, KPIs, evaluation plan and
architecture - First version) and D4.1 (laC Management - initial version) for more information.

3.11.2 Status of implementation

Based on a multivocal literature review, a bug taxonomy for Ansible has been created. It includes
code smells, design smells, and security smells. For TOSCA, the taxonomy includes security smells.
To detect Ansible code and security smells, we have extended the Ansible-Lint tool. To detect
Ansible design smells, we have implemented the metric-based heuristics. To detect security smells

D6.5 SODALITE framework - First version Page 20
© Copyright Beneficiaries of the SODALITE Project

https://github.com/SODALITE-EU/verification
https://github.com/SODALITE-EU/verification

94 .
{ } Project No 825480. ’SOdallte

in TOSCA, we have developed a semantic-rule based approach by utilizing the semantic modelling
and reasoning support developed in the SODALITE Modelling layer.

3.11.3 Location of repository and how to build the code
This component is a sub-project under the following Github repository:

- - i . The readme file of the project includes the

build instructions.

3.12 Predictive Model Builder

3.12.1 Description of component

This component builds the models that can find the smells in TOSCA and Ansible artifacts. The
model can be a rule-based model, a heuristics based model, and a data-driven (machine learning)
model. See D2.1 (Requirements, KPIs, evaluation plan and architecture - First version) and D4.1 (laC
Management - initial version) for more information.

3.12.2 Status of implementation

A semantic rule based model was built to detect the security smells in TOSCA. An informal rule
based model (Ansible-Lint Rules) was built to detect the code and security smells in Ansible. A set
of metrics-based heuristics were built to detect the design smells in Ansible.

3.12.3 Location of repository and how to build the code

This component is a sub-project under the following Github repository:

https://github.com/SODALITE-EU/defect-prediction. The readme file of the project includes the

build instructions.

3.13 1aC Quality Assessor

3.13.1 Description of component

This component can calculate different software quality metrics for TOSCA and Ansible artifacts.
These metrics are used by the heuristics that predict the design smells in TOSCA and Ansible. See
D2.1 (Requirements, KPIs, evaluation plan and architecture - First version) and D4.1 (laC
Management - initial version) for more information.

3.13.2 Status of implementation
The laC metrics required for detecting design smells in Ansible have been developed.

3.13.3 Location of repository and how to build the code
This component is a sub-project under the following Github repository:

https://github.com/SODALITE-EU/defect-prediction. The readme file of the repository includes the

build instructions.

D6.5 SODALITE framework - First version Page 21
© Copyright Beneficiaries of the SODALITE Project

https://github.com/SODALITE-EU/defect-prediction
https://github.com/SODALITE-EU/defect-prediction
https://github.com/SODALITE-EU/defect-prediction

¢ .
{ } Project No 825480. ’SOdallte

4 Runtime Layer Components

This section lists the components of the Runtime layer, describing each component’s function,
implementation status, and code repository.

4.1 Orchestrator -> xOpera

4.1.1 Description of component

SODALITE uses xOpera as a base orchestrator. xOpera is a pre-existing lightweight TOSCA 1.2/1.3
simple yaml compliant orchestrator which uses Ansible as the actuation scripting language for
implementation of application lifecycle management including agentless deployments on different
platforms.

4.1.2 Status of implementation

xOpera aims to be a simple and lightweight TOSCA 1.3 compliant orchestrator. A dockerized
version of the REST API including xOpera was deployed to the testbed by a prepared laC
deployment blueprint. The development of xOpera is ongoing as it aims to implement TOSCA yaml
1.3 standard.

4.1.3 Location of repository and how to build the code

This component is referenced as a github submodule in the following Github repository:

4.2 xOpera REST API

4.2.1 Description of component

xOpera REST APl implements an endpoint interface for xOpera deployments with blueprint
persistence, session management, status of deployment, history of deployment, documented with
swagger. The REST APl is dockerized and enables transportability and easier integration with other
SODALITE components.

4.2.2 Status of implementation

xOpera REST APl is developed inside the SODALITE project and supports deployments to SODALITE
testbed platforms (HPC/Openstack). Currently the REST API supports blueprint registration and
persistence, session management, status of deployment, history of deployment, documented with
swagger. Extensions to xOpera and the REST APl are planned to support the targeted
functionalities needed in SODALITE with special focus on security.

4.2.3 Location of repository and how to build the code
This component is implemented and developed in the following Github repository:

https://github.com/SODALITE-EU/xopera-rest-api. The readme files provide information on setting

up a working REST API environment also provided as a dockerized component.

4.3 Deployment Refactorer

4.3.1 Description of component

The refactoring of the deployment model of a running application is performed in response to the
potential violations of the application goals, which is determined using the monitoring data. The
refactoring can find and enact a new deployment model for the application that can resolve the
detected goal violations. See D2.1 (Requirements, KPIs, evaluation plan and architecture - First

D6.5 SODALITE framework - First version Page 22
© Copyright Beneficiaries of the SODALITE Project

https://github.com/SODALITE-EU/orchestrator
https://github.com/SODALITE-EU/xopera-rest-api

9% .
{ } Project No 825480. ’SOdallte

version) and D5.1 (Application deployment and dynamic runtime - Initial version) for more
information.

4.3.2 Status of implementation

Rule-based refactoring decision making has been implemented to support the first version of the
Vehicle l1oT SODALITE use case. The modifications to one of widely used cloud benchmark
applications (namely RUBIS web application®) were introduced to support the variations in
resources and deployment topology. A preliminary version of a machine-learning based
framework for predicting the performance of a deployment model variant was developed.

4.3.3 Location of repository and how to build the code

This component is in the following Github repository. The readme file of the repository includes
the build instructions.

4.4 Node Manager

4.4.1 Description of component

Node manager can perform vertical scalability (i.e., change the resource allocation of running
components) using control-theory. Its goal is to fulfill requirements on the response time (e.g.,
response time < 0.5s) by reconfiguring the CPU and GPU allocation of running containers.

4.4.2 Status of implementation

Node Manager is currently implemented as a Kubernetes pod that uses Docker-out-of-Docker to
re-configure other containers/pods of the same machine. It targets TensorFlow applications that
can exploit both GPUs and CPUs. NodeManager was tested with five benchmark applications:
Skyline Extraction from SnowUC, GoogLeNet, ResNet, AlexNet and VGG-16.

4.4.3 Location of repository and how to build the code

This component is in the following Github repository. The readme file in the repository contains
architecture details and run instructions.

4.5 Refactoring Option Discoverer

4.5.1 Description of component

Refactoring Option Discoverer can discover new refactoring options as well as the changes to
existing refactoring options. The search criteria can be user-defined constraints, infrastructure
design patterns and anti-patterns. See D2.1 (Requirements, KPIs, evaluation plan and architecture -
First version) and D5.1 (Application deployment and dynamic runtime - Initial version) for more
information. Refactoring Option Discoverer utilizes the semantic matchmaking capabilities
developed in the Modelling layer.

4.5.2 Status of implementation

Refactoring Option Discoverer supports the discovery of the refactoring options that satisfy a given
set of constraints (e.g., an open stack VM with X number of CPUs and deployed in a data centerin
Germany).

Shttps://github.com/uillianluiz/RUBIS

D6.5 SODALITE framework - First version Page 23
© Copyright Beneficiaries of the SODALITE Project

https://github.com/SODALITE-EU/refactoring-ml
https://github.com/SODALITE-EU/refactoring-ct
https://github.com/uillianluiz/RUBiS

94 .
{ } Project No 825480. ’SOdallte

4.5.3 Location of repository and how to build the code

This component is in the following Github repository. The readme file of the repository includes
the build instructions.

4.6 ALDE

4.6.1 Description of component
ALDE’ (Application Lifecycle Deployment Engine) is a REST API responsible for managing the
workload scheduling and execution of applications, primarily intended for HPC environments.

4.6.2 Status of implementation

It is an outcome of the TANGO® project, supporting Slurm and creation and deployment of
Singularity containers.

4.6.3 Location of repository and how to build the code

This component is in the following Github repository. The code will be moved to a SODALITE
repository when new commits are pushed. The readme file of the repository includes the build
instructions.

I -//eithul e d
4.7 Prometheus

4.7.1 Description of component

Prometheus’ is an open-source system monitoring and alerting toolkit. Agents on the various
machines in a cluster periodically collect system information, which is stored in a database. The
data can then be filtered and analyzed according to the needs of the user.

4.7.2 Status of implementation
Prometheus is a standalone open source project and maintained independently of any company.

4.7.3 Location of repository and how to build the code
Detailed information on the tool capabilities is available on the Prometheus web site

https://prometheus.io/. Source code may be downloaded from https://prometheus.io/download/.

Instructions to configure and run Prometheus are in the following location.

I _ 0/d I . "
4.8 Node exporter

4.8.1 Description of component

Node exporter® is a piece of software that exposes hardware metrics to be gathered by
Prometheus. It gathers metrics related to CPU (such as usage, frequency, etc), memory, I/O and
network, among others, providing a good insight on resource utilization.

®http://www.tango-project.eu/content/application-lifecycle-deployment-engine-alde
"https://prometheus.io
8https://github.com/prometheus/node exporter

D6.5 SODALITE framework - First version Page 24
© Copyright Beneficiaries of the SODALITE Project

https://github.com/SODALITE-EU/refactoring-option-discoverer
https://github.com/TANGO-Project/alde
https://prometheus.io/
https://prometheus.io/download/
https://prometheus.io/docs/prometheus/latest/getting_started/
http://www.tango-project.eu/content/application-lifecycle-deployment-engine-alde
https://prometheus.io/
https://github.com/prometheus/node_exporter

94 .
{ } Project No 825480. ’SOdallte

4.8.2 Status of implementation

Similar to Prometheus, Node Exporter is a standalone open source project and maintained
independently of any company.

4.8.3 Location of repository and how to build the code

A list of the metrics that Node Exporter exposes can be found in its repository together with its
requirements and installation process. (i).

4.9 IPMI exporter

4.9.1 Description of component

IPMI exporter® is another Prometheus exporter created to expose the power measurements of the
physical nodes given by the output of one command. It can also be adapted to expose any metric
that is outputted by any CLI command.

4.9.2 Status of implementation

IPMI exporter is an open source project and can accept modifications performed or suggested by
the community. In its current state, it only exposes one metric, but this can be easily expanded if
more are required.

4.9.3 Location of repository and how to build the code

The repository (https://github.com/SODALITE-EU/ipmi-exporter) is hosted inside of the SODALITE
Github page and it contains the build procedure and a description of its functioning.

4.10.1 Skydive

4.10.1 Description of component

Skydive® is a real-time network topology and protocol analyzer that provides detailed network
topology and performance information. Skydive agents collect topology information and flows and
forward them to a central agent for further analysis. A more detailed summary is in deliverable D5.1
(Application deployment and dynamic runtime - initial version) and additional details are available

on the skydive site (http://skydive.network/documentation/).

4.10.2 Status of implementation

Skydive is a stable Open Source project with community support. New features are added on an
on-going basis. IBM team members are regular contributors to the Skydive community. Over the
past year, IBM team members implemented a generic flow exporter for Skydive to expose the
Skydive flow data in a convenient form to various consumers. The skydive-prometheus connector
is built on top of the flow exporter and is still work-in-progress.

4.10.3 Location of repository and how to build the code
The Skydive code repository is at https://github.com/skydive-project/skydive. Details on how to
deploy Skydive are at http://skydive.network/documentation/getting-started. Pre-compiled

versions of Skydive are availabe at https://github.com/skydive-project/skydive/releases. Details on
how to compile the code from source are at http://skydive.network/documentation/build. The flow

°https://github.com/SODALITE-EU/ipmi-exporter
0 http://skydive.network

D6.5 SODALITE framework - First version Page 25
© Copyright Beneficiaries of the SODALITE Project

https://github.com/prometheus/node_exporter
https://github.com/SODALITE-EU/ipmi-exporter
http://skydive.network/documentation/
https://github.com/skydive-project/skydive
http://skydive.network/documentation/getting-started
https://github.com/skydive-project/skydive/releases
http://skydive.network/documentation/build
https://github.com/SODALITE-EU/ipmi-exporter
http://skydive.network/

Project No 825480. a SOdalite

exporter code repository is at :
instructions on how to build the code.

-flow- ,including

D6.5 SODALITE framework - First version

Page 26
© Copyright Beneficiaries of the SODALITE Project

https://github.com/skydive-project/skydive-flow-exporter

94 .
{ } Project No 825480. ’SOdallte

5 Conclusion

This document summarizes the SODALITE Framework at the end of the first year of the project.
This comprises what has been achieved for the first SODALITE prototype embodied in Milestone 4
(MS4) of the project. This includes components from all three layers of the Sodalite architecture:
the Modelling layer, the Infrastructure as Code layer, and the Runtime layer. Our first prototype is
up-and-running on the testbed. Use-Cases have been defined and can be partially executed on the
prototype. Additional details can be found in D6.2 (Initial implementation and evaluation of the
SODALITE platform and use cases). Instructions are provided individually for each component on
how to compile and use the component. For the next release of the Sodalite Framework
(scheduled at M18 of the project) we intend to provide an integrated end-to-end Sodalite stack,
including tests, built and deployed using CI/CD tools.

Video demonstrations of many of these components are presented on the Project’s youtube
channel.

The next major milestones are:
® MS5: Use cases can all be executed on the prototype. (M18)
e MS6: First advanced features, more integrated prototype running. Use-Cases are clearly
improved. Second public release of the complete stack. (M24)

Future updates of this document are D6.6 SODALITE framework - Second version, scheduled for M24,
and D6.7 SODALITE framework - Final version, scheduled for M30 of the project.

D6.5 SODALITE framework - First version Page 27
© Copyright Beneficiaries of the SODALITE Project

