

SOftware Defined AppLication Infrastructures managemenT and Engineering

Intermediate
Implementation and

Evaluation of the SODALITE
Platform and Use Cases

D6.3
ADPT

31.1.2021

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 825480.

Project No 825480.

D6.3 - Intermediate implementation and evaluation of the SODALITE platform and use cases - Public Page 1
© Copyright Beneficiaries of the SODALITE Project

Deliverable data

Deliverable Intermediate implementation and evaluation of the SODALITE platform
and use cases

Authors

Kamil Tokmakov (USTUTT),
Ralf Schneider (USTUTT),
Dennis Hoppe (USTUTT),
Kalman Meth (IBM),
Gad Maor (IBM),
Elisabetta Di Nitto (POLIMI),
Piero Fraternali (POLIMI),
Rocio Nahime Torres (POLIMI),
Saloni Kyal (POLIMI),
Giovanni Quattrocchi (POLIMI),
Paul Mundt (ADPT),
Yosu Gorroñogoitia (ATOS),
Lucas Pelegrin (ATOS),
Jorge Fernández (ATOS),
Dragan Radolović (XLAB),
Mihael Trajbarič (XLAB),
Zoe Vasileiou (CERTH),
Alfio Lazzaro (HPE),
Indika Kumara (UVT/JADS)

Reviewers
Alfio Lazzaro (HPE)
Indika Kumara (UVT/JADS)
Daniel Vladušič (XLAB)

Dissemination
level Public

History of
changes

Name Change Date

Kamil Tokmakov
Paul Mundt Outline created 07.12.2020

All Preliminary
contributions 08.01.2021

All Refinements 08.01.2021

All Internal review 20.01.2021

All Finalization of
contributions 28.01.2021

Kamil Tokmakov
Paul Mundt Final version 29.01.2021

Project No 825480.

Acknowledgement
The work described in this document has been conducted within the Research & Innovation action
SODALITE (project no. 825480), started in February 2019, and co-funded by the European
Commission under the Information and Communication Technologies (ICT) theme of the H2020
framework programme (H2020-ICT-16-2018: Software Technologies)

D6.3 - Intermediate implementation and evaluation of the SODALITE platform and use cases - Public Page 2
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

Table of Contents

Table of Contents 3

List of Figures 6

List of Tables 7

Executive Summary 8

Glossary 9

1 Introduction 12
1.1 Structure of the Document 12

1.2 SODALITE Architecture 13

1.2.1 SODALITE Semantic Modelling Layer 13

1.2.2 SODALITE Infrastructure as Code Management layer 14

1.2.3 SODALITE Runtime layer 15

1.3 Objective of the MS6 - Second Prototype 17

1.4 Status of the MS6 - Second Prototype 17

2 Development Environment 22
2.1 Edge, Cloud and HPC Testbeds 22

2.2 Tested Execution Platforms and Infrastructures 25

2.3 CI/CD Pipeline 26

2.3.1 Project CI/CD setup 26

2.3.2 Component integration in the SODALITE blueprint deployment 28

2.3.3 Example CI/CD Workflow 29

2.4 Software Quality 30

3 Development Status of the MS6 - Second Prototype 32

4 Development Status of the Demonstrating Use Cases 34
4.1 POLIMI Snow UC 34

4.1.1. User Generated Image Crawler (UGIC) 35

4.1.2. Mountain relevance classifier (MRC) 36

4.1.3. Snow mask computation (SMC) 37

4.1.4. Snow index computation (SCI) 37

4.2 USTUTT Virtual Clinical Trial UC 38

4.2.1 Image Processing and Filtering 39

4.2.2 Applying Boundary Conditions 40

4.2.3 Solver 40

4.3 ADPT Vehicle IoT UC 41

4.3.1 Edge Gateway 43

4.3.2 Vehicle Services 45

D6.3 - Intermediate implementation and evaluation of the SODALITE platform and use cases - Public Page 3
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

4.3.2.1 Driver Monitoring & Alerting Service 45

4.3.2.2 Intrusion and Theft Detection Service 47

5 Validation and Evaluation of the MS6 - Second Prototype 48
Introduction 48

5.1 Use case validation 48

5.1.1 Snow UC 49

5.1.2 Clinical UC 51

5.1.3 Vehicle IoT UC 53

5.2 Platform Evaluation: Modelling Abstractions 55

5.2.1. Abstraction of application and infrastructure (KPI 1.1) 55

5.2.1.1 Analysis 55

5.2.1.2 Results 55

5.2.1.3 Achieved KPIs 55

5.2.2. Abstraction of Infrastructure Performance Patterns (KPI 1.2) 56

5.2.2.1 Analysis 56

5.2.2.2 Results 56

5.2.2.3 Achieved KPIs 56

5.2.3. Abstraction of execution constraints and possibilities (KPI 1.3) 57

5.2.3.1 Analysis 57

5.2.3.2 Results 57

5.2.3.3 Achieved KPIs 58

5.3 Platform Evaluation: Performance 59

5.3.1.Static optimisation (KPI 2.1) 59

5.3.1.1 Experiment description and setup 59

5.3.1.2 Results 59

5.3.1.3 Achieved KPIs 60

5.3.2 Reconfiguration: Deployment Refactorer (KPI 2.2) 60

5.3.2.1 Experiment description and setup 60

5.3.2.2 Results 61

5.3.2.3 Achieved KPIs 61

5.3.3 Reconfiguration: runtime SLA violation (KPI 2.2) 62

5.3.3.1 Experiment description and setup 62

5.3.3.2 Results 62

5.3.3.3 Achieved KPIs 64

5.4 Platform Evaluation: Usability (KPI 3.1 and KPI 3.2) 64

5.4.1 Normal users (inexperienced in TOSCA) 65

5.4.1.1 Experiment description and setup 65

5.4.1.2 Results 65

D6.3 - Intermediate implementation and evaluation of the SODALITE platform and use cases - Public Page 4
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

5.4.2 TOSCA experts 67

5.4.2.1 Experiment description and setup 67

5.4.2.2 Results 67

5.4.3 Use case owners 69

5.4.3.1 Experiment description and setup 69

5.4.3.2 Results 69

5.4.4 Achieved KPIs 70

5.5 Platform Evaluation: Assessment of Integration KPIs (KPIs 4.1, 5.1, 5.2) 73

5.6 Evaluation summary 74

6 Conclusions 76

Reference 77

D6.3 - Intermediate implementation and evaluation of the SODALITE platform and use cases - Public Page 5
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

List of Figures

D6.3 - Intermediate implementation and evaluation of the SODALITE platform and use cases - Public Page 6
© Copyright Beneficiaries of the SODALITE Project

■ Figure 1 - SODALITE overall Architecture
■ Figure 2 - SODALITE semantic modelling layer components (WP3).
■ Figure 3 - SODALITE infrastructure as code management layer components (WP4)
■ Figure 4 - SODALITE runtime layer components (WP5)
■ Figure 5 -Development environment, VPN Access
■ Figure 6 - A functional description of HPC testbed
■ Figure 7 - A functional description of Cloud testbed.
■ Figure 8 - Components of the Snow Use Case pipeline.
■ Figure 9 - Initial version of the pipeline as a sub-group of the components of the original

one.
■ Figure 10 - Implementation Plan of Snow use case.
■ Figure 11 - Webcam images examples.
■ Figure 12 - Webcam image with good weather (first two on the left) and bad weather

(two on the right)
■ Figure 13 - Example of DMIA applied on three webcam images.
■ Figure 14 - Example of skyline extracted from webcam image.
■ Figure 15 - Example of render-generated from webcam coordinates with the webcam

image of reference.
■ Figure 16 - Example of mountain mask extracted from webcam image based on the

skyline.
■ Figure 17 - Schema of the Virtual Clinical Trial use case pipeline.
■ Figure 18 - Logical organization of patient datasets.
■ Figure 19 - y-z cut contour line and x-y cut contour line - x-y reconstructed dataset.
■ Figure 20 - y-z cut contour line and x-y cut contour line - y-z reconstructed dataset.
■ Figure 21 - Schema of the Virtual Clinical Trial use case pipeline with additional steps.
■ Figure 22 - Density Mapping component - Left: Input data - Right: Mapping result.
■ Figure 23 - Displacement (left) and 3rd principal stress (right) results of the Code_Aster

prototype model.
■ Figure 24 - Vehicle IoT UC Implementation Plan
■ Figure 25 - Schema of the Vehicle IoT use case deployment phases
■ Figure 26 - Location-aware Multi-DC Region Routing
■ Figure 27 - Intention to use the SODALITE IDE for defining deployment models
■ Figure 28 - Intention to use the YAML Editor for defining deployment models
■ Figure 29 - Intention to use the SODALITE IDE for defining deployment models

Project No 825480.

List of Tables

D6.3 - Intermediate implementation and evaluation of the SODALITE platform and use cases - Public Page 7
© Copyright Beneficiaries of the SODALITE Project

■ Table 1 - Overall status of the development environment, First Prototype and
demonstrating use cases at M12

■ Table 2 - Specifications of compute nodes in the Edge testbeded
■ Table 3 - List of tested production platforms
■ Table 4 - Code quality of SODALITE projects
■ Table 5 - Development status of SODALITE IDE
■ Table 6 - Webcam image crawler component summary
■ Table 7 - Mountain relevance classifier summary
■ Table 8 - Snow mask computation component summary
■ Table 9 - Snow index computation component summary
■ Table 10 - Image Processing and Filtering component summary
■ Table 11 - Applying boundary component summary
■ Table 12 - Results of bare metal runtime tests of parallel Code_Aster
■ Table 13 - Solver component summary
■ Table 14 - Vehicle IoT UC component/feature timeline
■ Table 15 - Detection models used by the Vehicle IoT driver monitoring service
■ Table 16 - Coverage of the SODALITE UML use cases by the demonstrating use cases by

M24
■ Table 17 - Summary of technical KPI status at M24

Project No 825480.

Executive Summary
In this deliverable, we report on the implementation progress in the second year of the project, its
culmination in the second prototype of the SODALITE platform, and the evaluation of the release
through a combination of technical KPI assessment and validation by the project’s three
demonstrating use cases.

The key contributions and achievements with respect to the SODALITE platform are:

● The introduction of the Edge as a unique infrastructure, as utilized by the Vehicle IoT UC.
This has included the extension of the Cloud testbed to connect with a new Edge testbed in
order to support Cloud-to-Edge deployments and experimentation. The Edge testbed
includes a variety of hardware configurations and heterogeneous accelerators, managed
as a self-contained Kubernetes cluster.

● Quality controls for all software components have been implemented through SonarCloud,
with each component required to pass a quality gate.

● Development updates for individual SODALITE layers are presented below:
○ Semantic Modelling Layer: advanced features (e.g. design optimisation and Ansible

models) were developed and released, the components were deployed and fully
integrated. The SODALITE IDE has been improved for modules/extensions in the
AADM, and extended to support the Ansible DSL, while the Semantic Reasoner and
Semantic Knowledge Base have been extended with user management, support for
TOSCA policies, and enriched context-assistance.

○ Infrastructure as Code Management Layer: During this period, some of the
components developed during the first year were refactored and significantly
improved. A new platform discovery service and application optimizer (MODAK)
were released and integrated. IAM and secrets management have also been added.

○ Runtime Layer: Monitoring has been extended to include a visualization dashboard
and alert manager, as well as Edge-based exporters. An alerting rules service has
been developed to provide dynamic discovery of alerting rules. Metric exporters
are dynamically discovered through Consul and Kubernetes.

The key contributions and achievements with respect to the evaluation of the use cases are:

● Snow UC: All use case components were released as scheduled.
● Clinical Trials UC: All use case components were released as scheduled. The original

processing pipeline was extended by additional components.
● Vehicle IoT UC: All use case components were released as scheduled. While the Y1 focus has

been on developing use case components in Cloud, the Y2 focus has shifted towards
Edge-based deployment through a Kubernetes cluster. Edge-based metric exports have
been developed and tied into the SODALITE run-time monitor, allowing for direct
reconfiguration of use case components at the Edge by the Cloud-based refactorer.

D6.3 - Intermediate implementation and evaluation of the SODALITE platform and use cases - Public Page 8
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

Glossary

D6.3 - Intermediate implementation and evaluation of the SODALITE platform and use cases - Public Page 9
© Copyright Beneficiaries of the SODALITE Project

Acronym Explanation

3D Three Dimensional

AAI Authentication and Authorization Infrastructure

AADM Abstract Application Deployment Model

ALPR Automatic License-Plate Recognition

AOE

Application Ops Expert

The equivalent process from the ISO/IEC/IEEE standard
12207 Systems and software engineering — Software life
cycle processes is Operation processes and maintenance
processes

API Application Program Interface

AWS Amazon Web Services

CI/CD Continuous Integration/Continuous Delivery

CLI Command-Line Interface

CRI Container Runtime Interface

CSAR Cloud Service Archive

CT Computer Tomography

CV Computer Vision

DEM Digital Elevation Model

DICOM Digital Imaging and Communications in Medicine

DMI Daily Median Image

DSL Domain-Specific Language

DXA Dual Energy X-ray Absorptiometry

EAR Eye Aspect Ratio

ECG Electrocardiogram

EMF Eclipse Modelling Framework

EXIF Exchangeable Image File Format

FaaS Function as a Service

FEM Finite Element Method

FOV Field of View

FPGA Field-Programmable Gate Array

GA Grant Agreement

GCP Google Cloud Platform

GDPR General Data Protection Regulation

Project No 825480.

D6.3 - Intermediate implementation and evaluation of the SODALITE platform and use cases - Public Page 10
© Copyright Beneficiaries of the SODALITE Project

GPU Graphics Processing Unit

HPC High Performance Computing

HPVM High Performance Virtual Machine

IaC Infrastructure as Code

IAM Identity and Access Management

IaaS Infrastructure-as-a-Service

IDE Integrated Development Environment

IoT Internet of Things

IPMI Intelligent Platform Management Interface

ITK Insight Segmentation and Registration Toolkit

JSON JavaScript Object Notation

KB Knowledge Base

LRE Lightweight Runtime Environment

M<X> Month <X> of the project

M2T Model-to-Text

MCA Marching Cubes Algorithm

MIGR Mountain Image Geo-registration

ML Machine Learning

MPI Message Passing Interface

MRI Magnetic Resonance Imaging

MS<X> Milestone X

MTU Maximum Transmission Unit

NIC Network Interface Controller

OCI Open Container Initiative

OCR Optical Character Recognition

PERCLOS Percentage of Eyelid Closure

QoS Quality of Service

QE

Quality Expert

The equivalent process from ISO/IEC/IEEE standard
12207 Systems and software engineering — Software life
cycle processes: Infrastructure management and
Configuration management processes

RDF Resource Description Framework

RE
Resource Expert

The equivalent process from ISO/IEC/IEEE standard
12207 Systems and software engineering — Software life

Project No 825480.

D6.3 - Intermediate implementation and evaluation of the SODALITE platform and use cases - Public Page 11
© Copyright Beneficiaries of the SODALITE Project

cycle processes is Quality Management and Quality
assurance processes

REST Representational State Transfer

SLA Service Level Agreement

SVC Support Vector Classifier

SVM Support Vector Machine

ToR Top-of-Rack

TOSCA Topology and Orchestration Specification for Cloud
Applications

TPU Tensor Processing Unit

UC Use case

UDJ Universal Data Junction

UGI User Generated Images

UML Unified Modeling Language

VIN Vehicle Identification Number

VM Virtual Machine

VPN Virtual Private Network

VTK Visualization Toolkit

WP<X> Work Package X

Y<X> Year <X> of the project

YAML YAML Ain't Markup Language

Project No 825480.

1 Introduction
The objectives of work package WP6 are integration, evaluation and validation of the SODALITE
framework as detailed and specified in WP2. The components to be integrated are developed
across work packages WP3, WP4, and WP5. A combination of multi-tiered external and internal
evaluation is done using the SODALITE use cases. This deliverable reports therefore on the current
status of the SODALITE platform and its use cases to assess the overall progress made up to the
second year of the project.

The previous deliverable, D6.21, which was due in project month M12, reported the status of the
initial implementation of the SODALITE components and their integration into the First SODALITE
Prototype, the initial implementation and the status of the demonstrating use cases. It also
provided detailed information about the advancements made with respect to the SODALITE
development environment, which includes the HPC and Cloud testbeds, the SODALITE repository
and the Continuous Integration/Continuous Delivery (CI/CD) pipeline for automated components
integration and testing.

This document is an update of D6.2 and reports on the intermediate implementation of the use
cases, SODALITE components, their integration into the SODALITE platform (MS6 - Second
Prototype), as well as their evaluation and validation. More specifically, D6.3 provides updates on
the development environment, with the most prominent being an introduction of Edge testbed,
enhanced coverage of target platforms, improved platform integration with CI/CD and integration
of tools for software quality measurement. Furthermore, this report updates the development and
integration status of SODALITE components (new components were introduced in Y2) as well as
demonstrating use cases. Lastly, compared to the previous deliverable, the platform validation and
evaluation are significantly more extensive. Apart from platform evaluation performed by the use
case owners, it provides evaluation details additionally done by the external users, and reports on
KPIs achieved by M24.

This deliverable has been developed in parallel and coherently to WP2, WP4 and WP5 deliverables
D2.2, D4.2, D5.2, another WP6 deliverable D6.6 and to the work developed in WP3 as part of the
second project year.
Throughout the document, we are using the terms Application Ops Experts (AOE), Resource
Experts (RE) and Quality Experts (QE). The following table provides a mapping between these roles
and the processes defined in the ISO/IEC/IEEE standard 12207 Systems and software engineering —
Software life cycle processes:

1.1 Structure of the Document
The structure of this deliverable is as follows:

● The remaining part of Section 1 highlights updated SODALITE architecture and its
components, as well as presents the objectives and status of the MS6 - Second Prototype.

● Section 2 provides a description and updates of the development environment, which
includes the HPC and Cloud testbeds, the repository and the CI/CD pipeline. Additionally, it

D6.3 - Intermediate implementation and evaluation of the SODALITE platform and use cases - Public Page 12
© Copyright Beneficiaries of the SODALITE Project

SODALITE Roles ISO/IEC/IEEE standard 12207 processes

Application Ops Experts (AOE) Operation processes and maintenance processes

Resource Experts (RE) Infrastructure management and Configuration management
processes

Quality Experts (QE) Quality Management and Quality assurance processes

Project No 825480.

highlights the software quality of the developed components and tested platforms outside
the testbeds.

● Section 3 outlines the development and integration status of the MS6 - Second Prototype.
The components of the Prototype are described in detail in the deliverable D6.6 - SODALITE
framework - Second version2.

● Section 4 provides the development status of the SODALITE demonstrating use cases.
● Section 5 highlights the validation and evaluation of the MS6 - Second Prototype by

describing how demonstrating use cases and external users have been using the features
offered by the SODALITE platform.

1.2 SODALITE Architecture
For greater clarity, we reproduce a synopsis of the SODALITE architecture that is described in
Deliverable D2.23. For the details of the functional description, inputs, outputs and dependencies
of each component, please refer to the architecture section (Section 4) in D2.2.

SODALITE aims to provide developers and infrastructure operators with tools that abstract their
application and infrastructure requirements to enable simpler and faster development,
deployment, operation and execution of heterogeneous applications on heterogeneous,
software-defined, high-performance and cloud infrastructures. To this end, SODALITE aims to
produce:

● a pattern-based abstraction library that includes application, infrastructure, and
performance abstractions;

● a design and programming model for both full-stack applications and infrastructures
based on the abstraction library;

● a deployment framework that enables the static optimization of abstracted applications
onto specific infrastructure;

● an automated run-time optimization and management of applications.

 Figure 1 - SODALITE overall Architecture

The SODALITE platform is divided into three main layers, each covered by a separate work package
(WP). These layers are the Semantic Modelling layer (WP3), the Infrastructure as Code Management
layer (WP4), and the Runtime layer (WP5). Figure 1 shows these layers together with their
relationships.

1.2.1 SODALITE Semantic Modelling Layer
Figure 2 shows the internal architecture of the SODALITE Modelling Layer.

D6.3 - Intermediate implementation and evaluation of the SODALITE platform and use cases - Public Page 13
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

IDE is a graphical environment providing full support for the authoring of resource and deployment
models at design time and the management of deployed applications at runtime. In particular, the
IDE provides a user interface with several DSL editors for the specification of infrastructure
resources, the design of the application deployment topologies, component optimization and
Ansible models for operation implementations. Users are assisted during the modeling process
through context-aware content assistance by getting recommendations and having the model
semantically validated. This Smart intellisense of IDE mainly derives from the Semantic Reasoner
Knowledge. The IDE also enables users to browse and manage their models stored in the Semantic
Knowledge Base.
A set of SODALITE domain ontologies, resulting from the abstract modelling of the related domains
(applications, infrastructure, performance optimisation and deployment), will be hosted in a
SPARQL-served RDF Triplestore (GraphDB), constituting SODALITE’s Semantic Knowledge Base. A
dedicated middleware (Semantic Reasoner) enables the exploitation of this repository, mediating
for the population of data and the application of rule-based Semantic Reasoning. The interfaces
offered by other components, other than Semantic Reasoner, are highlighted. The IDE
communicates with other system APIs for the verification and deployment of the abstract model,
and the monitoring of the deployment lifecycle.
A more detailed description of the components of this Layer and their development plan is
described in Appendix A of the D6.6 (SODALITE Framework - Second Version).

 Figure 2 - SODALITE semantic modelling layer components (WP3)

1.2.2 SODALITE Infrastructure as Code Management layer

The components of the SODALITE Infrastructure as Code (IaC) Management Layer are depicted in
Figure 3. The Infrastructure as Code Layer (IaC Layer) is the layer that connects the SODALITE
modelling layer functionalities to Runtime blueprint execution of the models in the SODALITE
Runtime Layer. It offers APIs and data to support the optimization, verification and validation
process of both Resource Models (RM) and Abstract Application Deployment Models (AADM).

D6.3 - Intermediate implementation and evaluation of the SODALITE platform and use cases - Public Page 14
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

However, one of the most important tasks of the IaC Layer is preparing a valid and deployable
TOSCA blueprint.

In the second year of the project, some of the components were initially released and several were
refactored and significantly improved. During this period Platform Discovery Service has been
added to the layer’s architecture, to expose a REST API which helps to automate the tasks of the
Resource Expert by creating a valid TOSCA platform Resource Model (RM) to be stored into the
SODALITE’s Knowledge Base. These RMs can then be used during the design of the application
deployment models (AADM).

In this period Application Optimizer (MODAK) component, exposing a REST API, was released and
integrated into the pipeline enabling the SODALITE users to statically optimize the application for a
given target execution platform.

Automation of application optimisation on both HPC and cloud systems requiring models used for
performance prediction have been improved. SODALITE prepares and uses these models for both
pre-deployment (static) performance optimization and runtime (dynamic) performance
optimization.

Additionally IAM (Identity and Access Management) API and Secret Vault API have been added and
partially integrated into IaC Layer and used by the components that have to protect secrets stored
by the user such as Platform Discovery Service and IaC Blueprint Builder.

During development in the second year of the project, a part of the architecture was redesigned
which was also reported in the deliverable D4.24.

 Figure 3 - SODALITE infrastructure as code management layer components (WP4)

1.2.3 SODALITE Runtime layer
The Runtime layer of SODALITE (see Figure 4) is in charge of the deployment of SODALITE
applications into heterogeneous infrastructures, its monitoring and the refactoring of the

D6.3 - Intermediate implementation and evaluation of the SODALITE platform and use cases - Public Page 15
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

deployment in response to violations in the application goals. It is composed of the following main
blocks:

● Orchestrator. It receives the application to be deployed or re-deployed as a blueprint
expressed in TOSCA, deploying the application components on the appropriate
infrastructure.

● Monitoring. It monitors the application components and the infrastructure where they are
deployed to be used by Refactoring and the interested SODALITE actors.

● Refactoring. It is able to propose a new application model to fulfil the application goals.
When it needs to modify the deployment model, it calls the Deployment Preparation,
which will trigger the generation of a new blueprint that arrives to the Orchestrator to
initiate the redeployment.

The main changes introduced in the runtime architecture w.r.t. the version reported in D2.1 are the
following:

● Orchestration block: it is made explicit the drivers supported and integrated within the
orchestrator, namely the OpenStack, Torque, Kubernetes, OpenFaaS and the AWS drivers,
which interfaces target VMs, HPC schedulers, Kubernetes, OpenFaaS and AWS
infrastructures, respectively. It also incorporates additional required interfaces for AAI (e.g.
IAMIntrospectionAPI) and for the retrieval of deployment secrets (e.g. SecretVaultAPI).

● Monitoring block: this block includes new components not previously included in the
former architecture:

○ Monitoring Dashboard: this frontend provides monitoring specialized visual reports
for selected target application components and execution environments.
Dashboard uses the MonitoringAPI REST interfaces to query monitoring data.

○ Monitoring Alert Manager: manages defined alerting rules to trigger notifications to
subscribers when the rule condition holds for the target monitoring statistics. The
AlertingAPI REST interface is used by the Orchestrator, Node Manager and
Deployment Refactorer components to subscribe themselves to concrete alerts.

● Refactoring block: the internal interactions among these block components have been
made explicit in the architecture, through the REST API exposed by each component.

 Figure 4 - SODALITE runtime layer components (WP5)

D6.3 - Intermediate implementation and evaluation of the SODALITE platform and use cases - Public Page 16
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

1.3 Objective of the MS6 - Second Prototype

In the MS6 - Second Prototype, all of the SODALITE components are expected to be released as
stable versions, and form a more integrated, intermediate implementation of the SODALITE
platform that provides the first advanced features. The MS6 - Second Prototype is used to deploy,
execute and clearly improve the demonstrating use cases and aims to achieve goals that can be
consolidated from the objectives of the SODALITE Architecture layers:

● Semantic Modelling Layer: the intermediate implementation of the semantic models, the
repository and the IDE for supporting users in modelling the application and infrastructure.

● Infrastructure as Code (IaC) Management layer: the intermediate version of the
deployment preparation for the selected infrastructure management systems and
performance optimization; intermediate implementation of the analytics for the quality of
the IaC - verification and bug prediction of deployment models.

● Runtime layer: the intermediate implementation of the cross-platform orchestrating tools,
collection of monitoring metrics and intermediate version of predictive deployment
refactoring.

1.4 Status of the MS6 - Second Prototype
The status of the SODALITE MS6 - Second Prototype at the end of project month M24 is presented
in Table 1 and can be summarized as follows:

- The SODALITE development environment has been improved: the Cloud and HPC testbeds
are stable and extended with additional functionalities, such as security and larger
capacity. The Edge testbed was introduced. CI/CD pipelines are utilised to automatically
build, test and deploy most of the components, the source code of which is open and
published in SODALITE GitHub repository. Additionally, tools for software quality
measurements were integrated.

- In all three main layers of the SODALITE platform (Semantic Modelling, Infrastructure as
Code Management, Runtime), the intermediate versions of the components with advanced
features have been released and described in deliverable D6.6. Almost all of the
components are deployed in the testbeds (Node Manager has been deployed in Azure
public cloud; yet to be deployed in the testbed after integration with SODALITE monitoring)
and either fully integrated or integrated partially with the whole platform. Identity and
Access Management (IAM) components were introduced and partially integrated with the
whole platform.

- The three demonstrating use cases of SODALITE have released their components according
to the schedule and have evaluated the Second Prototype, which demonstrated the
improvements of the use cases, such as reduced effort for deployment code creation,
performance increase due to static and runtime optimisation.

- External users (TOSCA experts and experts) have also evaluated the platform in terms of
perceived ease of use, perceived usefulness and intention to use. In general, the users
preferred SODALITE IDE over other editors for defining deployment models.

 Table 1 - Overall status of the development environment, MS6 - Second Prototype and
demonstrating use cases at M24

D6.3 - Intermediate implementation and evaluation of the SODALITE platform and use cases - Public Page 17
© Copyright Beneficiaries of the SODALITE Project

Components Status

Development Environment

HPC, Cloud and Edge testbeds were set up and improved.

Coverage of target execution platforms was extended
with support of Kubernetes, AWS, Federated OpenStack,

Project No 825480.

D6.3 - Intermediate implementation and evaluation of the SODALITE platform and use cases - Public Page 18
© Copyright Beneficiaries of the SODALITE Project

Slurm (along with OpenStack, Torque, already offered at
M12).

SODALITE repositories were structured and host the
source code for SODALITE components.

CI/CD server and pipeline were set up to remotely build
software artifacts, perform tests, deploy on the testbed and
integrate into the platform.

Software Quality Measurement Tools were introduced

Second Prototype Components

Semantic Modelling Layer: advanced features (e.g. design
optimisation and Ansible models) were developed and
released, the components were deployed and fully
integrated.

Infrastructure as Code Management Layer: the
intermediate versions with advanced features (e.g. IaC
building with optimisation artifacts, bug prediction and
fixing) were developed and released. New components
were introduced (MODAK optimiser, Platform Discovery
Service). All components are deployed in the testbeds and
most of the components are integrated within the layer.
Integration into the platform is partial: some components
(e.g. IaC Verification components and Platform Discovery -
initially released at M24) have not yet been integrated with
Modelling Layer.

Runtime Layer: the intermediate versions with advanced
features (e.g. reconfiguration, refactoring and dynamic
monitoring) were developed and released. All components
are deployed in the testbeds and most of the components
are integrated within the layer. Integration into the
platform is partial: some components (e.g. Monitoring and
Refactoring) have not yet been integrated into IaC and
Modelling layers.

Identity and Access Management (IAM) components
were introduced and partially integrated with the whole
platform: integration with IaC and Runtime layers have not
yet been completed.

Demonstrating Use Cases

POLIMI Snow: the components were released as scheduled
and presented in Section 4.1.

USTUTT Virtual Clinical Trial: the components were
released as scheduled and presented in Section 4.2. The
original processing pipeline was extended by additional
components. Due to that, pipeline integration was delayed.

ADPT Vehicle IoT: the components were released as

Project No 825480.

D6.3 - Intermediate implementation and evaluation of the SODALITE platform and use cases - Public Page 19
© Copyright Beneficiaries of the SODALITE Project

scheduled and presented in Section 4.3. Due to Kubernetes
support not being ready in some of the other SODALITE
components before M24, parts of the continuous
benchmarking and integration have been delayed until Y3.

Platform Evaluation

POLIMI Snow: For the Snow Pipeline, we have developed
all components and we have deployed them with SODALITE
covering 12 from the 17 proposed UML use cases of the
platform.
We started by modeling the pipeline using the knowledge
base-empowered SODALITE IDE passing for the
intermediate steps to obtain the TOSCA blueprint verifying
that these could actually automate the deployment and
configuration of the whole pipeline.
Environment intelligence requires sophisticated data
acquisition and analysis pipelines, which must scale to
large volumes of data, deliver predictions and alerts with
severe time constraints. In particular, we tested the
NodeManager on the Skyline Extraction component, and it
was able to never violate the set SLA for Skyline Extraction
during the run experiments, on the contrary the compared
rule-based approach obtained 150 violations. In terms of
resource consumption, NodeManager exploited 2515
core*second, 19% fewer than the rule-based approach and
the average response time of Skyline Extraction was equal
to 0.217ms, 40% faster than the rule-based approach.
Also, in order to optimize the training of the Skyline
Extraction component, tests were executed to benchmark
the training process, by comparing the standard
TensorFlow container provided on DockerHub and the
optimized one provided by MODAK, for now test were
executed on ResNet50 architecture, in coming months we
benchmark in our Skyline Extraction component.
We also tested the reconfiguration by means of the
deployment refactorer. For the use case we report 25% of
refactoring scenarios are supported, which we plan to
improve in coming months by testing different deployment
variants. In our tests, thanks to the reconfiguration
capability resource usage violations were prevented (e.g., if
CPU usage reaches 80%, we move the application to a
machine with higher CPU), the extent of success will be
measured in further experiments.

USTUTT Virtual Clinical Trial: the workflow of Clinical UC
was executed with the SODALITE platform (MS6 - Second
Prototype). Modelling, optimisation and orchestration
aspects of the platform were validated and evaluated in the
context of the Clinical UC, showing the use case
improvements in the following:
(1) Originally, Clinical UC workflow was HPC-driven and
executed in a single HPC cluster. With SODALITE, the

Project No 825480.

D6.3 - Intermediate implementation and evaluation of the SODALITE platform and use cases - Public Page 20
© Copyright Beneficiaries of the SODALITE Project

workflow execution is distributed across multiple
infrastructure targets.
(2) The execution of the Solver (Code_Aster) component of
Clinical UC in a container was optimised (3% gain in a
single-thread was achieved). Furthermore, parallel build
and execution became possible, promising further reduced
execution time.
(3) The workflow was modelled in SODALITE IDE, which
reduced the effort for development of the deployment
code, compared to Y1 development in TOSCA, as it became
easier to integrate new components and avoid possible
deployment errors. Additionally, optimised container
runtime can be automatically provided based on the
optimisation options specified in SODALITE IDE.
The uptake of the SODALITE UML UC was increased,
covering 10 out of 17 UCs, compared to 3 out of 16 in Y1.

ADPT Vehicle IoT: During this period, the SODALITE
benefits for the vehicle IoT UC have been primarily
qualitative. A number of Edge-based metric exporters were
developed and integrated with the SODALITE run-time
monitor, allowing for the refactorer to actively redeploy
and reconfigure deployed applications at the Edge in
response to predefined alerting criteria for specific metrics.
Applications that through their heterogeneous accelerator
use would have failed silently when accelerators were
brought outside of their safe thermal operating ranges (a
periodic occurrence in passively cooled Edge Gateway
enclosures under load) are now detected and reconfigured
by the SODALITE refactorer, reducing the occurrence of
inference failure in Edge-based AI inference models. During
this period, the image builder has also been extended to
generate image variants, allowing application container
image variants to be generated for different accelerator
runtimes, this work has been key in ensuring that optimized
versions of applications can be deployed in Y3 in order to
move onto benchmarking.

External users: We evaluated the usability of the
SODALITE via a set of controlled experiments with three
groups of external users: normal users (students), TOSCA
experts, and SODALITE use case owners. We evaluated KPI
3.1 and KPI 3.2, which focus on the usability and
effectiveness of the SODALITE platform in creating and
modifying deployment models/codes. Each user group had
different experiments. The total number of participants was
18 (9 students, 5 TOSCA experts, and 4 use case owners).
Overall, the users considered SODALITE very useful and
easy to use compared with the other tools.

Project No 825480.

It should be noted that this deliverable is the third iteration of four deliverables in total within Work
Package 6 that report on the status of the SODALITE platform and the integration and evaluation of
its use cases at regular intervals between project month M6 and M36. At the end of the last
reporting period (at M36), D6.4 will be released - the final deliverable of WP6 and a logical
successor to D6.2 and D6.3. There, the information presented will be updated in order to provide
the full picture of the use case implementations, all implemented components and their
integration into the SODALITE platform, along with their thorough final evaluation.

D6.3 - Intermediate implementation and evaluation of the SODALITE platform and use cases - Public Page 21
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

2 Development Environment
During Y2 period, there were major changes to the development environment in order to 1)
facilitate development of advanced features of SODALITE platform and experimentation with
various execution platforms on the testbeds, 2) organise the development and integration of
SODALITE components into the whole platform automated via CI/CD and 3) improve quality of the
components. As such, an extension of testbeds was performed and a larger set of supported
infrastructure targets was provided, CI/CD pipeline was established producing deployable artifacts
and software quality measurements were introduced.

2.1 Edge, Cloud and HPC Testbeds
Figure 5 presents an updated overview on the testbeds, their components, resources and the
supported platforms for the experimentation with cross-system orchestration and monitoring.
During Y2 period, Edge testbed was introduced to allow the experimentation with edge resources
managed by Kubernetes.

 Figure 5 - Cloud, HPC and Edge Testbeds

Edge testbed. The main characteristics of Edge resources are their dynamicity and heterogeneity:
the resources can appear and disappear at certain point of time and can vary from common CPU
architectures, such as x86 and ARM, to specialised acceleration hardware, such as GPUs, TPUs and
FPGAs. Each resource type requires its own unique container runtime that needs to be dynamically
provisioned in case new resources are added. Moreover, different accelerators have different
performance modes and thermal operating ranges that need to be monitored: stepping outside of
these ranges can lead to failures or undefined behaviour. Therefore, edge infrastructures require
special resource management and reconfigurations. SODALITE components developed specifically
for Edge resource management are trying to address these challenges and their description can be
found in the deliverable D5.25, Section 4.5.

Edge testbed is provided by ADPT to execute Vehicle IoT UC, and it consists of 4 nodes managed by
Kubernetes. These nodes have the following specifications (Table 2):

D6.3 - Intermediate implementation and evaluation of the SODALITE platform and use cases - Public Page 22
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

 Table 2 - Specifications of compute nodes in the Edge testbed (ADPT)

Cloud testbed. The Cloud testbed provisions virtualized resources (e.g. virtual machines and
containers) managed by OpenStack and Kubernetes. Furthermore, the Cloud testbed hosts the
development environment (DevCloud), which contains CI/CD server and deployed SODALITE
components. During the reporting period, the stability and security of the testbed were improved.

A VPN was enabled to protect the infrastructure and all elements deployed inside the development
environment. Given the decentralized elements that make up SODALITE platform, it is mandatory
to ensure the security and privacy of those elements and the communication between them. To
achieve that goal two main topics are featured. Firstly to block any incoming public request to the
environment and secondly to open exceptions for the ingress layer. An overview on how the
ingress layer is installed in the Cloud testbed is presented in Figure 6:

 Figure 6 -Development environment, VPN Access

D6.3 - Intermediate implementation and evaluation of the SODALITE platform and use cases - Public Page 23
© Copyright Beneficiaries of the SODALITE Project

Device Raspberry Pi 4 NVIDIA Jetson
Nano

Google Coral AI
Dev Board

NVIDIA Jetson
Xavier NX

CPU 1.5 GHz 64-bit
Quad-Core ARM
Cortex-A72

1.4 GHz 64-bit
Quad-Core ARM
Cortex-A57 MPCore

1.5 GHz 64-bit
Quad-core ARM
Cortex-A53

1.9 GHz 64-bit
6-core NVIDIA
Carmel ARM v8.2

GPU Broadcom
VideoCore VI

128-Core NVIDIA
Maxwell

Vivante
GC7000Lite

384-Core NVIDIA
Volta
(+ 48 tensor cores)

Other
Accelerators

Intel Neural Compute Stick 2 /
EdgeTPU (USB)

EdgeTPU NVDLA x2
Vision Processor x1

RAM 4GB LPDDR4 4GB LPDDR4 1GB LPDDR4 8GB LPDDR4

Performance 24 GFLOPS 472 GFLOPS 4 TOPS 21 TOPS

Storage SD Card SD Card + NVMe SSD

Project No 825480.

The ingress layer contains a VPN and a single central point of entry for the internal environment
services that require public visibility. As a VPN solution, OpenVPN6 was chosen - a widely-used
open source solution for such purpose. In order to discern and encrypt the communications
certificates are being used, which encrypt the communication and validate the legitimacy of the
VPN public connections. Once the developer is logged into the VPN, it is possible to access all
environment resources using the local addresses.

To ensure the security of the environment two main features are applied in the environment. First
to block any incoming public request to the environment and secondly to open exceptions for the
ingress layer. The ingress layer contains a centralized single point of entry to the resources inside
the environment. Therefore any public service that would be in need to have public visibility will
have to use this as a point of entry. The solution chosen for this feature is Traefik7, which is a
widely-used open source tool that offers the capabilities such as automatic generation and
renewing of SSL certificates for HTTPS traffic, traffic routing and traffic load balancer. In the
testbed, Traefik is exposed through HTTP & HTTPS ports. It automatically generates the
certificates to enable HTTPS featuring the communication encryption between the clients and the
services located inside the environment.

HPC testbed. The intention of the HPC testbed is to provide developers and use case providers
with bare-metal compute resources (e.g. CPUs, GPUs) managed by PBS Torque resource manager.
This subsection describes the extensions that were provided during this iteration of the testbed.

Figure 7 highlights the current state of the HPC testbed. The testbed was extended to a larger
number of nodes (8 compute nodes). This extension now allows to derive a better performance
model used by Static Application Optimiser8.

 Figure 7 - A functional description of HPC testbed

PBS Torque was configured for GPU scheduling and GPU status monitoring. This allows users of the
testbed to directly request GPU resources for job execution as well as to retrieve information about
the GPU characteristics and current status. Platform Discovery Service9 uses this information to
enrich resource models of a PBS-compatible target infrastructure with GPU capabilities.

D6.3 - Intermediate implementation and evaluation of the SODALITE platform and use cases - Public Page 24
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

In the real HPC clusters, the usage of queues is common. Queues represent a group of resources
with attributes necessary for the queue's jobs. For example, if a job requires a specific resource,
such as fast storage, it can be submitted to a specific queue that will schedule the job into the
nodes with fast storage. To reflect this, multiple queues were introduced in the HPC testbed to
schedule the following resources: GPU for computation acceleration, SSD for I/O acceleration, CPU
as a default execution. Platform Discovery Service retrieves information of available queues to
create queue capabilities of a resource model for a target cluster.

In order to build and test different variants of optimised containers produced by Static Application
Optimiser, various optimisation libraries and compilers were installed (e.g. MPICH, OpenMPI,
GCC-9). Additionally, environment modules10 were introduced to load needed libraries and
binaries, resolve possible conflicts and provide needed dependencies.

Finally, a GridFTP server for data transfer was installed. It is extensively used in many HPC centres
for reliable, secure and high performance data transfers, also allowing a third-party transfers, i.e.
direct cross-server file exchange orchestrated by the client. Therefore, it was important to provide
a GridFTP server for the experimentation with data management in HPC.

2.2 Tested Execution Platforms and Infrastructures
SODALITE testbeds provide a testing environment. However, to ensure the SODALITE platform and
its constituent components work in production environments, small scale deployments, tests and
proof-of-concept on production systems were performed. This section provides the list of tested
platforms and infrastructures and the summary is highlighted in Table 3.

A Cray XC40 Piz Daint11 supercomputer at the Swiss National Supercomputing Centre (CSCS) was
used to build and validate the performance model and static application optimisation
methodology in general. The evaluation outcome was presented in the deliverable D3.312.

The EGI Federation13 provided SODALITE an access to the virtualized (OpenStack-based federated
cloud) and HPC (HPC RIVR14 - Slovenian supercomputer) resources and "Applications on Demand"15
services. The deployment of samples and use case components was performed on these resources
via SODALITE stack. Additionally, an evaluation of Platform Discovery Service was performed: on
one hand, discovering available images, flavors, networks of a federated OpenStack cloud provider
and, on the other hand, discovering available HPC resources, such as number of available queues,
number of nodes, CPU cores and GPUs.

The deployment on AWS public cloud was also tested. A study on cloud performance16 was made to
compare various cloud providers (EGI, AWS, Azure, GCP) in terms of performance variability.
 Table 3 - List of tested production platforms

D6.3 - Intermediate implementation and evaluation of the SODALITE platform and use cases - Public Page 25
© Copyright Beneficiaries of the SODALITE Project

Infrastructure
type

Infrastructure
name

Infrastructure
description

Functionalities
tested

HPC cluster Cray XC40,
Piz Daint

Slurm, 1813 Nodes,
CPU Intel Xeon E5-2695 v4
45 216 cores, 84TB RAM

Application optimisation

Federated
Cloud

EGI OpenStack Deployment
Platform discovery
Cloud performance

HPC cluster EGI HPC RIVR Slurm, 82 Nodes,
CPU AMD Epyc Gen 1

Deployment
Platform discovery

Project No 825480.

2.3 CI/CD Pipeline
The project chose to preserve its code on the GitHub platform (https://github.com/SODALITE-EU),
as to facilitate collaboration between the developers of the different components and also to
leverage GitHub’s excellent Pull Request mechanism, to allow for code reviewing and automatic
testing by Jenkins.
The Jenkins platform was chosen to conduct the CI/CD operations for the project’s components,
as it is considered one of the most popular CI/CD platforms today and is also available as
open-source software. It was decided to run Jenkins and the build slave for it, on top of a Docker
engine running on a VM inside the project’s OpenStack platform.
DockerHub was chosen to store the different Docker images produced by Jenkins for the different
project components, as the images themselves were deemed to be safe to be deployed to a public
registry and DockerHub is one of the most popular Docker registries nowadays.
In order to test the quality of the code and to make sure that the Docker images produced were of
high quality, it was decided to use the SonarCloud platform for static code analysis and code
coverage testing.

2.3.1 Project CI/CD setup

During the second year of the project, the project encountered several issues regarding the
integration and a more streamlined CD process. The main issues were spotted in these areas:

● Testbed component deployment
○ Most components did not deploy automatically to the testbed (prod/staging

environments) using CI/CD
● Docker images of the components:

○ Images on docker hub had no clear versioning policy
○ Difficult to track the created image in time

● SODALITE Stack blueprint for deployment
○ Hard to get a docker image for M18 tag release and produce a working current

latest release of the SODALITE deployment blueprint
○ All docker images, used for specific software release (M18Release, M24Release,

M36Release) were not properly tagged and used in a tagged version of the
SODALITE deployment blueprint

● Integration tests
○ Several components did not have test samples and did not provide test coverage

for new features

To tackle these issues, the SODALITE Consortium has prepared a convention and is working
towards implementing it. It serves as a guide for developers to manage SODALITE releases in a
uniform way and its description is outlined in short here.

The convention touches on several areas of development using github and CI/CD pipeline:

● github versioning and usage of tags
● branch naming
● creating scripts for version tag decoding
● setting up a sample jenkins process to cover automated deployment process using xOpera

lightweight orchestrator

D6.3 - Intermediate implementation and evaluation of the SODALITE platform and use cases - Public Page 26
© Copyright Beneficiaries of the SODALITE Project

4 256 cores, 40 TB RAM

Public Cloud AWS EC2
S3

Deployment
Cloud performance

https://github.com/SODALITE-EU

Project No 825480.

Strict semantic versioning17 is used to tag versions on github. The unified semantic versioning for
project repositories enables a simpler and unified automated deployment mechanism (CD), image
label creation for the components and supports better integration testing setups.

Major releases should be tagged accordingly (M18Release, M24Release, M36Release). All other
releases must follow Semantic Versioning 2.0.0. SODALITE distinguishes two types of tags:
Pre-release tags and Release tags.

Pre-release tags come in this form: <major>.<minor>.<patch>-<pre-release>+<build-meta>,
where <build-meta> part is optional. Examples:

● 1.1.2-prerelease+meta
● 1.0.0-alpha

Release tags come in these forms: <major>.<minor>.<patch>+<build-meta>, where <build-meta>
part is optional. Examples:

● 1.1.2+meta
● 1.0.0

Proposed branch schema names
<type>/<name>

Type could be any of (feature, feat, fix, bugfix, bug, chore)
Examples:

● feature/status-endpoint

● fix/timeout-bug

● chore/CI-CD-upgrade

Additionally SODALITE uses two GitHub Actions during Continuous Integration to help with later
Github Releases: Release Drafter18 and PR Labeler19. The main goal of both tools is to create a draft
release that can be easily turned into a real release.
In order for both Actions to work, SODALITE developer should:

- name branches with the proposed brach schema names
- label PRs manually with one of (major, minor, patch)

A sample jenkins file setup was prepared for supporting easier migration to this proposed
implementation with several bash scripts for git tag decoding. These parameterized execution of
these scripts guides tag identification and decision making for:

● separation of staging docker images and production-ready,
● automatic push on local private or public production docker registry,
● shown the usage of github action tools Release Drafter and PR Labeler for an easier and

more streamlined delivery process,
● support for an automated integration test using TOSCA blueprints.

Several of the SODALITE repositories already adhere to this convention and pull requests (PRs) will
be created for those who will be considered for this approach. The schema supporting this CI/CD
integration is shown in Figure 8.

D6.3 - Intermediate implementation and evaluation of the SODALITE platform and use cases - Public Page 27
© Copyright Beneficiaries of the SODALITE Project

https://github.com/marketplace/actions/release-drafter
https://github.com/marketplace/actions/release-drafter
https://github.com/marketplace/actions/pr-labeler
https://github.com/marketplace/actions/pr-labeler

Project No 825480.

 Figure 8 - CI/CD development pipeline

2.3.2 Component integration in the SODALITE blueprint deployment

In order to integrate and deploy SODALITE components as a platform stack, the SODALITE stack
TOSCA blueprint20 was developed. The blueprint contains the topology of the SODALITE stack, i.e.
components, dependencies and relationships between the components, and provides a flexible
and extendible way to deploy the stack on various targets, e.g., local machine, OpenStack VMs, etc.

Integration tests provide a means to test the SODALITE stack after a new component has been
introduced or a component changed version in the SODALITE stack deployment blueprint. After a

D6.3 - Intermediate implementation and evaluation of the SODALITE platform and use cases - Public Page 28
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

component has been added to the blueprint or a functionality changed, the integration tests
should be extended to cover this new functionality before merging this version of SODALITE stack
blueprint into master.

2.3.3 Example CI/CD Workflow

In order to give a clearer understanding of the CI/CD procedure, we present here details of the
CI/CD workflow for one of the SODALITE components, the semantic-reasoner. The example
presented here is typical of what happens with most of the SODALITE components. The details are
embodied in the Jenkinsfile for the component. We present here highlights from the
semantic-reasoner Jenkinsfile, which can be found in its entirety at
https://github.com/SODALITE-EU/semantic-reasoner/blob/master/Jenkinsfile.

At the beginning of the Jenkins file a list of environment variables is provided, which include
configuration variables that enable us to run the particular job. The heart of the Jenkins process
are the stages that are performed. The typical stages for any component are:

● Pull the code from github.
● Build dependencies.
● Build the code and run the unit tests.
● Run the Sonar scanner for static code analysis and code coverage.
● Build other components that depend on the current component.
● If preparing a production run, build the docker images.
● Push the produced images to DockerHub.
● If preparing a production run, perform a full deployment to the OpenStack platform.

A full deployment is performed by Jenkins by running xOpera on the SODALITE stack blueprint,
which contains all the relevant SODALITE components.

After the Jenkins process completes, results are reported to the Jenkins dashboard.

The configuration file for the Sonar analysis for the semantic-reasoner looks like this (see
https://github.com/SODALITE-EU/semantic-reasoner/blob/master/source%20code/semantic-reas
oner/sonar-project.properties):

D6.3 - Intermediate implementation and evaluation of the SODALITE platform and use cases - Public Page 29
© Copyright Beneficiaries of the SODALITE Project

pipeline {

environment {xxx}

stages {

stage ('Pull repo code from github') {xxx}

stage ('Build the code with Maven') {xxx}

stage('Sonar analysis') {xxx}

stage ('Trigger a build of defect-prediction') {xxx}

stage('Build docker images') {xxx}

stage('Push Reasoner to DockerHub') {xxx}

stage('Push graphdb to DockerHub') {xxx}

stage('Install dependencies') {xxx}

stage('Deploy to openstack') {xxx}

 }

 post {

failure {xxx}

fixed {xxx}

}

}

https://github.com/SODALITE-EU/semantic-reasoner/blob/master/Jenkinsfile
https://github.com/SODALITE-EU/semantic-reasoner/blob/master/source%20code/semantic-reasoner/sonar-project.properties
https://github.com/SODALITE-EU/semantic-reasoner/blob/master/source%20code/semantic-reasoner/sonar-project.properties

Project No 825480.

The first few lines simply describe the component to be built. The lines relating to the
programming language are used to determine which tools are used to evaluate the code.

Additional details on the development process can be found in Sections 7 and 8 of D2.421
(Guidelines for Contributors to the SODALITE Framework).

2.4 Software Quality
The analysis of software quality is executed by means of Jenkins and Sonar, as explained in Section
2.3. More details can also be found in Section 5.2 of deliverable D2.2. Data is pushed to
sonarcloud.io that stores all the collected KPIs and provides a public dashboard to access them
(https://sonarcloud.io/organizations/sodalite-eu/projects).

Table 4 shows the data collected on January 30th 2021 and reports the following metrics:

● Column LOC shows the number of lines of code of each project
● Column QTG reports the last outcome of the analysis process (Quality Gate). OK means

passed, KO failed and N/A not available
● Column BUG details the number of code bugs detected by Sonar and the associated label

(from best A to worst E)
● Column VLN shows the number of vulnerabilities detected by Sonar and the associated

label (from best A to worst E)
● Column HSP reports the percentage of security hotspot reviewed over the total and the

associated label (from best A to worst E)
● Column CSL details the number of code smells and the associated label (from best A to

worst E)
● Column COV shows the percentage of lines of code covered by test cases
● Column DUP reports the percentage of duplicated lines

 Table 4 - Code quality of SODALITE projects

D6.3 - Intermediate implementation and evaluation of the SODALITE platform and use cases - Public Page 30
© Copyright Beneficiaries of the SODALITE Project

sonar.organization=sodalite-eu

sonar.projectKey=SODALITE-EU_semantic-reasoner

sonar.projectName=semantic-reasoner

sonar.projectVersion=1.0

sonar.branch.name=${BRANCH_NAME}

sonar.sources=.

sonar.java.binaries=.

sonar.coverage.jacoco.xmlReportPaths=./reasoning-engine/target/site/jacoco/

jacoco.xml

sonar.inclusions=**/src/**/*.java

sonar.language=java

sonar.sourceEncoding=UTF-8

Project Name LOC QTG BUG VLN HSP CSL COV DUP

ansible-defects 2200 OK 0 (C) 0 (A) 100% (A) 57 (A) 34.9% 2.9%

application-optimization 4400 OK 0 (A) 0 (A) - (A) 86 (A) - 6.2%

hpc-exporter 1100 OK 0 (A) 0 (A) 100% (A) 27 (A) - 5.9%

edgetpu-exporter 166 OK 0 (A) 0 (A) 100% (A) 0 (A) - 0.0%

https://sonarcloud.io/organizations/sodalite-eu/projects

Project No 825480.

D6.3 - Intermediate implementation and evaluation of the SODALITE platform and use cases - Public Page 31
© Copyright Beneficiaries of the SODALITE Project

prometheus_ncs2_exporter 196 OK 0 (A) 0 (A) 100% (A) 0 (A) - 0.0%

iac-blueprint-builder 676 OK 0 (A) 0 (A) 50.0% (C) 14 (A) 87.5% 0.0%

iac-management 144 OK 0 (A) 0 (A) - (A) 7 (A) - 0.0%

iac-platform-stack 1 OK 0 (A) 0 (A) 100% (A) 0 (A) - 0.0%

iac-quality-framework 843 OK 0 (A) 0 (A) 100% (A) 19 (A) 51.8% 0.0%

ide 6600 OK 0 (E) 0 (A) 80% (D) 570 (A) - 4.7%

image-builder 1800 OK 0 (A) 0 (A) 0.0% (E) 9 (A) 73.6% 1.6%

ipmi-exporter 50 OK 0 (A) 0 (A) - (A) 1 (A) - 0.0%

monitoring-system 64 OK 0 (A) 7 (E) 0.0% (E) 0 (A) - 0.0%

perf-predictor-api 809 OK 0 (A) 0 (A) 100% (A) 59 (A) 34.2% 6.1%

platform-discovery-service 830 OK 0 (A) 0 (A) 0.0% (E) 19 (A) 80,5% 0.0%

refactoring-ct 5400 OK 0 (A) 0 (A) 100% (A) 93 (A) - 41.5%

refactoring-option-discover 306 OK 0 (A) 0 (A) 100% (A) 20 (A) 90.2% 0.0%

rule-ml-based 1700 OK 0 (A) 0 (A) 100% (A) 76 (A) 98.7% 9.0%

semantic-reasoner 7500 OK 0(A) 0 (A)
100.0%

(A) 585 (A) 75.5% 2.9%

ALDE 2000 OK 1 (B) 0 (A) 0.0% (E) 44 (A) 87.5% 0.0%

tosca-smell 971 OK 0 (A) 0 (A) 100% (A) 31 (A) 52.0% 0.0%

verification-unifiedapi 39 OK 0 (A) 0 (A) 100% (A) 0 (A) - 0.0%

verification-syntax 113 OK 0 (A) 0 (A) 100% (A) 1 (A) 100% 0.0%

verification-workflow 106 OK 0 (A) 0 (A) 100% (A) 1 (A) 22.0% 0.0%

xopera-rest-api 6600 OK 0 (A) 0 (A) 0.0% (E) 52 (A) 80.6% 0.0%

Project No 825480.

3 Development Status of the MS6 - Second Prototype
This section describes the development status of the MS6 - Second Prototype and its constituent
components and modules. Table 5 highlights the overall view on the development, deployment
and integration statuses of the SODALITE components done up to Y2 of the project. To elaborate
more on the meaning of the statuses, their explanation is provided below:

● Development status means that the source code is released and respective functionally is
provided. For Identity and Access Management components, the development status is
N/A, since the components were reused as is.

● Deployment status means that the component is deployed via IaC on a particular
infrastructure, e.g. Cloud testbed.

● Integration status means that the component is integrated into the platform. Integration is
partial if it is integrated with some components either within a layer or across the layers.

During the reporting period, the development of all the components has significantly progressed
and new or advanced features have been implemented. New components have been added to
further enhance the SODALITE platform, such as MODAK and Platform Discovery Service, described
in detail in D4.2. Furthermore, new Identity and Access Management (IAM) components were
introduced into the overall SODALITE architecture, as presented in D2.2. The integration of tools
for Software Quality measurement helped to continuously estimate the quality of the
developments.

The integration work was significantly improved through the improved CI/CD agreed convention
for release management and an introduction of SODALITE IaC Platform Stack22. New components
are partially integrated, such as MODAK, Platform Discovery and IAM.
 Table 5 - Development status of the MS6 - Second Prototype

D6.3 - Intermediate implementation and evaluation of the SODALITE platform and use cases - Public Page 32
© Copyright Beneficiaries of the SODALITE Project

Semantic Modelling Layer

Component Development Deployment Integration
SODALITE IDE

Semantic Reasoner
Semantic KB

IaC Management Layer

Component Development Deployment Integration
Abstract Model Parser
IaC Blueprint Builder

Runtime Image Builder
Concrete Image Builder

Application Optimiser - MODAK
IaC Verifier

Verification Model Builder
Topology Verifier

Provisioning Workflow Verifier
Bug Predictor and Fixer

Predictive Model Builder
IaC Quality Assessor

IaC Model Repository
Image Registry

Platform Discovery Service

Project No 825480.

A detailed description of the development and integration status of each layer of the MS6 - Second
Prototype is outlined in D6.6 Appendix A, additionally presenting the location to the source code
and downloadable artifacts, dependencies and steps towards the next prototype.

D6.3 - Intermediate implementation and evaluation of the SODALITE platform and use cases - Public Page 33
© Copyright Beneficiaries of the SODALITE Project

Runtime Layer

Component Development Deployment Integration
Orchestrator + Drivers

xOpera REST API
Monitoring

Deployment Refactorer
Node Manager

Refactoring Option Discoverer
Kubernetes Edge Components

Identity and Access Management Components

Component Development Deployment Integration
IAM Introspection N/A

Secrets Management N/A

Table legend Completed Partial Not started

Project No 825480.

4 Development Status of the Demonstrating Use Cases
This section provides the development status of the three demonstrating use cases of SODALITE:
POLIMI Snow, USTUTT Virtual Clinical Trial and ADPT Vehicle IoT.

4.1 POLIMI Snow UC
The goal of this use case is to exploit the operational value of information derived from public web
media content, specifically from mountain images contributed by users and existing webcams, to
support environmental decision making in a snow-dominated context. An automatic system crawls
geo-located images from heterogeneous sources at scale, checks the presence of mountains in
each photo and extracts a snow mask from the portion of the image denoting a mountain.
Two main image sources are used: touristic webcams in the Alpine area and geo-tagged
user-generated mountain photos in Flickr in a 300 x 160 km Alpine region. Figure 9 shows the
different components of the pipeline, all of which were developed.

Figure 9 - Components of the Snow Use Case pipeline

Our work is based on the implementation plan presented in deliverables D6.123 and D6.224
SODALITE Platform and Use Case Implementation Plan. In Figure 10 we present the planned
schedule with the released components highlighted. All components planned for the Y2 were
developed according to the schedule:

D6.3 - Intermediate implementation and evaluation of the SODALITE platform and use cases - Public Page 34
© Copyright Beneficiaries of the SODALITE Project

Delivered in Y1 Delivered in Y2 Expected in Y3

Webcam image crawler (WIC) User generated image crawler
(UGIC)

No new components are
expected

Weather condition filter (WCF) Mountain relevance classifier
(MRC)

Daily median image
aggregation (DMIA)

Snow mask computation (SMC)

Skyline extraction (SE) Snow index computation (SIC)

360° panorama generation

Project No 825480.

Figure 10 - Implementation Plan of Snow use case

A review of the developed components, which are being deployed in the testbeds, is presented in
the subsequent sections.

4.1.1. User Generated Image Crawler (UGIC)
Flickr is selected as the data source for user-generated photographs, because it contains a large
number of publicly available images, many of which have an associated geotag (GPS latitude and
longitude position saved in the EXIF (Exchangeable Image File Format) container of the
photograph).
The Flickr API allows one to query the service using temporal and spatial filters. A user generated
images (UGI) crawler algorithm is designed to query sub-regions on the area of the Alps.
Table 6, provides a summary of the user generated image crawler (UGIC) component.

Table 6 - Webcam image crawler component summary

D6.3 - Intermediate implementation and evaluation of the SODALITE platform and use cases - Public Page 35
© Copyright Beneficiaries of the SODALITE Project

(360PG)

Peak alignment (PA)

Input Coordinates of the search region bounding box
Mountain-related textual keywords

Processing ● Opens a connection to the query API of the
user-generated image repository

● Submits queries formulated with the input keywords and
area

● Retrieves images that match query and save their
reference

● Given the images and references, it downloads the
images, and save data in database

Output Images are saved on disk and in database

Project No 825480.

Examples of crawled images are shown in Figure 11.

 Figure 11 - Crawled images examples

4.1.2. Mountain relevance classifier (MRC)
Pictures tagged with a location corresponding to a certain mountainous region do not ensure the
presence of mountains. For this reason, the presence of mountains in every photograph is
estimated and the non-relevant photographs are discarded. The process to classify an image first
computes a fixed-dimensional feature vector, which summarizes the visual content, and then
provides it to a Multi-layer Perceptron (MLP) classifier to determine whether the image should be
discarded or not. A dataset of images annotated with mountain/no mountain labels is needed to
train the model.
Examples are shown in Figure 12 and Table 7 summarizes the mountain relevance classifier (MRC)
component.

 Figure 12 - Crawled image of a mountain (left) and not a mountain(right)

Table 7 - Mountain relevance classifier summary

D6.3 - Intermediate implementation and evaluation of the SODALITE platform and use cases - Public Page 36
© Copyright Beneficiaries of the SODALITE Project

Implementation
technologies and languages

● JAVA
● MySQL

Input An image

Processing ● Calculate Image Features
● Input features into the Multi-layer Perceptron classifier
● Calculate the probability of the image to correspond to a

mountain picture and based on a threshold returns the
value

Project No 825480.

4.1.3. Snow mask computation (SMC)
A snow mask is defined as the output of a pixel-level binary classifier that, given an image and a
mask M that represents the mountain area as inputs, produces a mask S that assigns each pixel of
the mountain area a binary label denoting the presence of snow. Snow masks are computed using
the Random Forest supervised learning classifier with spatio-temporal median smoothing of the
output. To perform the supervised learning a dataset of images with an annotation at pixel level
indicating if the pixel corresponds to the snow area is needed.
The snow mask computation component (SMC) is described in Table 8.

Table 8 - Snow mask computation component summary

Examples are shown in Figure 13.

 Figure 13 - Example of an image and its snow mask generated

4.1.4. Snow index computation (SCI)
The pipeline produces a pixel-wise snow cover estimation from images, along with a GPS position,
camera orientation, and mountain peak alignment. Thanks to the image geo-registration and
orthorectification (using the associated topography data) it is possible to estimate the
geographical properties of every pixel, such as its corresponding terrain area and altitude.

D6.3 - Intermediate implementation and evaluation of the SODALITE platform and use cases - Public Page 37
© Copyright Beneficiaries of the SODALITE Project

Output Value indicating if the image corresponds to a mountain image or
not

Implementation
technologies and languages

● Python

Input An image and a mask indicating the pixels corresponding to the
mountain area.

Processing ● Calculate feature vectors for the pixels in the mountain
area

● Input the features into the Random Forest Classifier

Output S = Snow mask indicating for each pixel if it represents snow or
not in the original image.

Implementation
technologies and languages

● Python

Project No 825480.

Consequently, it is possible to compute the snow line altitude (the point above which snow and ice
cover the ground) expressed in meters.
The virtual snow index for an image is defined as: , where is a virtual vsi(x,)Σ (x,y) | S(x,y) = 1 y siv
snow index function that transforms a pixel position into a snow relevance coefficient and can be
defined as and indicates it will be calculated for each pixel that si v (x,y) = 1 (x,) 1S y =
corresponds to the snow mask obtained in the previous step.
In Table 9, a summary of snow index computation(SIC) component is presented.

Table 9 - Snow index computation component summary

4.2 USTUTT Virtual Clinical Trial UC
The “In-silico clinical trials for spinal operations” use case targets the development of a simulation
process chain supporting in-silico clinical trials of bone-implant-systems in Neurosurgery,
Orthopedics and Osteosynthesis. It deals with the analysis and assessment of screw-rod fixation
systems for instrumented mono- and bi-segmental fusion of the lumbar spine by means of
continuum mechanical simulation methods.

The initial layout of the process chain was described in the deliverable D6.1 (Section 4.2). After the
detailed analyses of the clinical imaging Data, whose results are presented in D6.2 (Section 4.2), it
became obvious that additional image processing steps are necessary to ensure proper image
quality. The current layout of the process chain as described in D6.2 is depicted below in Figure 14.

 Figure 14 - Schema of the Virtual Clinical Trial use case pipeline with additional steps

D6.3 - Intermediate implementation and evaluation of the SODALITE platform and use cases - Public Page 38
© Copyright Beneficiaries of the SODALITE Project

Input S = the snow mask
M = the mountain area mask

Processing ● Filter pixels in the mountain mask area
● Calculates the VSI
● Calculate percentage of snow on the image based on the

mountain mask area

Output Virtual snow index, Snow percentage

Implementation
technologies and languages

● Python

Project No 825480.

Our work on the process chain is based on the implementation plan presented in deliverables D6.1
and the developments presented in D6.2. In Figure 15 we present the planned schedule. All
components planned for the Y2 were developed according to the schedule even though the
implementation of the Final UC Process is currently delayed due to the introduction of additional
image processing components.

 Figure 15: Gantt diagram of the development timeline of the Virtual Clinical Trial use case

components

In the subsequent sections an overview about the Y2 developments is presented.

4.2.1 Image Processing and Filtering

Since the image processing and filtering component is composed out of several processing steps,
our choice was to implement it as an integrated pipeline based on the Visualization Toolkit25 (VTK)
which provides all steps as ready to use algorithms with corresponding python bindings. As input
the implemented pipeline takes three image series in VTK file format26, which are reconstructed in
different image planes i.e. whose resolution differs along the three coordinate axes as described in
D6.2. On output it delivers an integrated dataset in VTK file format.

Since the data are represented as image data, i.e. as a rectilinear grid, each dataset’s
reconstruction plane is originally aligned along the xy-coordinate plane. Due to that the first step is
to rotate them back into their original scanner coordinate system as specified in the header of the
original DICOM image series. Subsequently all three datasets are resampled and interpolated to a
rectilinear grid which provides high resolution in each of the three coordinate planes.

In Table 10, a summary of the Image Processing and Filtering component is presented.

D6.3 - Intermediate implementation and evaluation of the SODALITE platform and use cases - Public Page 39
© Copyright Beneficiaries of the SODALITE Project

Delivered in Y1 Delivered in Y2 Expected in Y3

Extraction Image Processing and Filtering Process integration

Discretization Boundary Condition No new components are expected

Density Mapping Solver

Probabilistic Mapping

Project No 825480.

 Table 10 - Image Processing and Filtering component summary

4.2.2 Applying Boundary Conditions

The “Applying Boundary Conditions” component is derived from the original implementation of
the “Density Mapping” component. The component integrates each of the three output files of the
“Probabilistic Mapping” component with the “Meshed Geometry” in Code_Aster med file format. It
generates three “Enhanced Meshed Geometries” in Code_Aster’s med file format which include
inhomogeneously distributed material Information needed by Code_Aster. Due to the
development of the Image processing and filtering component the output is currently not fully
completed which is the last link missing to fully connect the processing pipeline.

In Table 11, a summary of the Applying boundary component is presented.

 Table 11 - Applying boundary component summary

4.2.3 Solver

As described in D6.2 the transfer of the model to the Code_Aster solver was already done even
though execution of the component was only possible sequentially. During year 2 the model
execution in parallel was set up which is now possible by means of the direct solver MUMPS as well
as the iterative solver library PETSc. Also parallel mesh processing is possible by means of the
graph partitioner METIS. During the setup of parallel Code_Aster it became obvious that the build
process depends on several external libraries which are: (1) a sequential Code_Aster installation,
(2) ptscotch27, (3) parmetis28, (4) OpenBLAS29, (5) lapack30, (6) sclapack31, (7) blacs32, (8) MUMPS33, (9)
superlu34, (10) PETSc35 and (11) libmed36.

D6.3 - Intermediate implementation and evaluation of the SODALITE platform and use cases - Public Page 40
© Copyright Beneficiaries of the SODALITE Project

Input ● Three data sets reconstructed in different image planes
● One coordinate system per dataset

Processing ● Back-transformation of each input dataset into the original
scanner coordinate system

● Resampling of each dataset to a high-resolution rectilinear
grid

● Fusion and filtering of the three data-fields
Internal concurrency No, sequential process

Output High resolution Image dataset

Implementation
technologies and
languages

● VTK
● Python

Input ● One input deck with meshed geometry.
● Three data files containing high, low and mode density

distributions
Processing From the high, low and mode density distributions a high low

and mode material is generated per element inside the meshed
geometry

Internal concurrency No, sequential process

Output Three modified solver input decks per patient.

Implementation
technologies and languages

Fortran

Project No 825480.

To enable the deployment of parallel Code_Aster on the SODALITE infrastructure the build
sequence of the dependencies was documented. To enable tests for automatic performance
optimization a scalable test model using all features of the final biomechanical models was build
and bare metal runtime tests on the HLRS system Vulcan were carried out using computing nodes
with Intel Xeon Gold 6138 @ 2.0GHz Skylake processors and 192 Gb of main memory. The results of
the runtime tests are given in Table 12.
 Table 12 - Results of bare metal runtime tests of parallel Code_Aster

In Table 13, a summary of the Solver component is presented.

 Table 13 - Solver component summary

4.3 ADPT Vehicle IoT UC

The Vehicle IoT use case focuses on situationally-aware processing of data subject to various
latency, security, and regulatory constraints within a connected vehicle. The precise requirements
of the workload are subject to change based on factors such as the regulatory environment, the
privacy preferences of the driver, resource availability, requisite processing power, connectivity
state, etc. This use case targets mixed Cloud/Edge deployment models and focuses on dynamic

D6.3 - Intermediate implementation and evaluation of the SODALITE platform and use cases - Public Page 41
© Copyright Beneficiaries of the SODALITE Project

Solver Partitioner #-MPI-Procs Walltime [s]

MUMPS - 4 654.52

MUMPS - 8 442.66

MUMPS METIS 8 226.87

PETSc METIS 8 67.43

Input Enhanced solver input decks per patient.

Processing Using finite element methods, a solution is computed for lower
and upper bound of HDI as well as for the mode. These three
solutions are computed.

Internal concurrency MPI can be used for parallel computation.
OpenMP can be used with the PETSc solver library

Output For each input deck a solution file is computed.

Implementation
technologies and languages

● Sequential Code_Aster
● ptscotch
● parmetis
● OpenBLAS
● lapack
● sclapack
● blacs
● MUMPS
● superlu
● PETSc
● libmed

Project No 825480.

adaptation and run-time redeployment/reconfiguration in order to satisfy both its performance
and compliance requirements.

The implementation plan for the UC is outlined in Figure 16 below:

 Figure 16 - Vehicle IoT UC Implementation Plan

At present, all of the planned use-case-specific development work for Y2 work has been carried out
on schedule. As the use case requires management and orchestration of an Edge-based
Kubernetes cluster by the SODALITE stack, and many of the requisite components will not provide
Kubernetes support before the end of Y2, there has been slippage of the continuous benchmarking
task. Continuous benchmark has, therefore, been deferred to Y3, and will be carried out alongside
the integration and validation task. Cloud functions have been used experimentally within the
context of the use case itself, but any further work on this remains similarly blocked until there is
better integration between SODALITE and the Edge. This work is similarly expected to be
completed in Y3. A brief summary of components and their respective features at different points
in the project timeline is provided in the table below:

 Table 14 - Vehicle IoT UC component/feature timeline

D6.3 - Intermediate implementation and evaluation of the SODALITE platform and use cases - Public Page 42
© Copyright Beneficiaries of the SODALITE Project

Component Y1 Features Y2 Features Y3 Features

License Plate
Detection Service

Initial implementation
of ALPR microservice.

Edge-based triggering
through OpenFaaS
Cloud-based OCR
model retraining.

Leveraging
Cloud/HPC for online
model retraining and
Edge delivery (use of
accelerators, where
possible).

Project No 825480.

The Y2 work has focused largely on exposing Edge-based metrics and capabilities to the SODALITE
run-time monitor, as well as tying Edge-based alerts into the refactorer in order to update the
deployment in response to environmental alerts (e.g., exceeding thermal tolerations). While the Y2
work has shown that SODALITE is capable of limited reconfiguration of Edge-based deployments
from the Cloud, further integration between the knowledge base, platform discovery service, and
the Edge-based Kubernetes nodes is required in Y3.

4.3.1 Edge Gateway

During Y1, the main focus of the Edge Gateway implementation was to provide in-vehicle
instantiation of basic vehicle services that at the start of the project were only deployed in Cloud.
The work in Y2 has focused primarily on: (1) providing a clearer separation between services that
can, or must, be deployed directly at the Edge, and ones that are able to run in Cloud; (2) increasing
service sophistication to take advantage of Edge-local processing; and (3) exposing the unique
capabilities and operating environment of each Edge Gateway to the SODALITE stack in order to
lay the groundwork for SODALITE-driven optimization and deployment reconfiguration in Y3.

A key challenge for SODALITE is dealing with dynamism not just in the deployed applications that
are likely to be used within different vehicles (further detailed in the following sections), but also in
variance in the Edge Gateway implementation itself. To this extent, and as outlined in Table 2
above, a number of different hardware configurations with different heterogeneous accelerators

D6.3 - Intermediate implementation and evaluation of the SODALITE platform and use cases - Public Page 43
© Copyright Beneficiaries of the SODALITE Project

Re-training pipeline
through FaaS/MLops.

Driver Monitoring
Service

Initial implementation
of drowsiness
detection model.

Extension for
multithreading,
additional monitoring
& alerting models.

Dynamic use of
heterogeneous
accelerators to
improve FPS.

Intrusion and Theft
Detection Service

Initial implementation
of intrusion and theft
detection service.
Able to detect
pre-enrolled facial
recognition models
and generate alerts.

Extension for
enrolling new users,
training new
recognition
classifiers.

Leveraging
Cloud/HPC for online
model retraining and
Edge delivery (use of
accelerators, where
possible).
Re-training pipeline
through FaaS/MLops.

Edge Gateway Edge Gateway
provisioning, ability to
run limited backend
components.

Edge Gateway as
managed Kubernetes
node.
Kubernetes-based
feature discovery,
node labelling and
monitoring.

Dynamic refactoring
of per-node
deployments based
on resource changes,
metrics.

Edge Exporter Application and Edge
node exporters.

Metric exporters for
heterogeneous
accelerators (GPU,
NCS2, EdgeTPU)
Static alerting rules
for refactoring.

Dynamic alerting
rules based on
specific Edge Gateway
configuration.

Project No 825480.

are being utilized in the Edge testbed to provide an environment representative of what would
typically be found in an ad-hoc or managed vehicle fleet involving different types of vehicles at
different stages of their service lifetime. Addressing these heterogeneity challenges in a simplified
way is a key requirement to moving towards a more hierarchical deployment model through the
introduction of an additional Fleet Gateway in Y3. The current and planned deployment phase for
the use case is exemplified in Figure 17 below:

 Figure 17 - Vehicle IoT UC deployment phases

In order to close the gap to production at the end of the project, the Y2 deployment phase has
focused primarily on establishing Cloud-to-Vehicle provisioning and service deployment within the
context of a Kubernetes cluster (representative of production deployment), and in ensuring that
SODALITE is able to carry out simple provisioning and refactoring of Cloud-to-Edge deployments
within Kubernetes.

In this case, each Vehicle contains its own Edge Gateway, managed as a Kubernetes Node. This
may be managed directly from Cloud to Vehicle, or in the fleet management case, hierarchically,
with each Fleet Gateway acting as the Kubernetes master node for a cluster of vehicles, with the
cloud acting as a federation controller across fleet clusters. The different types of Kubernetes
deployment scenarios are exemplified below:

D6.3 - Intermediate implementation and evaluation of the SODALITE platform and use cases - Public Page 44
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

 Figure 18 - Vehicle IoT UC Kubernetes Deployment Scenarios

In Y3, it is planned to expand the Y2 work for cross-cluster federation, in order to enable vehicles to
be grouped into self-contained vehicle fleets, while permitting vehicle services and monitoring to
be provided at both the fleet and cloud levels.

4.3.2 Vehicle Services

A number of vehicle services, dedicated microservices taken from ADPT’s KnowGo Car37 platform,
are leveraged within this use case. These are briefly expanded upon in the subsections below.
During Y1, these services were constrained to the Cloud backend, while progress in Y2 has seen
them pushed down to the in-vehicle Edge Gateway, where they have been further refined and
integrated with SODALITE components.

4.3.2.1 Driver Monitoring & Alerting Service

The driver monitoring service implements a meta model for driver alertness monitoring and
alerting based on real-time analysis of an in-vehicle video stream. Driver alertness is determined
from a number of different variables, with per-detector weighting adjusted to reflect model
confidence. Based on the weighted average of the detection results, the degree of alertness is
determined, and a proportionate alert triggering an in-vehicle actuation event can be generated
(e.g. a minor level of inattentiveness may trigger an auditory warning, while more serious cases
may trigger force-feedback events, with the amplitude and magnitude of the sinusoidal wave
generating the vibration pattern scaled in proportion to the level of detected risk). A number of
detection models used by the service are outlined in the table below:
 Table 15 - Detection models used by the Vehicle IoT driver monitoring service

D6.3 - Intermediate implementation and evaluation of the SODALITE platform and use cases - Public Page 45
© Copyright Beneficiaries of the SODALITE Project

Detection Model Model Description Implementation
Technologies

PerclosDetector Measure drowsiness based on the percentage
of eyelid closure

OpenCV/Dlib

YawnDetector Measure drowsiness based on the detection of
yawns, counting frequency and duration

PyTorch

GazeDetector Measure the extent to which the driver is Tensorflow/Keras

Project No 825480.

In the Y1 implementation, all analysis was carried out on the Cloud side, with video being streamed
from the vehicle to the Cloud. This has been suboptimal for a number of reasons:

1. The amount of bandwidth required to stream the video;
2. The per-stream computation overhead limiting the number of streams that can be

analyzed in parallel without incurring disproportionate expense on the Cloud side;
3. Safety risks owing to the round-trip latency between detection and alerting, particularly

when network connectivity is poor; and
4. Low social acceptance by drivers, who are less inclined to enable the service when there is

an externally accessible video stream into their vehicle.

At the end of Y1, in-Cloud video analysis averaged between 5-6fps on an unaccelerated CPU-based
deployment, with a camera providing imagery at 30fps.

Progress in Y2 has enabled this service to be deployed locally within the vehicle onto the Edge
Gateway, allowing the service to directly consume and process the video stream at the Edge, and
to only pass on summary statistics through a JSON payload to external services (both at the Edge
and in the Cloud) consented to by the driver.

The service itself can be deployed directly from the Cloud to the Edge by the SODALITE
orchestrator, and Edge-based exporters are able to provide metrics concerning the application
performance, as well as the thermal characteristics of both heterogeneous accelerators and the
Edge Gateway itself. Preliminary experimentation at M18 has already demonstrated that the
SODALITE refactorer, informed by the run-time monitor, is able to act on pre-defined
thermal-based alerting in order to scale the deployment directly in the Kubernetes cluster. An
overview of the interactions between SODALITE and the driver monitoring service is provided in
Figure 19 below:

 Figure 19 - Driver monitoring service & SODALITE interaction

D6.3 - Intermediate implementation and evaluation of the SODALITE platform and use cases - Public Page 46
© Copyright Beneficiaries of the SODALITE Project

watching the road through pose estimation

Project No 825480.

At the end of Y2, video analysis can be carried out at an average of 12fps on a relatively
low-powered Edge device on an unaccelerated CPU-based deployment.

The use of heterogeneous accelerator resources is currently carried out statically within the
service-specific Kubernetes manifest, limiting the option for resource sharing between services. In
this case, both the driver monitoring service and the risk scoring service that the monitoring
service integrates with can benefit from GPU acceleration, while in practice only one can use the
GPU at a time. The monitoring service, furthermore, due to its need to process video frames as
close to real-time as possible, has a greater need of GPU-based acceleration than the scoring
service, where it is simply nice to have, if available. These aspects will be addressed in Y3.

The focus for Y3 will, therefore, be in the following areas:

1. Online optimization of the deployed application in response to changes in accelerator
availability and environmental conditions;

2. Determining optimal deployment blueprints based on the deployed applications, the
available resources, and the importance each service attributes to a specific accelerator
type; and

3. Enabling continuous delivery of improved AI/ML models from the Cloud to the Edge,
adapted for a range of heterogeneous accelerators that may be encountered in the Edge
Gateway.

4.3.2.2 Intrusion and Theft Detection Service

The intrusion and theft detection service provides a driver identification and authorization flow
based on analysis of in-vehicle camera imagery.

At the end of Y2, the service has been successfully deployed at the Edge, and is able to run
standalone or in conjunction with the driver monitoring service (in the latter case, the video stream
is shared between the services, until driver identification is carried out and authorization is
granted). The service may be periodically invoked (e.g. upon token expiry, or in changes to the
ignition status when a new journey is commenced) in order to re-authorize the driver. Fleet
managers (or vehicle owners) are able to dynamically add/remove authorized drivers from the
Cloud (or via their driver app) to a given vehicle, and are able to receive alerts upon authorization
failure. Identification results are also signalled to the risk scoring service, allowing the overall risk
level to be increased/reduced based on operator-defined weighting.

The service is also able to benefit from periodically improved driver identification models,
particularly when a driver has only just begun using the service and the overall prediction
confidence is low. Model accuracy improvements also have benefits for the driver beyond the
reduced risk of false negatives - the higher degree of confidence with which a driver can be
identified, the more the driving risk score can be reduced. While progress in Y2 has provided a
mechanism by which model re-training can be initiated in-place, more work is required in order to
facilitate Cloud-to-Edge model delivery with transfer learning. The Y3 work is expected to look at
improving this, and will reuse the work done in the driver monitoring service in order to construct a
SODALITE-driven MLOps pipeline.

While the service runs as a dedicated microservice, the interactions between services are presently
tightly coupled. As there are multiple flows in which driver identification and authorization should
be carried out, and the service only needs to be periodically invoked, this is seen as an ideal
candidate for FaaS-based triggering, which will be further explored in Y3.

D6.3 - Intermediate implementation and evaluation of the SODALITE platform and use cases - Public Page 47
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

5 Validation and Evaluation of the MS6 - Second Prototype

Introduction
This section covers the evaluation of the second prototype of SODALITE, considered both from the
point of view of the SODALITE platform itself, as well as the application by demonstrating use
cases. In the following subsections, validation and evaluation is broken down by focus area:

● Use case validation: This subsection looks at the current coverage of SODALITE UML UCs
from the point of view of each demonstrating use case, the improvement in uptake of UML
UCs YoY, and a detailed look at how these are being applied to provide value for each of
the demonstrating use cases.

Evaluation of the SODALITE platform:

● Modelling abstractions: This subsection looks at the extent to which the modelling layer is
able to model the infrastructure and application patterns, infrastructure performance
characteristics, and execution constraints of each of the demonstrating use cases.

● Performance: This subsection looks at the efficacy of MODAK in performing static
optimizations, as well as the application of refactoring and run-time reconfiguration in
order to mitigate SLA violations.

● Usability: This subsection assesses the overall usability and perceived usefulness of the
SODALITE IDE. Controlled experiments have been run with use case owners and with
TOSCA experts to determine how users with different levels of expertise are able to make
effective use of the SODALITE IDE in application modelling.

● Integration KPIs: This subsection looks at the extent of component integration achieved,
while also assessing the extent to which SODALITE outputs have been released as open
source, and where these outputs have been contributed back to upstream open source
projects.

This section finally concludes with an evaluation summary, providing a consolidated view of the
achieved KPIs, a summary of the overall evaluation, and the identification of outstanding issues to
be addressed in Y3.

5.1 Use case validation
All three demonstrating use case owners have validated the SODALITE platform (MS6 - Second
Prototype), covering a greater number of SODALITE UML UCs, as shown in Table 16. In the
following subsections, each demonstrating use case presents its validation scenarios and
elaborates more on the coverage of UML UCs, as well as reports on the improvements achieved
when using SODALITE platform.
 Table 16 - Coverage of the SODALITE UML use cases by the demonstrating use cases by M24

D6.3 - Intermediate implementation and evaluation of the SODALITE platform and use cases - Public Page 48
© Copyright Beneficiaries of the SODALITE Project

Use Case

Virtual

clinical trial SNOW Vehicle IoT

Testbed

Providers

UC1 Define Application Deployment Model (WP3)

UC2 Select Resources (WP3)

UC3 Generate IaC code (WP4)

UC4 Verify IaC (WP4)

UC5 Predict and Correct Bugs (WP4)

UC6 Execute Provisioning, Deployment and

Configuration (WP5)

UC7 Start Application (WP5)

Project No 825480.

Concerning UC14, this is expected to be used with the demonstrating use cases in Y3. While some
initial performance modelling of the use cases has been done with MODAK in Y2, the bulk of this
activity is not planned before the last year as the focus shifts towards increased integration and
optimization.

5.1.1 Snow UC
The goal of this use case is to exploit the operational value of information derived from public web
media content, specifically from mountain images contributed by users and existing webcams, to
support environmental decision making in a snow-dominated context.

Environment intelligence requires sophisticated data acquisition and analysis pipelines, which
must scale to large volumes of data, deliver predictions and alerts with severe time constraints.
SODALITE optimisation and reconfiguration of the architecture improves detection and prediction
accuracy due to improved throughput of data. SODALITE enables a simplified deployment and
management of data intensive pipelines capable of processing visual data at scale and with a high
throughput by reducing the complexity of the operations and making them manageable by non
highly skilled IT specialists.

In this context, SODALITE can streamline the design, configuration deployment and monitoring of
the infrastructure underlying any such environment intelligence pipeline, by alleviating the
technical skill level necessary to administer such a complex architecture and thus lowering the
entry barriers for public administration and utility companies wishing to reap the benefits of
advanced computer vision and deep learning solutions for optimizing their operations.
Specifically, the ability to conceptually model the pipeline architecture and generate the
deployment artifacts is an essential factor for shortening the deployment time of many
environment intelligence applications.

During the first year we delivered a sub-pipeline of the components that allowed us to integrate
our use case with SODALITE covering already nine of the UML Use cases. In this second year, we
further continued to develop the pipeline components to finish them and we integrated them with
the previously released sub-pipeline.

The Snow use case focuses on the modeling activities showing that it is possible to define a

D6.3 - Intermediate implementation and evaluation of the SODALITE platform and use cases - Public Page 49
© Copyright Beneficiaries of the SODALITE Project

UC8 Monitor Runtime (WP5)

UC9 Identify Refactoring Options (WP5)

UC10 Execute Partial Redeployment (WP5)

UC11 Define IaC Bugs Taxonomy (WP4)

UC12 Map Resources and Optimisations (WP3)

UC13 Model Resources (WP3)

UC14 Estimate Quality Characteristics of Applications

and Workload (WP3)

UC15 Statically Optimize Application and Deployment

(WP4)

UC16 Build Runtime images (WP4)

UC17 Platform Resource Discovery (WP4)

Y1 Y2

Project No 825480.

deployment model that fulfills the needs of the application (UC1), select the resources to be used
at runtime (UC2), obtain generated IaC artefacts (UC3, UC4) and runtime images in the private
image registry (UC16), and finally run and monitor the deployment (UC6-UC8) on the Cloud
testbed. The training component of the skyline extractor component is deployed on the HPC
testbed and optimized using MODAK (UC15). Additionally, partial redeployment (UC10) and UC9
Identify Refactoring Options (UC9) were executed by means of the WP5 toolset and platform
resource discovery (UC17). Such mapping of the use case with the UML use cases is also presented
in Table 16.

We modeled the pipeline using the knowledge base-empowered SODALITE IDE. The result of this
is a JSON file, containing all the data and meta-data needed for the deployment and links to proper
Ansible playbooks, that enable the setup and management of Snow components. This JSON is
then sent to the iac-blueprint-builder component that converts it to a proper TOSCA blueprint that
can be used by a TOSCA orchestrator (e.g., xOpera) to enact the deployment. At runtime, we
verified that the generated blueprints could actually automate the deployment and configuration
of the whole pipeline and we started monitoring the deployed pipeline.

Some components have response time requirements, in particular, we focused on the Skyline
Extraction component by testing how it could be dynamically scaled in order to fulfill such
time-constrained requirements. The current approach implemented in the Node Manager exploits
heuristics and control-theory to dynamically change the CPU and GPU allocations according to the
workload and context changes. The results retrieved with Skyline Extraction are promising and we
plan to extend it to the other components of the pipeline that can be executed on heterogeneous
resources (CPU/GPU). In particular, NodeManager was able to never violate the set SLA for Skyline
Extraction during the run experiments, on the contrary the compared rule-based approach
obtained 150 violations. In terms of resource consumption, NodeManager exploited 2515
core*second, 19% fewer than the rule-based approach. Overall, thanks to the smart load balancing
and fine-grained resource allocation, the Node Manager was able to obtain fewer violations by
using fewer resources with respect to the compared approach. Finally, the average response time
of Skyline Extraction was equal to 0.217ms, 40% faster than the rule-based approach.

We also tested the reconfiguration by means of the deployment refactorer. For the use case we
report 25% of refactoring scenarios are supported, which we plan to improve in the coming
months by testing different deployment variants. In particular, the testing consisted of redeploying
the application based on the resource usage of the VMs that host the application, to prevent
over/under utilization of resources. The alert manager in the monitoring layer generates alerts
indicating violations of SLAs or risks for potential violations and in response to these alerts, the
Deployment Refactorer finds and enacts alternative deployment models, by leveraging
deployment adaptation policies and resource (nodes) discovery capabilities. Thanks to the
reconfiguration capability resource usage violations were prevented (e.g., if CPU usage reaches
80%, we move the application to a machine with higher CPU), the extent of success will be
measured in further experiments.

The Skyline Extraction component uses a deep learning model that is the result of training a CNN
we defined with a previously generated dataset. Modern environmental intelligence pipelines are
based on different CNN models for some of its components. Training such a model is a time
consuming and resource intensive task since it consists of testing several combinations of
hyper-parameters and data augmentation techniques to obtain the best possible performance.
For this reason, in the context of SODALITE, we aim to optimize the training process by means of
the MODAK static optimization framework. In the next few months, we will use the Skyline
Extraction model to benchmark the training process, by comparing the standard TensorFlow

D6.3 - Intermediate implementation and evaluation of the SODALITE platform and use cases - Public Page 50
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

container provided on DockerHub and the optimized one provided by MODAK. Initial
benchmarking results in one of state-of-the-art architecture for image classification, ResNet-5038,
on the ImageNet39 dataset, reported a 10% speedup measured based on the application run time
as a metric and in coming months we will corroborate that such a speedup generalizes to other
models, in particular to our Skyline Extraction component.

Currently, the main open issue is to optimize the connection of the components of the pipeline.
The original and current deployment of Snow was limited to two VMs, and components were
connected using local hard-drives and ad-hoc methods. We are going to address this issue by using
more scalable and de-coupled ways to connect components (e.g., using queues or distributed DBs)
so that the portability of the use case and its runtime management could be more effective.
Furthermore, the dataset used for the training of the Skyline Extraction component requires data
movement from source storage (e.g. on-site servers or cloud storage) into the HPC infrastructure,
where the training is performed. This becomes challenging due to data transfer protocol
incompatibilities, and therefore data management tools for such heterogeneity should be
considered. In this context, a collaboration with RADON is pursued to test different strategies for
the movement of data.

5.1.2 Clinical UC

The in-silico Clinical Trials use case reproduces real clinical trials in biomecanics by means of
simulation to determine an optimal fixation and function of bone implant systems for patients with
spinal conditions (e.g. disk displacement or prolapse). The use case is being developed by HLRS
and was originally strictly HPC driven, i.e. it was realised as a workflow executed on a particular
HPC infrastructure provider. This limits the adoption of the developed methodology in
biomechanical clinical trials for medical device manufacturers or medical research institutes due
to the specifics of the target execution environment of the use case.

Therefore, Clinical UC expects SODALITE to be beneficial in moving the process towards
production-like environments with the following improvements:

● Increase the effectiveness and productivity of component deployment.
● Ease the adaptation to different IT-infrastructures (supercomputers, Clouds, on-premise)

and different hardware.
● Lower the efforts for component integration.
● Lower the efforts for data management.

The rest of the subsection presents the SODALITE platform validation performed in the scope of
Clinical UC during Y2 and concludes with updated SODALITE UML UC uptake for Clinical UC.

Clinical UC workflow orchestration: During the Y1, Clinical UC focused on orchestration aspects
of SODALITE. SODALITE produced a set of TOSCA libraries40 for execution of batch jobs on HPC
clusters, managed by PBS Torque resource manager. Clinical UC validated these libraries by
executing the workflow on the HLRS HPC testbed using the SODALITE orchestrator. In Y2, a more
advanced orchestration scenario was validated. Clinical UC workflow was executed across multiple
infrastructure targets: HLRS HPC testbed and EGI EC341 Torque/Slurm clusters. All targets were
extended for experimentations with GridFTP, a data transfer protocol widely offered by HPC
infrastructure providers, to enable data transfer between the targets. Therefore, SODALITE
developed additional TOSCA libraries for data movement with GridFTP, thus enabling multitarget
workflow execution of Clinical UC components with data dependencies.

Clinical UC benefited from this development as it allowed the distribution of the workflow
execution from a single infrastructure target into multiple targets, utilising the capabilities offered
by various providers. In this case, a less capable but more available virtual cluster (EGI EC3) was
used for UC components (Density Mapping and Boundary Condition) that do not demand a lot of

D6.3 - Intermediate implementation and evaluation of the SODALITE platform and use cases - Public Page 51
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

resources (short jobs). Bare-metal resources (HLRS HPC testbed) with installed MPI libraries for
parallelisation was used for the more compute-demanding MPI-parallel component (Probabilistic
Mapping). The setup and workflow execution steps are presented in Figure 20 and the
demonstration can be found here: https://www.youtube.com/watch?v=vAIt8-t4hhM.

 Figure 20 - Clinical UC workflow execution on HLRS HPC testbed and EGI EC3 cluster with data

transfers using GridFTP

As it can be observed, the experiments targeted only clusters with resource managers such as
Torque and Slurm, only partially satisfying workflow orchestration requirements. Although indeed
the original workflow has been improved with distributed execution on different HPC clusters, the
improvements towards workflow orchestration over the targets other than HPC (such as Cloud or
remote servers) are yet to be investigated in Y3, when all components of Clinical UC are developed
and integrated into the final workflow. In particular, a more generalized workflow will be validated.

Same applies to the data management support, which is limited to GridFTP. In production, there
can be cases where data should be acquired from remote repositories, where GridFTP usage is not
common, e.g. clinics or medical research facilities. Therefore, data management should also be
generalized and will be addressed in the context of RADON collaboration in Y3.

Clinical UC workflow optimization: Together with optimization experts (Quality Experts), we
focused on optimization of the Code_Aster Solver component, which is contributing the most to
the total execution of the workflow. The single thread execution in the optimized container was
improved by 3% compared to the official solver container as reported in Section 5.3.1.
Furthermore, with the build of parallel Code_Aster, additional optimised container images are
being prepared for parallel execution of the Solver, which is proven to reduce the execution time
significantly, as shown in Section 4.2.3.

Clinical UC workflow modelling: SODALITE IDE offers a context-assistance and models validation
that was useful during the modelling of the Clinical UC deployment. Moreover, SODALITE IDE offers
optimisation specification, which allows to create optimisation recipes (with the help of Quality

D6.3 - Intermediate implementation and evaluation of the SODALITE platform and use cases - Public Page 52
© Copyright Beneficiaries of the SODALITE Project

https://www.youtube.com/watch?v=vAIt8-t4hhM

Project No 825480.

Experts) and apply optimisations to a particular application component, which in turn is executed
using optimised container runtime.

As a validation scenario, using SODALITE IDE, we modelled and deployed a single target use case
workflow execution on HLRS HPC testbed with the optimisation applied to the Probabilistic
Mapper for parallel execution. Resource Experts have provided HPC resource models and models
for workflow execution. Clinical UC developers acted as Application Ops Experts and created an
AADM (Abstract Application Deployment Model) for the use case deployment, utilising provided
resource models. Quality Experts helped to develop optimisation recipes to enable MPI
parallelisation for Probabilistic Mapper, during runtime of which, it was built and executed within
optimised container runtime.

During the development of AADM for Clinical UC, SODALITE IDE assisted with modelling, e.g.
offering available node types and resolving requirements for node templates. Inconsistencies in
deployment models (e.g. mismatch of node types in requirements) were also checked and
reported back instantly at the development time. Since initially we started deployment modelling
using TOSCA with a simple YAML editor, we found the usage of the SODALITE IDE extremely
convenient, error reducing and saves effort for failure resolution and component integration. As
the next step, final validation of SODALITE IDE will be performed in Y3 by execution of complete
workflow with data movement across multiple various targets.

Overall during Y2, Clinical UC extended the uptake of SODALITE UML UCs, concerning modelling
and optimisation aspects, shown in Table 16. As such, we defined the Clinical UC deployment
model in the SODALITE IDE (UC1) and selected required resources for the use case execution (UC2).
Further, we statically optimised use case components (Solver and Probabilistic Mapper) (UC12,
UC15). Based on the defined deployment model, the deployment IaC is generated (UC3) and
validated (UC4), and the use case is executed (UC6, UC7). Monitoring of jobs execution via HPC
exporter (UC8) was validated, however, further integration should be investigated.

5.1.3 Vehicle IoT UC

The Vehicle IoT use case involves the development and provisioning of services for connected
vehicles, running both in the Cloud as well as directly at the Edge (via a dedicated Edge Gateway
physically installed into participating vehicles). Each Edge Gateway contains different hardware
configurations, including different heterogeneous accelerators that can be leveraged by services. A
key challenge for the use case is that the application developer of a given service has little to no
insight into the precise hardware configuration that exists in the vehicle, and so these
heterogeneity challenges must be handled directly (and transparently) by SODALITE.

Each Edge Gateway participates as an Edge node in a Kubernetes cluster and can have different
applications deployed at any given time. This creates a number of unique challenges, in that:

● Not all applications are created equal: Some applications may have a hard dependency on
a particular accelerator type, while others (particularly those involving Edge-based AI/ML
inference models) may deploy their models on a range of different accelerators, depending
on availability.

● As load increases, the increase in ambient temperature within the Gateway housing can
bring accelerators outside of their safe operating temperature limits, resulting in inference
failure and other hard to debug problems that are not immediately apparent to the
application developer. It may, therefore, be necessary to throttle the deployment, redeploy
the application onto a more thermally efficient (or tolerant) accelerator, migrate the
application from the Edge to the Cloud, or temporarily suspend execution of the
application in order to avoid a service lapse / SLA violation.

D6.3 - Intermediate implementation and evaluation of the SODALITE platform and use cases - Public Page 53
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

Thermal-based Kubernetes deployment refactoring: An application making use of the EdgeTPU
accelerator for running its inference model was deployed into a vehicle Edge node as a Kubernetes
deployment, and system load was generated in order to drive up the internal ambient temperature
within the Gateway housing. The EdgeTPU itself, notably, begins to generate inference failures and
other erratic behaviour when its internal temperature exceeds 85°C, and physical damage to the
EdgeTPU package itself is possible via thermally-induced microfractures when the package
temperature begins to exceed 95°C (in this case, an internal thermal trip point may simply gate off
the internal voltage supply in order to prevent hardware damage). A pre-configured alerting rule
has been defined in Alertmanager, which informs the SODALITE refactorer of the urgent need to
refactorer the deployment. The SODALITE image builder has been leveraged to generate different
application container variants with different performance profiles, which the refactorer is able to
switch between. The application itself, originally deployed with the maximum performance profile,
is redeployed with a reduced performance version, subsequently reducing the internal device
temperature. This is exemplified in Figure 21 below:

 Figure 21 - Kubernetes thermal-based deployment refactoring with SODALITE

While the normal operating temperature of the EdgeTPU has been observed to be between
45-65°C, heavy load generated by other applications deployed in the Edge Gateway has been found
to easily trigger the 85°C trip point, meaning that this is a scenario that will have to be accounted
for in any operational environment. Presently the refactorer is only triggered based on predefined
alerting rules for the given accelerator type and refactors the deployment by switching between
different application container variants that configure different internal device clock rates. In Y3, it
is expected to use additional metrics in order to build a contextual understanding of the root cause
(e.g. is the source of the spike in ambient temperature originating from the CPU or GPU thermal
zones rather than from EdgeTPU load?), and to apply ML techniques to contextually optimize
deployment blueprints, thereby increasing the level of sophistication in possible refactoring
options and mitigation measures. A full demonstration and walk-through of the steps taken are
presented in a YouTube video: https://www.youtube.com/watch?v=dotlBOn1jmI

At this stage, the Vehicle IoT use case can be seen to make effective use of the SODALITE run-time
monitor, refactorer, and image builder. While work done in the development of Edge-based
Kubernetes controllers and labellers has provided a basis for resource discovery, more work must

D6.3 - Intermediate implementation and evaluation of the SODALITE platform and use cases - Public Page 54
© Copyright Beneficiaries of the SODALITE Project

https://www.youtube.com/watch?v=dotlBOn1jmI

Project No 825480.

be done to integrate this directly with SODALITE. Initial experiments with the SODALITE IDE have
demonstrated that it is possible to develop and deploy simple applications into the Edge
environment, but additional work on extending the blueprint definition to support the Edge
characteristics is still required. This work must be carried out before the remainder of the
SODALITE technology stack can be reasonably applied to the use case’s Kubernetes-based
operational environment in Y3.

5.2 Platform Evaluation: Modelling Abstractions

5.2.1. Abstraction of application and infrastructure (KPI 1.1)
This evaluation refers to the capability of the modelling layer to support the defined use cases in
terms of abstract application and infrastructure structures

5.2.1.1 Analysis

According to the evaluation plan [D2.2], querying the SODALITE Knowledge base and the existing
AADMs and RMs in the SODALITE IDE repository42, the following metrics has been computed:

1. # RMs: number of created resource models, containing type definitions for reusable
infrastructure resources

2. # AADMs: number of created abstract application deployment models, containing
component (template) definitions

3. # type definitions: total number of existing type definitions for infrastructure resources
4. # components (templates): total number of existing component (template) definitions

5.2.1.2 Results

Computed metrics at M24 are shown in the table below. Required use case definitions for
infrastructure resources and application components have been created, excepting those
definitions required for Vehicle IoT Kubernetes resources and associated components.

5.2.1.3 Achieved KPIs

At M24, over 66% of required specifications (i.e. abstractions) for infrastructure resources and
application components have been modelled, all those required by Snow and Clinical use cases,
and a number of them (not all as Kubernetes related ones are pending) for Vehicle IoT.

D6.3 - Intermediate implementation and evaluation of the SODALITE platform and use cases - Public Page 55
© Copyright Beneficiaries of the SODALITE Project

KPI 1.1 Abstraction of application and infrastructure.

Target Lower bound is 25% coverage of all application and infrastructure
scenarios in the scope of SODALITE case-studies.

Deadline M24

Metric Value M24

resource models 28

AADMs 14

type definitions 172

components (templates) 148

Project No 825480.

5.2.2. Abstraction of Infrastructure Performance Patterns (KPI 1.2)

To measure the achievement of KPI 1.2, we have analysed the demonstrating use cases and
identified the required performance patterns as they have been stated at the beginning of the
project.

5.2.2.1 Analysis

We use the use case requirements to map this and calculate the lower bound. There is not an
automated process. The collection is performed manually by inspecting the requirements
formulated by case study users.

5.2.2.2 Results

The results are reported for each use case:

● Snow use case
○ Increase thought of the images analysis with fast I/O storage
○ Increase machine learning training and interference performance by exploiting the

use of GPU computing
● Clinical use case

○ Reducing the amount of processing data after the material mapping
○ Support execution of MPI parallel programs
○ Support fast networking performance
○ Support fast I/O performance

The Vehicle IoT use case has not been analysed yet.

5.2.2.3 Achieved KPIs

The abstraction of the infrastructure performance patterns contributes to KPI 1.2, which is due on
M33. For M24, the values are:

D6.3 - Intermediate implementation and evaluation of the SODALITE platform and use cases - Public Page 56
© Copyright Beneficiaries of the SODALITE Project

Total 364 (66% of the required ones)

KPI 1.2 Abstraction of Infrastructure Performance Patterns.

Target Lower bound is 80% of all performance patterns found in HPC and
Cloud infrastructures.

Deadline M33

Metric Value M24

% of use case performance
requirements modeled in
WP3

80% for Clinical UC

% of use case performance
requirements modeled in
WP3

92% for Snow UC

% of use case performance
requirements modeled in
WP3

to be measured for Vehicle IoT UC

Project No 825480.

5.2.3. Abstraction of execution constraints and possibilities (KPI 1.3)

This evaluation refers to the execution requirements and constraints on compute, memory,
network, storage, etc, that have been modeled in the context of the demonstrating use cases.

5.2.3.1 Analysis

Each use case is related with specific execution requirements and constraints. For checking the
fulfillment of this KPI, the used metric is the percentage of execution constraints and possibilities
that have been modelled in the Modelling Layer. The results have been collected manually by
inspecting the requirements set by the use case owners.

5.2.3.2 Results

The execution requirements and constraints for all the use cases are shown in the tables below.
The execution constraints that have not been abstracted for M24 have been marked as red and
their absence, along with a timeplan, provided in the specific use case section above.

Snow use case

Clinical use case

D6.3 - Intermediate implementation and evaluation of the SODALITE platform and use cases - Public Page 57
© Copyright Beneficiaries of the SODALITE Project

Execution
Requirements and
Constraint

Description

Parallel workflow HPC workflows to be executed in parallel

Storage Storage such as ssd disk

GPU GPU capability

Response/Real time The process to be done in real time

Service Execution of services by exposing ports,
modelling dockers

Availability A resource is re-allocated based on a
policy.

Execution
Requirements and
Constraint

Description

Parallel workflow HPC workflows to be executed in parallel

Memory -RAM Memory limit to be modelled

MPI Support execution of parallel MPI programs

Serial Not parallel workflows

Network 1) Fast Networking Performance
2) Transmission of large messages e.g.

Project No 825480.

Vehicle IoT use case

Note that in the Vehicle IoT use case, a range of execution possibilities exist, particularly with
regards to the different types of accelerators. These must still be modelled going into Y3, but are
not expected to present any specific challenges, as the additional accelerator types can be derived
from the GPU definition, which is already in use by the other use cases. The Edge-based
deployment constraint requires the integration of Kubernetes support, which will only begin at the
beginning of Y3. Limited experimentation has, however, been carried out with the AADM model for
deployment into Kubernetes clusters, and deployment from the Cloud-based orchestrator to the
Edge-based Kubernetes cluster has also been validated. It is not expected that there will be any
technical barriers to enabling this from the IDE outside of ensuring the relevant components have
been updated and integrated.

5.2.3.3 Achieved KPIs

The abstraction of the execution constraints and possibilities contributes to KPI 1.3, which is due
on M33. For M24, the values are:

D6.3 - Intermediate implementation and evaluation of the SODALITE platform and use cases - Public Page 58
© Copyright Beneficiaries of the SODALITE Project

through routers, switches

Fast Storage Support fast I/O performance

Execution
Requirements and
Constraint

Description

Heterogeneous
Accelerators

Support execution on GPU, EdgeTPU, NCS2

Edge Edge Computing

KPI 1.3 Abstraction of execution constraints and possibilities.

Target Lower bound is coverage of 80% of execution scenarios.

Deadline M33

Metric Value M24

% execution possibilities
modelled in WP3 83% for Snow UC

% execution possibilities
modelled in WP3 66% for Clinical UC

% execution possibilities
modelled in WP3 to be measured for Vehicle IoT UC

Project No 825480.

5.3 Platform Evaluation: Performance

5.3.1.Static optimisation (KPI 2.1)

Static optimization is the main objective of MODAK and is the mechanism that contributes to KPI
2.1 (increase of abstracted application performance on abstracted infrastructure by using
Infrastructure performance abstraction patterns). In this section, we present the performance
benefit introduced by the MODAK static optimization framework on two types of applications: an AI
and an HPC example.

For the AI example, we evaluate MODAK using image classification training and time the execution
of a set number of epochs. We chose to train on the ResNet-5043 residual network for GPU
workloads. Optimisations were performed by building AI frameworks from source, using graph
compilers, as well as building the same graph compilers from source.

AI frameworks use intermediate representations (IR) to represent the neural network models as
computational graphs, with nodes representing tensor operations and edges the data
dependencies between them. Graph compilers optimise this computational graph and then
generate an optimised code for a target hardware/backend, thus accelerating the training and
deployment of deep learning models. XLA (Accelerated Linear Algebra)44 is a TensorFlow specific
graph compiler that accelerates linear algebra.

For the HPC applications evaluation, we used Code_Aster45, a standalone thermo-mechanical
solver used in Clinical UC. The Code_Aster (v14.4.0) uses finite element methods to compute a
solution that shows the strain and stress distribution within the simulated structures, as well as the
displacement field for the simulation of two human vertebrae. Code_Aster has multiple
dependencies including hdf5, mumps, numpy, OpenBLAS, metis, ptscotch, petsc, and parmetis,
and containers provide an efficient way to deploy.

5.3.1.1 Experiment description and setup

We performed the benchmarking of the AI applications on a SODALITE HPC testbed set up at HLRS,
the research and supercomputing center affiliated to the University of Stuttgart. The testbed
consists of a front-end node running Torque, and five compute nodes, each hosting an Nvidia
GeForce GTX 1080 Ti GPU, an Intel(R) Xeon(R) CPU E5-2630 v4 processor, and 125GB of main
memory.

HPC application results were obtained on the MC partition of the Cray XC50 "Piz Daint”
supercomputer at the Swiss National Supercomputing Centre (CSCS). Each node of the system is
equipped with a dual-socket CPU Intel Xeon E5-2695 v4 @ 2.10GHz (18 cores/socket, 64/128 GB
RAM).

We used Singularity v3.5.3. Each test was run 3 times and the average of the runtimes calculated.
Runtime fluctuations were found to be below 2%.

5.3.1.2 Results

Most AI frameworks support and provide Docker containers for different targets and can be readily
used for deployment. Due to Docker uptake this is our baseline method of deploying AI training
applications. For AI frameworks we compare the performance of MODAK optimised containers
built under Singularity with that of the official container available on DockerHub. We built
TensorFlow for the MODAK containers with XLA graph compiler enabled. We used the latest
standard release version 2.1. The network was trained on the ImageNet database, which consists
of more than 14 million hand-annotated images in 20,000 categories. Then, we used single

D6.3 - Intermediate implementation and evaluation of the SODALITE platform and use cases - Public Page 59
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

precision, a batch size of 96, and 3 epochs to train. The MODAK container shows 10% improvement
in performance for the execution time.

For Code_Aster, we compared the performance of the MODAK optimised container with that of the
official Code_Aster container, available from https://github.com/codeaster/container. On a single
thread, the MODAK containerised application had an average execution time of 725 seconds, while
the official Code_Aster container executed for 745 seconds. This is a 3% speed-up.

5.3.1.3 Achieved KPIs

The static optimisation contributes to KPI 2.1, which is due on M30. For M24, the values are:

5.3.2 Reconfiguration: Deployment Refactorer (KPI 2.2)

Deployment Refactorer enables reducing SLA violations and improving resource usage and
application performance by adapting the deployment model of the application at runtime. The
monitoring layer generates alerts and events, indicating potential SLA violations. In response to
these events, the Deployment Refactorer decides and makes necessary changes to the current
deployment, for example, finding resources (nodes) that offer better security or have more
resources, and use those resources.

Based on the above considerations, the Deployment Refactorer contributes to KPI 2.2, increase of
concretized (deployed) application performance running on targeted infrastructure through
Predictive Deployment Refactoring.

5.3.2.1 Experiment description and setup

The first set of experiments focus on deployment refactoring/adaptation requirements of Vehicle
IoT and Snow use cases. For Vehicle IoT use case, two different deployment adaptation scenarios
were implemented. In the first scenario, the application is redeployed in response to changes in
legal jurisdiction to maintain both service continuity and meet the compliance requirements as
vehicles travel between countries. The second demonstrated the capability of the Edge-based
monitoring and alerting to throttle an application deployment that has exceeded thermal
tolerances. By switching between different variants of the inference application containers at
different thermal trip points, the risks of rising temperature inducing inference failure is prevented.

D6.3 - Intermediate implementation and evaluation of the SODALITE platform and use cases - Public Page 60
© Copyright Beneficiaries of the SODALITE Project

KPI 2.1
Increase of abstracted application performance on abstracted
infrastructure by using Infrastructure performance abstraction
patterns

Target Application performance increased by 15%. The performance
metric to be used will depend on the specific case study.

Deadline M30

Metric Value M24

Speedup measured based
on application run time as a
metric.

10% for ResNet-50

Speedup measured based
on application run time as a
metric.

3% for Code-Aster Solver

https://github.com/codeaster/container

Project No 825480.

In the context of Snow use case, to prevent over/under utilization of resources, the application is
redeployed based on the resource usage of the VMs that host the application. In each of these
experiments, the alert manager in the monitoring layer generates alerts indicating violations of
SLAs or risks for potential violations, for example, HighCPULoad, LocationChanged, and
HighEdgeTPUDeviceTemperature. In response to these alerts, the Deployment Refactorer finds and
enacts alternative deployment models, by leveraging deployment adaptation policies and
resource (nodes) discovery capabilities.

The second set of experiments focus on evaluating the accuracy and efficiency of our machine
learning based approach to predicting the performance of an application with many different
deployment alternatives/variants. Due to cost and time constraints, it is usually infeasible to
measure the performance of each possible deployment variant. Thus, we provide an approach for
modeling and predicting the performance of all the valid deployment variants of an application
based on the observed performance of a minimal subset of the variants. We validated our
approach with the popular RuBiS benchmark application and Google Cloud Platform. The
application had 93 deployment variants (various combinations of 16 deployment options for
individual components of the application). The performance data were collected through
benchmarking. D5.2 provides more information on our performance modeling approach and its
validation.

5.3.2.2 Results

Figure 22 shows the accuracy of the performance models and the impact of the sample size (the
subset of deployment variants used for measuring performance data). We used three different
machine learning algorithms, and all three performed well even for the initial sample.

 Figure 22 - Impact of sampling on Performance of Performance Prediction Models

5.3.2.3 Achieved KPIs

The Deployment Refactorer contributes to KPI 2.2, which is due on M30. For M24, Refactorer’s
contributions to the KPI 2.2 are:

D6.3 - Intermediate implementation and evaluation of the SODALITE platform and use cases - Public Page 61
© Copyright Beneficiaries of the SODALITE Project

KPI 2.2
Increase of concretized (deployed) application performance
running on targeted infrastructure through Predictive Deployment
Refactoring.

Target Application performance increased by 15%. The performance
metric to be used will depend on the specific case study.

Project No 825480.

5.3.3 Reconfiguration: runtime SLA violation (KPI 2.2)

While the deployment refactorer addresses the long term problem of finding a more effective
deployment configuration, the Node Manager is in charge of improving performance on the short
term by continuously controlling the execution of applications and applying continuous
corrections. As such, it also contributes, together with the Deployment Refactorer, to KPI 2.2,
increase of concretized (deployed) application performance running on targeted infrastructure
through Predictive Deployment Refactoring.

5.3.3.1 Experiment description and setup
A prototype of Node Manager was implemented and evaluated using four benchmark applications:
Skyline Extraction from Snow UC, ResNet, GoogLeNet, and VGG16. To run the experiments,
NodeManager was deployed on a cluster of three virtual machines on Microsoft Azure: one VM of
type HB60rs with a CPU with 60 cores and 240GB of memory, and two VMs of type NV 6 equipped
with a NVIDIA Tesla M60 GPU and a CPU with 6 cores and 56GB of memory. An additional instance
of type HB60rs was used for generating the client workload. Different shaped, highly varying
synthetic workloads were tested in all the experiments run and the different applications were run
in random combinations concurrently on the servers.

5.3.3.2 Results
The first type of experiment conducted for the NodeManager was about varying either the input
workload or the set-point of the system to test the ability of Node Manager to rapidly adapt the
resource allocation to the new state. Results showed that the NodeManager is able to efficiently
adapt to different unforeseen conditions. In Figure 23, as an example, is shown how Node Manager
quickly reconfigures the resources when the SLA is changed at runtime.

D6.3 - Intermediate implementation and evaluation of the SODALITE platform and use cases - Public Page 62
© Copyright Beneficiaries of the SODALITE Project

Deadline M30

Metric Value M24

% of Refactoring Scenarios
Supported

[Vehicle UC]

75% (preventing violation of placement constraints, under/over
usage of resources, and device inference failures)

[Snow UC]

25% (preventing under/over usage of resources)

Accuracy and Efficiency of
Predicting Performance of
Deployment Alternatives

98%, 96% and 99% respectively for Three Different Performance
Prediction (ML) Models

Performance measurements for 10%-35% of all the deployment
variants is sufficient for building a good performance prediction
model

Project No 825480.

 Figure 23 - Node Manager reacts to a change of SLA at runtime

Node Manager was compared with a rule-based approach that schedules incoming requests using
a round-robin approach on available CPUs and GPUs and dynamically scales the resources using a
rule-base engine. Different synthetic workloads were tested and the Node Manager outperformed
the baseline in all the experiments obtaining overall 96% fewer SLA violations while using 15%
fewer resources. Figure 24 shows the different behavior of the systems (left rule-based, right Node
Manager) with the same workload when all the four applications were running concurrently. While
Node Manager can quickly react to changes, rule-based approach often violates the SLAs for
applications ResNet and VGG16.

 Figure 24 - Comparison between Node Manager (left) and Rule-based approach (right)

By adopting the Node Manager, use case owners can deploy components that exploit
heterogeneous resources, set constraints on their response times and have the platform
automatically managed for optimizing resource allocation and fulfill the desired goal. Node
Manager is able to control multiple applications at the same time and to govern potential resource
contention scenarios among concurrent applications. As clearly shown in Figure 24, Node Manager
outperforms heuristic-based control by order of magnitude. The SLA violations are minimized (96%
improvement) and the resources are precisely allocated to the different containers (15%
improvement).

D6.3 - Intermediate implementation and evaluation of the SODALITE platform and use cases - Public Page 63
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

5.3.3.3 Achieved KPIs

The Node Manager contributes to KPI 2.2, which is due on M30. Node Manager uses two baselines
for evaluating its performance.

Kubernetes is used as a baseline to compare the scaling capabilities of containerized systems. In
particular, NodeManager is compared against Kubernetes Horizontal Pod Autoscaler and Vertical
Pod Autoscaler. Given the lack of support for GPU autoscaling of Kubernetes, to evaluate the
efficiency of the management of heterogeneous resources, NodeManager was compared with a
rule-based approach.

5.4 Platform Evaluation: Usability (KPI 3.1 and KPI 3.2)
To assess the usability of SODALITE, we focused on the IDE that, being the modeling environment,
is the one that is closest to our end users (AOEs). We performed some controlled experiments with
three different types of users, namely non-expert users, TOSCA experts, and SODALITE use case
owners, with the objective to receive feedback from multiple viewpoints. We collected feedback on
perceived ease of use, perceived usefulness and intention to use, which are the common factors
deciding the user acceptance of a particular technology46.

The goal of these experiments is to assess the usability of SODALITE in terms of IaC development
and management cost and effort (KPI 3.1 and KP 3.2). Non-expert users and TOSCA experts
focused on the development of IaC for a machine learning application, which consists of 1) a
database that stores training data, 2) a component that trains a machine learning model 3) a

D6.3 - Intermediate implementation and evaluation of the SODALITE platform and use cases - Public Page 64
© Copyright Beneficiaries of the SODALITE Project

KPI 2.2
Increase of concretized (deployed) application performance
running on targeted infrastructure through Predictive Deployment
Refactoring.

Target Application performance increased by 15%. The performance
metric to be used will depend on the specific case study.

Deadline M30

Metric Value M24

Scaling capabilities

Node Manager: combined CPU and GPU allocation based on
control-theory and lightweight heuristics for containerized
application. Fast vertical scaling of resources (nondisruptive
re-configuration at each second)

Baseline: no support for GPU allocation, vertical scalability needs
disruptive action (i.e., container restart), slower updates

Node Manager provides combined CPU and GPU management

SLA Violations

Node Manager: 10

Baseline: 270

~96% fewer violations

Allocated resources

(cores * seconds)

Node Manager: 4148

Baseline: 4829

~15% fewer resources used

Project No 825480.

repository that stores trained machine learning models, 4) a component that makes
predictions/inferences based on the trained models. The use case owners used their
corresponding use cases.

5.4.1 Normal users (inexperienced in TOSCA)

The goal of this experiment is to compare the time needed to define correct deployment code
without and with SODALITE. We performed the experiment with the students from a master-level
course.

5.4.1.1 Experiment description and setup

 Each experiment participant went through the following steps:

1. Training on the usage of the TOSCA language and on the usage of the SODALITE IDE. This
training occurred before the actual experiment, exploiting tutorial videos we have
prepared for this purpose.

2. Development of the following two exercises.

○ Exercise A - Development of a deployment blueprint in TOSCA for the machine
learning application using a plain YAML editor;

○ Exercise B - Development of an abstract application deployment model (AADM)
using the SODALITE IDE for the same machine learning application.

Half of the group realized the two exercises in the order first A and then B, half realized
them in the opposite order, first B and then A.

3. An anonymous questionnaire to get the feedback from the participants on perceived ease
of use, perceived usefulness, and intention to use.

5.4.1.2 Results

There were 9 participants. All participants were able to complete the tasks successfully.

Perceived Ease of Use. The participants considered the user interface of SODALITE IDE very
intuitive and easy to follow, and context-aware content assistance support was very helpful in
developing deployment models correctly and quickly. However, they also noted that the
visualization of the deployment topology needs further improvements with regards to complexity
and usability. The following table shows the distribution of answers comparing the perceived ease
of use of the SODALITE IDE against the writing of the TOSCA blueprint with a YAML Editor.

D6.3 - Intermediate implementation and evaluation of the SODALITE platform and use cases - Public Page 65
© Copyright Beneficiaries of the SODALITE Project

Perceived Ease of Use SODALITE IDE TOSCA with a YAML
Editor

Very complex and difficult to use 0 0

Difficult to use 1 3

Neither difficult nor easy to use 2 3

Easy to understand 4 3

Very clear and easy to
understand and use

2 0

Project No 825480.

Perceived Usefulness. The participants considered the SODALITE IDE useful, for example,
reducing effort, ease of understanding even complex deployment models, and effective in defining
the deployment code correctly and intuitively. The following table shows the distribution of
answers comparing the usefulness of the SODALITE IDE against writing of the TOSCA blueprint with
a YAML Editor.

Intention to Use. The participants also reported their opinions on their intention to use the
SODALITE IDE or a YAML editor in the future when they will be working at a company developing
deployment code/models. Figure 25 and Figure 26 show the results of the responses from the
participants for the SODALITE IDE and YAML editor, respectively:

 Figure 25 - Intention to use the SODALITE IDE for defining deployment models: 1) A potential in the
adoption of the SODALITE approach, 2) Recommending the SODALITE IDE for others, 3) Using the

SODALITE IDE at a company, 4) Becoming skilled in using the SODALITE IDE

D6.3 - Intermediate implementation and evaluation of the SODALITE platform and use cases - Public Page 66
© Copyright Beneficiaries of the SODALITE Project

Perceived Usefulness SODALITE IDE TOSCA with a YAML
Editor

Not Useful at all 0 0

Not Useful 0 0

Neither not useful nor useful 0 4

Useful 4 5

Very useful 5 0

Project No 825480.

 Figure 26 - Intention to use the YAML Editor for defining deployment models: 1) Continually using
the YAML editor instead of the SODALITE IDE, 2) Using the YAML editor at a company, 3) Becoming

skilled in using the YAML Editor

5.4.2 TOSCA experts

5.4.2.1 Experiment description and setup

The experts first developed the AADM (the deployment model) for the machine learning application
using SODALITE IDE. Next, they modified the AADM by adding new nodes and relationships, and
updating and removing some existing nodes and relationships. Then, they did the same activities
using plain TOSCA and a YAML editor. Finally, they reported their experience and feedback using
an anonymous questionnaire.

5.4.2.2 Results

There were 5 participants. The average level of TOSCA proficiency was 3.8 (from 5). All participants
were able to complete the tasks successfully.

Perceived Ease of Use. The TOSCA experts considered both the SODALITE IDE and a YAML editor
as relatively easy to use. They also noted the current support for the content assistance, auto
completion and complex data types in the IDE as well the documentation of the IDE should be
improved.

D6.3 - Intermediate implementation and evaluation of the SODALITE platform and use cases - Public Page 67
© Copyright Beneficiaries of the SODALITE Project

Activity AADM (with SODALITE IDE) TOSCA (with YAML Editor)

Development 32.14 mins 44.47 mins

Modification 7.67 mins 9.5 mins

Perceived Ease of Use SODALITE IDE YAML Editor

Very complex and difficult to use 0 1

Difficult to use 0 0

Neither difficult nor easy to use 3 2

Easy to understand 2 1

Project No 825480.

Perceived Usefulness. The participants generally considered the SODALITE IDE is useful
(compared with a YAML editor) for defining deployment models due to the support for partial auto
completion, validation, and content assistance.

Intention to Use. The participants also reported their opinions on their intention to use the
SODALITE IDE or a YAML editor in the future when they are working at a company developing
deployment code/models. Figure 27 and Figure 28 show the results of the responses from the
participants for the SODALITE IDE and YAML editor, respectively:

 Figure 27 - Intention to use the SODALITE IDE for defining deployment models: 1) A potential in the
adoption of the SODALITE approach, 2) Recommending the SODALITE IDE for others, 3) Using the

SODALITE IDE at a company, 4) Becoming skilled in using the SODALITE IDE

D6.3 - Intermediate implementation and evaluation of the SODALITE platform and use cases - Public Page 68
© Copyright Beneficiaries of the SODALITE Project

Very clear and easy to
understand and use

0 1

Perceived Usefulness SODALITE IDE YAML Editor

Not Useful at all 0 0

Not Useful 0 2

Neither not useful nor useful 0 1

Useful 4 0

Very useful 1 2

Project No 825480.

 Figure 28 - Intention to use the YAML Editor for defining deployment models: 1) Continually using
the YAML editor instead of the SODALITE IDE, 2) Using the YAML editor at a company, 3) Becoming

skilled in using the YAML Editor

5.4.3 Use case owners

5.4.3.1 Experiment description and setup

The use case owners have received the M18 version of the AADMs for their use cases and asked to
study these AADMs. Next, they were asked to modify the AADMs by adding new nodes and
relationships, and updating and removing some existing nodes and relationships. Finally, they
reported their experience and feedback using an anonymous questionnaire.

5.4.3.2 Results

There were 4 participants. All the participants were able to navigate through the AADMs associated
with their case studies without specific problems. Three participants were able to extend and
modify the AADM without significant effort, while one participant was only partially successful in
changing the AADM.

Perceived Ease of Use. The participants considered that it is easy to use the IDE although they
found that more assistance through documentation and tooltips with suggestions would make
using the IDE easier, particularly for users with no prior experience with Eclipse.

D6.3 - Intermediate implementation and evaluation of the SODALITE platform and use cases - Public Page 69
© Copyright Beneficiaries of the SODALITE Project

Activity Time (Number of Participants)

Development 15 mins (2)

Between 15 mins and 30 mins (2)

Modification 15 mins (1)

Between 30 mins and 1 hour (3)

Perceived Ease of Use SODALITE IDE

Very complex and difficult to use 0

Difficult to use 0

Project No 825480.

Perceived Usefulness. The participants considered the SODALITE IDE is useful as it enables
defining the whole deployment model and components relationship with one tool. The ability to
show errors and warnings in the code also made the IDE more useful.

Intention to Use. The participants also reported their opinions on their intention to use the
SODALITE IDE or a YAML editor in the future when they are working at a company developing
deployment code/models. Figure 29 shows the results of the responses from the participants:

 Figure 29 - Intention to use the SODALITE IDE for defining deployment models: 1) A potential in the
adoption of the SODALITE approach, 2) Recommending the SODALITE IDE for others, 3) Using the

SODALITE IDE at a company, 4) Becoming skilled in using the SODALITE IDE

5.4.4 Achieved KPIs

The three experiments presented in the previous sections have contributed to the assessment of
both KPI 3.1 and KPI 3.2 as described in the following tables.

As regards to KPI 3.1, the experiments with TOSCA experts showed the SODALITE can help to
achieve 27.73% improvement over the baseline. The experiments with each external group showed

D6.3 - Intermediate implementation and evaluation of the SODALITE platform and use cases - Public Page 70
© Copyright Beneficiaries of the SODALITE Project

Neither difficult nor easy to use 1

Easy to understand 3

Very clear and easy to understand and use 0

Perceived Usefulness SODALITE IDE

Not Useful at all 0

Not Useful 0

Neither not useful nor useful 1

Useful 2

Very useful 1

Project No 825480.

that the users consider the SODALITE IDE is very useful, easy to use, and has a high potential for its
adoption. As regards to KPI 3.2, the improvement was 19.26% over the baseline, which was
approximately 10% below the target for the KPI. Based on the feedback from the users, some
missing features of the IDE (some of them are planned for M30) and the partial stability and
incomplete documentation of the IDE have negatively impacted on the user's effort and time. This
may indicate that KPI 3.1 and KPI 3.2 need to be further evaluated once the SODALITE IDE is
feature-complete, and officially released.

D6.3 - Intermediate implementation and evaluation of the SODALITE platform and use cases - Public Page 71
© Copyright Beneficiaries of the SODALITE Project

KPI 3.1 Reduction in software and/or application development time and
cost.

Target

Lower bound target is 10% improvement over the baseline and will
be evaluated through external parties where possible. The
improvement will be measured by considering the time needed to
develop an application manually and then with SODALITE.

Deadline M24

Metric Value M24

Time needed to develop a
the complete blueprint

TOSCA Experts:

● SODALITE IDE: 32.14 mins (average)
● YAML Editor: 44.47 mins (average)

27.73% Improvement with the SODALITE IDE

TOSCA experts developed AADMs and TOSCA models of an
application.

Use Case Owners:

● 18.75 mins (average)

Using SODALITE IDE, the user case owners explored the
deployment model for the M18 version of their case study.

Perceived ease of use

1 to 5 scale where 5 - very clear and easy to understand and use; 1-
very complex and difficult to use.

Normal users

● SODALITE IDE : 4.22
● YAML Editor: 3

TOSCA experts

● SODALITE IDE : 3.4
● YAML Editor: 3.2

Use case owners

● 3.75

Perceived usefulness
1 to 5 scale where 5 - Very useful; 1- Not Useful at all

Normal users

● SODALITE IDE : 4.56

Project No 825480.

D6.3 - Intermediate implementation and evaluation of the SODALITE platform and use cases - Public Page 72
© Copyright Beneficiaries of the SODALITE Project

● YAML Editor: 3.56

TOSCA experts

● SODALITE IDE : 4.2
● YAML Editor: 3.4

Use case owners

● 4

Intention to use

Normal users

● SODALITE IDE : 2.67
● YAML Editor: 1.44

TOSCA experts

● SODALITE IDE : 2.7
● YAML Editor: 1.87

Use case owners

● 2.5

1 to 3 scale where 3 - Intention to use ; 1- No intention to use

KPI 3.2 Reduction in software management (redeployment,
reconfiguration) time and cost.

Target

Lower bound target is 30% improvement over the baseline and will
be evaluated through external parties where possible. The
improvement will be measured by changing the way we re-deploy
the app.

Deadline M24

Metric Value M24

Time needed to redeploy
and reconfigure an
application.

TOSCA experts:

● SODALITE IDE: 7.67 mins (average)
● YAML EDITOR: 9.5 mins (average)

19.26 % improvement over the baseline

TOSCA experts modified the AADMs and TOSCA models of an
application.

Use Case Owners:

● 37.5 mins (average)

Use case owners extended and modified the AADMs of their use
cases.

Project No 825480.

5.5 Platform Evaluation: Assessment of Integration KPIs (KPIs 4.1, 5.1, 5.2)
The assessment of KPIs 4.1, 5.1 and 5.2 has been conducted by examining the status of the
components belonging to the SODALITE platform. The following tables provide an overview of the
conducted assessment.

*A version of MODAK has been included in the SODALITE GitHub repository, but continues to be
developed internally by HPE. HPE is still in the process of determining whether future versions will
continue to remain open.

D6.3 - Intermediate implementation and evaluation of the SODALITE platform and use cases - Public Page 73
© Copyright Beneficiaries of the SODALITE Project

KPI 4.1 Component compatibility

Target The target is 95% of SODALITE component compatibility

Deadline M33

Metric Value M24

of components integrated
in the SODALITE platform /
total # of SODALITE
components

25 components / 25 integrated components: 100%
Note: the integration of some of the components will be further
improved in the last project year.

KPI 5.1 Open source release

Target Minimum 80% of code released under open-source license

Deadline M36

Metric Value M24

LOC released as open
source / LOC produced by
SODALITE to build the
platform

100%*

KPI 5.2 Extension of existing projects

Target Minimum 60% of code extending the existing projects, to be
upstreamed

Deadline M36

Metric Value M24

LOC developed by
SODALITE for a component
and donated to OS / LOC
developed by SODALITE for

96% of code submitted to upstream projects has been merged, a
further 3% has been submitted but not yet merged.

Project No 825480.

5.6 Evaluation summary
The following table provides an overview on the level of accomplishment of all technical KPIs
defined for the project:
 Table 17 - Summary of technical KPI status at M24

*Refer to the note above about MODAK.

As can be seen, all KPIs, to the extent at which they can be measured, show a significantly high
level of accomplishment, with the exception of KPI 3.2 which has suffered from some instability of
the IDE at the time of the conducted usability experiments. All KPIs will be reassessed at the next
project milestone.

Notably absent at this step is the performance measurement of the Vehicle IoT use case, which
owing to its dependence on Kubernetes is not yet able to be measured or optimized directly by
SODALITE components. Kubernetes support for the relevant SODALITE components is being first
made available at the end of M24, meaning that integration, optimization, and continuous
benchmarking can only begin in Y3. Performance baselines within the Vehicle IoT use case have
already been defined at the component level, with optimization opportunities already identified.

D6.3 - Intermediate implementation and evaluation of the SODALITE platform and use cases - Public Page 74
© Copyright Beneficiaries of the SODALITE Project

the corresponding
component

KPI Target Due by M24 status

KPI 1.1 25% coverage M24 66% coverage

KPI 1.2 80% coverage M33
Clinical UC: 80% coverage, Snow: 92%
coverage, Vehicle IoT: TBM

KPI 1.3 80% coverage M33
Clinical UC: 66% coverage, Snow: 83%
coverage, Vehicle IoT: TBM

KPI 2.1 15% speedup increase M30
Clinical UC: 3% speedup increase, Snow:
10% speedup increase

KPI 2.2
20% improvement over the
baseline

M30

Node Manager: 96% reduction in SLA
violations; 15% reduction in allocated
resources
Deployment refactoring: 96-99% accuracy
and efficiency of performance prediction
for deployment alternatives

KPI 3.1
10% improvement over the
baseline

M24 28% improvement for a TOSCA expert

KPI 3.2
30% improvement over the
baseline

M24 19% improvement for a TOSCA expert

KPI 4.1 95% component compatibility M33
100% component compatibility, specific
features to be improved

KPI 5.1 80% open source code M36 100%* open source code

KPI 5.2 60% of upstreamed code M36
96% of code submitted to upstream
projects has been merged, a further 3% has
been submitted but not yet merged.

Project No 825480.

As the work plan for the use case has allocated most of Y3’s efforts in this area, this is more or less
in line with the expected state of the project at this stage. The results from the other two use cases
are, however, promising, and similar results are expected to be achieved in the Vehicle IoT case.

Independent of the technical KPIs, each of the demonstrating use cases are able to effectively
leverage and benefit from the application of SODALITE components. The increase in SODALITE
UML UC uptake is expected to continue in Y3.

D6.3 - Intermediate implementation and evaluation of the SODALITE platform and use cases - Public Page 75
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

6 Conclusions
This deliverable presents the Y2 iteration of the SODALITE platform, provides a comprehensive
overview of the components and features developed throughout the year, the steps taken to
ensure that components continue to maintain a high level of quality, and concludes with an
in-depth look at the application of SODALITE components in each of the project’s three
demonstrating use cases.

Progress in the technical KPIs has shown that SODALITE is achieving its stated objectives and is
producing clear benefits. The extent of integration and the uptake of the SODALITE UML UCs by the
demonstrating use cases has shown that each of the use cases are able to make effective use of
SODALITE components and realize direct benefits from their application. As the focus in Y3 shifts
towards increased integration and optimization, the extent of benefits realized is expected to
continue to increase.

The introduction of the Edge as a new infrastructure has created additional challenges for the
project, while the Vehicle IoT use case’s heavy use of Kubernetes in its operational environment
has also created an opportunity for SODALITE to increase its interoperability with existing
solutions, which will also be fundamental in facilitating uptake by users external to the consortium.
As much of the enabling work at the component level has only just been completed in M24, this will
be a key focus area going into Y3.

Feedback obtained from the External Advisory Board (detailed in D7.4) as well as from controlled
experiments with use case owners and TOSCA experts alike has further highlighted areas for
improvement in the final release. These aspects provide a clear outline of improvements to be
carried out in Y3, and will be an important part of facilitating uptake of SODALITE results by
external users, particularly by those with limited domain expertise.

This deliverable provides the second of three implementation and evaluation reports. The
forthcoming D6.4 report will provide an assessment of the final release of the SODALITE platform
and will provide an assessment of the Y3 items highlighted throughout this deliverable.

D6.3 - Intermediate implementation and evaluation of the SODALITE platform and use cases - Public Page 76
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

Reference
1. D6.2 - Initial implementation and evaluation of the SODALITE platform and use cases. SODALITE
consortium. Public deliverable, 2020.
2. D6.6 SODALITE Framework - Second Version. SODALITE Technical report, 2021
3. D2.2 - Requirements, KPIs, evaluation plan and architecture - Intermediate version. SODALITE Technical
Deliverable, 2021
4. D4.2 IaC Management - Intermediate version. SODALITE Technical Deliverable 2021.
5. D5.2 - Application deployment and dynamic runtime - intermediate version. SODALITE Technical
Deliverable 2021.
6. https://github.com/OpenVPN/openvpn
7. https://github.com/traefik/traefik
8. https://github.com/SODALITE-EU/application-optimisation
9. https://github.com/SODALITE-EU/platform-discovery-service
10. https://github.com/cea-hpc/modules
11. https://www.cscs.ch/computers/piz-daint/
12. D3.3 - Prototype of application and infrastructure performance models - First version. SODALITE
Technical Deliverable 2020.
13. https://www.egi.eu/
14. https://www.hpc-rivr.si/home_en/
15. https://www.egi.eu/services/applications-on-demand/
16. On Understanding and Measuring the Performance of Public Cloud Providers, Luciano Baresi, Giovanni
Quattrocchi, Nicholas Rasi, Politecnico di Milano, 2020, http://hdl.handle.net/11311/1157381
17. https://semver.org/spec/v2.0.0.html - Semantic Versioning specification
18. https://github.com/marketplace/actions/release-drafter Drafts your next release notes as pull requests
are merged into master.
19. https://github.com/marketplace/actions/pr-labeler - A GitHub Action that automatically applies labels to
your PRs based on branch name patterns like feature/* or fix/*.
20. https://github.com/SODALITE-EU/iac-platform-stack
21. D2.4 - Guidelines for contributors to the SODALITE framework. SODALITE Deliverable 2020.
22. https://github.com/SODALITE-EU/iac-platform-stack
23. D6.1 - SODALITE platform and use cases implementation plan. SODALITE Technical Deliverable 2019.
24. D6.2 - SODALITE platform and use cases implementation plan. SODALITE Technical Deliverable 2020.
25. http://www.vtk.org
26. https://lorensen.github.io/VTKExamples/site/VTKFileFormats/
27. https://www.labri.fr/perso/pelegrin/scotch/
28. http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview
29. https://www.openblas.net/
30. http://www.netlib.org/lapack/
31. http://www.netlib.org/scalapack/
32. http://www.netlib.org/blacs
33. http://mumps.enseeiht.fr/
34. https://portal.nersc.gov/project/sparse/superlu/
35. https://www.mcs.anl.gov/petsc/
36. https://www.salome-platform.org/user-section/about/med
37. https://www.knowgo.io
38. Deep residual learning for image recognition. He, Kaiming, et al. Proceedings of the IEEE conference on
computer vision and pattern recognition, 2016.
39. Imagenet: A large-scale hierarchical image database, J. Deng et al., 2009 IEEE conference on computer
vision and pattern recognition, 2009.
40. https://github.com/SODALITE-EU/iac-modules/tree/master/hpc
41. https://docs.egi.eu/users/cloud-compute/ec3/
42. https://github.com/SODALITE-EU/ide/tree/master/dsl/org.sodalite.dsl.examples
43. Deep Residual Learning for Image Recognition, K. He et al, arXiv:1512.03385 [cs.CV]
44. XLA: Optimizing Compiler for Machine Learning, https://www.tensorflow.org/xla, 2021.
45. Code_Aster: Finite element code aster, analysis of structures and thermomechanics for studies and
research, http://www.code-aster.org, 2021.

D6.3 - Intermediate implementation and evaluation of the SODALITE platform and use cases - Public Page 77
© Copyright Beneficiaries of the SODALITE Project

https://github.com/marketplace/actions/pr-labeler
https://github.com/SODALITE-EU/iac-platform-stack
https://github.com/SODALITE-EU/iac-platform-stack
https://www.knowgo.io/
https://github.com/SODALITE-EU/iac-modules/tree/master/hpc
https://docs.egi.eu/users/cloud-compute/ec3/
https://github.com/SODALITE-EU/ide/tree/master/dsl/org.sodalite.dsl.examples
https://www.tensorflow.org/xla
http://www.code-aster.org/

Project No 825480.

46. Davis, Fred D. "Perceived usefulness, perceived ease of use, and user acceptance of information
technology." MIS quarterly (1989): 319-340.

D6.3 - Intermediate implementation and evaluation of the SODALITE platform and use cases - Public Page 78
© Copyright Beneficiaries of the SODALITE Project

