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Executive Summary 
This deliverable presents the time plan for the development of the SODALITE platform, as well as 
the implementation plan of the project’s use cases. This document is delivered in parallel to 
deliverable D2.1 “Requirements, KPIs, evaluation plan and architecture - First version”, in which 
the architecture components and their interactions are described in detail.  More specifically, D6.1 
provides a description of the technologies that we expect to use for the implementation of the 
components constituting the SODALITE platform. Then the deliverable presents the implementation 
timeline of the HPC and Cloud testbeds that will be provided for the experimentation with the 
platform’s components. In addition, the document describes the provisioning and setup of the 
project’s development infrastructure, followed by a timeline, defining the foreseen iterations of the 
SODALITE platform. Finally, a description of the SODALITE use cases, along with their 
implementation plan, is provided. 

We envision 3 iterations of delivery of the SODALITE platform, one in each year of the project. By 
the end of Year 1, we expect the initial implementation of the basic components making up the 
SODALITE platform. During Year 2 we expect to progress with integration of the components, more 
advanced features, and initial evaluation of the improvement provided by the SODALITE platform. 
In Year 3 we expect to iteratively measure the results produced by the SODALITE platform and to 
make ongoing additional improvements. 
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1 Introduction 
The objective of this deliverable is to present the plan of the Consortium regarding the development 
of the SODALITE platform, as well as the implementation of the three SODALITE demonstrating use 
cases. To this end, this document provides a detailed description of the resources needed to 
achieve the components’ functionality that will be developed within SODALITE and of the platform 
as a whole, as well as a report on the plans of each demonstrating use case, coupled with realistic 
and concise information about their practical implementation.  

This document is delivered in parallel to deliverable D2.1 “Requirements, KPIs, evaluation plan and 
architecture - First version”, in which the architecture components and their interactions are 
described in detail.  

 

1.1 Structure of the Document 
This deliverable is structured as follows:  

● The remainder of the Introduction Section reviews the component structure of the 
SODALITE platform. This material is a highlight of what is presented in detail in the 
Architecture Section of deliverable D2.1 “Requirements, KPIs, evaluation plan and 
architecture - First version”. 

● Section 2 provides a description of the existing technologies that will be used for the 
development of the platform’s components, as well as the setup and provisioning of the 
SODALITE infrastructure. 

● Section 3 presents the SODALITE testbeds and development infrastructure and provides 
the overall timeline for the development of the SODALITE platform and the implementation 
of the components in Work Packages (WPs) 3 (Semantic Abstractions Design and 
Modelling), 4 (IaC Management) and 5 (Runtime Implementation).  

● Section 4 presents the implementation plans for the three SODALITE demonstrating use 
cases and finally,  

● Section 5 provides some concluding remarks. 

 

It should be noted that while (based on the SODALITE GA (Grant Agreement)) this deliverable 
must also provide detailed specifications of the components’ functionality that will compose 
the SODALITE platform, it was decided to include this information in deliverable D2.1 
“Requirements, KPIs, evaluation plan and architecture - First version” (also due in M6 of the 
project, submitted together with D6.1) for a better presentation, since D2.1 provides the 
initial outline of the SODALITE architecture. Therefore, in D2.1, under Section 3 
(Architecture), a detailed description of the SODALITE platform’s envisioned components is 
provided, in terms of their functionality, dependencies, supporting technologies, as well as 
critical factors with respect to their implementation. In this document, we provide only a 
synopsis of the components that are more fully described in D2.1.   
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1.2 SODALITE Components 
We reproduce here a synopsis of the SODALITE architecture that is described in D2.1. Please see 
the architecture Section (Section 3) in D2.1 for full details of the functional description, inputs, 
outputs, and dependencies of each component. 

 

SODALITE aims to provide developers and infrastructure operators with tools that abstract their 
application and infrastructure requirements to enable simpler and faster development, 
deployment, operation, and execution of heterogeneous applications on heterogeneous, software-
defined, high-performance, cloud infrastructures. To this end, SODALITE aims to produce: 

● A pattern-based abstraction library that includes application, infrastructure, and 
performance abstractions; 

● A design and programming model for both full-stack applications and infrastructures based 
on the abstraction library; 

● A deployment framework that enables the static optimization of abstracted applications 
onto specific infrastructure; 

● Automated run-time optimization and management of applications. 

 

The SODALITE platform is divided into three main layers, each covered by a separate work package. 
These layers are the Modelling layer (WP3), the Infrastructure as Code layer (WP4), and the Runtime 
layer (WP5). Figure 1 below shows these layers together with their relationships. 

 
 

 
Figure 1: SODALITE overall Architecture 
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1.2.1 SODALITE Modelling Layer 

The components of the SODALITE Modelling Layer are depicted in Figure 2. 

 
Figure 2:  SODALITE modelling layer components (WP3) 

The SODALITE IDE provides complete support for the authoring lifecycle of abstract application 
deployment models (see D2.1 for details). The Semantic Knowledge Base (KB) is SODALITE’s 
semantic repository that hosts the models (ontologies) created in WP3. The Semantic Reasoner is 
a middleware facilitating the interaction with the KB. In particular, it provides an API to support the 
insertion and retrieval of knowledge to/from the KB, and the application of rule-based semantic 
reasoning over the data stored in the KB. 
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1.2.2 SODALITE Infrastructure as Code layer 

The components of the SODALITE Infrastructure as Code (IaC) Layer are depicted in Figure 3. 

 
Figure 3: SODALITE infrastructure as code layer components (WP4) 

The main task of the IaC layer is to take the modelling information provided by the SODALITE IDE 
(WP3) and produce an IaC blueprint.  Deployment Preparation involves a number of operations to 
build an IaC blueprint. These operations are handled by sub-components depicted in Figure 3 and 
are detailed in deliverable D2.1.  Additional components are envisioned to verify correctness of the 
provided model, to predict possible bugs in the provided model, and to optimise the application for 
a given target execution platform. 
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1.2.3 SODALITE Runtime layer 

The components of the SODALITE Runtime Layer are depicted in Figure 4. 

 
Figure 4: SODALITE runtime layer components (WP5) 

The Runtime layer of SODALITE orchestrates the deployment of an application, monitors its 
execution and proposes changes to the application's runtime. It is composed of three main blocks: 
Orchestrator, Monitoring and Refactoring. The Orchestrator manages the lifecycle of an application 
deployed in heterogeneous infrastructures. The Monitoring component gathers metrics from the 
heterogeneous infrastructures. These metrics are used to determine to what extent the application 
is running as expected. The Deployment Refactorer refactors the deployment model of an 
application in response to violations in the application goals. 

1.3 Testing the SODALITE Stack 
We plan to have 3 Demonstrating Use Cases to verify the SODALITE Platform: The POLIMI Snow use 
Case, The USTUTT Clinical Trial use Case, and the ADPT Vehicle IoT Use Case. Each of the use cases 
is expected to undergo several iterations of development and benchmarking using the SODALITE 
platform. 

 

We envision 3 iterations of delivery of the SODALITE platform, one in each year of the project. By 
the end of Year 1, we expect the initial implementation of the basic components making up the 
SODALITE platform. During Year 2 we expect to progress with integration of the components, more 
advanced features, and initial evaluation of the improvement provided by the SODALITE platform. 
In Year 3 we expect to iteratively measure the results produced by the SODALITE platform and to 
make ongoing additional improvements.  
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2 Description of Technology Stack 
As already explained in the Introduction Section, the currently envisaged components that make 
up the first iteration of the SODALITE platform are summarized above and described in detail in 
deliverable D2.1 under the Architecture Section. We describe in this Section technologies that are 
planned to be used to implement some of those components. We expect to augment these 
technologies with the necessary features that will be further required to implement the SODALITE 
solution. It should be noted that these technologies were selected based on the consortium 
partners’ expertise, as well as the potential to further uptake the work in several tools/technologies 
that were developed as part of past European projects or initiatives, in which the consortium 
partners have been involved. 

2.1 WP3 Technologies 
WP3 is concerned with the semantic abstractions and the relevant design and modelling of 
applications and cloud infrastructures along with their performance characteristics and 
deployments. The main software components to support these are: 

● The Semantic Knowledge Base - A semantic repository to accommodate SODALITE’s 
knowledge in the domains of applications, infrastructure, performance optimisations, 
deployment and lifecycle, and more. This knowledge will be generated by multiple 
stakeholders (e.g. resource experts) and represented into RDF-based knowledge graphs 
(ontologies). 

● The Semantic Reasoner- A dedicated middleware to interact with the Semantic Knowledge 
Base by importing/retrieving data, and applying complex, rule-based semantic reasoning. 
Thus, the Semantic Reasoner will expose an API to be accessible by other system 
components. 

● The SODALITE IDE - A software component to provide complete support for the authoring of 
abstract application deployment models with the use of the SODALITE DSL. It will also 
enable the monitoring of each deployment’s lifecycle, applied optimisations, etc. 

The following technologies are being considered to be used for the WP3 developments. 

 

2.1.1 Protégé 

Protégé [1] is a free, open-source ontology editor that will be used for the creation of the project’s 
domain ontologies, which will be the core of SODALITE’s Semantic Knowledge Base. Protégé 
provides the necessary features for the definition of class hierarchies, datatype and object 
properties, axioms, etc., and the generation of all popular ontology file formats, like owl and rdf. 

 

2.1.2 GraphDB 

GraphDB [2] is a semantic graph database that acts as a SPARQL-served endpoint for ontologies. 
SODALITE’s ontologies, created within Protégé, will be hosted by a GraphDB deployment, which will 
support the population of system data and the execution of rule-based semantic reasoning. This 
GraphDB deployment will act as SODALITE’s Semantic Knowledge Base - repository. 

 

2.1.3 SPARQL 

SPARQL [3] is a query language for RDF (Resource Description Framework) data and ontologies. 
SPARQL queries will enable the insertion, update and retrieval of system data to/from the Semantic 
Knowledge Base. The semantic reasoning process will also be based on SPARQL queries. Thus, 
SPARQL will support a great part of the Semantic Reasoner functionality. 
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2.1.4 XText 

XText [4] is an Eclipse [5] -based framework for specifying DSL (Domain-Specific Language) 
metamodels and textual edition of conforming model instances. It includes several components, 
namely a parser, linker, typechecker, compiler, as well as a textual editor for Eclipse. It is also 
compatible with any editor that supports the Language Server Protocol and your favourite web 
browser. DSL metamodels/models are EMF (Eclipse Modelling Framework)/Ecore-based. 
Therefore, it is compatible with EMF-based M2T (Model-to-Text) transformations tools, such as 
Xpand [6] or Acceleo [7] for DSL conversion (to SPARQL queries, for example). 

Xtext also provides support for Web DSL edition, leveraging on existing Web editors such as Orion 
[8], Ace [9] or CodeMirror [10]. 

Around Xtext there are some related technologies. Concretely, DSLForge [11] provides an 
integrated Web IDE (Integrated Development Environment) Workbench for Xtext DSL editors, with 
a Project Explorer view and model persistence. Sirius [12] and Graphiti [13] provide a graphical 
DSL modelling framework for Eclipse. Using these latter technologies, users can define their DSL 
using graphical notation (in contrast to the textual notation available in XText). These technologies 
will be used by SODALITE IDE component.  

2.2 WP4 Technologies 
WP4 covers the aspects of IaC (Infrastructure as Code) within the SODALITE project. This includes 
verifying the validity of models provided as well as building and optimising of an IaC blueprint. Since 
TOSCA and actuation scripts are needed by the orchestrator to put to life an application 
deployment, we plan to build and use TOSCA IaC node repository and Ansible16 actuation playbooks 
for building and preparation of the application deployment plan. As one of the most important of 
the WP4 goals is the optimal preparation of the deployment blueprint we plan to build components 
that optimise, verify and validate the IaC from the topology perspective before the execution and 
deployment itself. From the perspective of optimisation of the deployed application we plan to use 
CRAY’s vast knowledge of application optimisation toolkit such as CRESTA, UDJ, Maestro etc., to 
fully optimise the application components before deployment. In the context of runtime 
environment, we decided to use the Docker virtualisation technology for deployments in the cloud 
execution platforms and considering a few container technology options for the deployment in the 
HPC environment (Singularity, CharlieCloud, Sarus). At the current stage of the project, the following 
technologies are being considered to be used for the WP4 developments. 

 

2.2.1 CRESTA Autotuning framework 

As part of the CRESTA [14] European project, a DSL-based autotuning framework was developed 
(initial implementation) by CRAY. This focuses on addressing the inherent complexity of the latest 
and future computer architectures. Autotuning is the process by which an application may be 
optimised for a target platform by making automated optimal choices of how the application is built 
and deployed. DSL that was developed exposes choices within an application for optimisation. This 
will be used as part of the Application Optimiser component. 

 

2.2.2 Universal Data Junction 

Universal Data Junction (UDJ) is a library-based transport that provides efficient communication of 
data between applications. It provides a capability to describe data that may be distributed and to 
communicate that data using put/get semantics. Distributed data (to multiple processes within an 
application) may be redistributed during transport. Various underlying (backend) transports are 
provided and may be selected at runtime. This will be used as part of the Application Optimiser 
component. 
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2.2.3 Maestro data orchestration middleware 

Maestro data orchestration middleware [15] addresses ubiquitous problems of data movement in 
complex memory hierarchies and at many levels of the HPC (High Performance Computing) 
software stack. This middleware framework provides object-like data abstractions for management 
and reasoning about user data in applications and across workflows, with the ultimate goal of 
optimising data-movement across the memory-storage hierarchy. This will be used as part of the 
Application Optimiser component. 

 

2.2.4 MAMBA - Managed Abstract Memory Arrays 

A library-based programming model for C, C++ and Fortran based on Managed Abstract Memory 
Arrays, aiming to deliver simplified and efficient usage of diverse memory systems to application 
developers in a performance-portable way. MAMBA arrays exploit a unified memory interface to 
abstract memory from both traditional memory devices, accelerators and storage. This library aims 
to achieve good performance portability with an easy-to-use approach that requires minimal code 
intrusion. This will be used as part of the Application Optimiser component. 

 

2.2.5 Ansible Actuation 

XLAB provides initial node modelling through configurable Ansible [16] roles and playbooks as part 
of the Infrastructure Management Support, thus creating a repository of predefined actuation 
scripts used by the orchestrator to deploy, start and monitor application artefacts. A decision has 
to be made about whether Chef [17] is to be used as well. This technology may be used for creating 
the deployment artefact images by the SODALITE Deployment Preparation package and will be used 
by the SODALITE Orchestrator as a deployment actuation tool.   

 

2.2.6 Runtime Container Images 

The open sourcing of Docker [18] container technologies marked a new milestone in virtualisation. 
Simplicity of building up application environments, transportability, the ease of deployment and 
responsiveness are key benefits for choosing the deployment of containerized applications on 
private and public cloud infrastructures. 

Most of the technologies and tools built around containers are well documented and open sourced 
with a very alive and vast community of developers and supporters, backed by industry leading IaaS 
(Infrastructure-as-a-Service) giants such as Amazon, Google, Microsoft and others.  

As bringing orchestration to HPC and Cloud environments is one of the key goals of the SODALITE 
project, choosing the right container technology and tools for building up the runtime environment 
is an essential part of application design and deployment pipeline. At this point few HPC Container 
technologies are being considered:  

● Singularity [19] 
● CharlieCloud [20] 
● SARUS [21] 

The decision will be made based on benchmarking of the mentioned technologies. These 
technologies will be used in SODALITE Deployment preparation package and by SODALITE 
Orchestrator. 

2.3 WP5 Technologies 
WP5 deals with the SODALITE Runtime environment. The objectives of WP5 are the orchestration 
of deployments on heterogeneous infrastructures, the monitoring of the deployed applications and 
their adaptation and improvement in response to violations in the application goals. To achieve its 
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objectives, WP5 relies on several existing technologies for deployment, orchestration and 
monitoring on HPC and Cloud, but extending them or adding new functionality through new 
components where necessary. The following technologies are being considered to be used for the 
WP5 developments. 

2.3.1 xOpera 

xOpera [22] is a lightweight orchestrator compliant with the TOSCA Simple Profile YAML v1.21. 

It is currently available as a CLI (Command-Line Interface) tool, designed to be modular and 
extensible. xOpera uses Ansible playbooks as actuation scripts for TOSCA [23] node lifecycle and 
relationship configuration. Supports deployments to OpenStack through Ansible playbooks. The 
SODALITE Orchestrator may use xOpera as base orchestrator. In principle, base orchestrators 
should be interchangeable as long as they are TOSCA compliant. 

 

2.3.2 Skydive 

Skydive [24] is an open source real-time network topology and protocols analyser providing a 
comprehensive way of understanding what is happening in network infrastructure. Skydive 
captures all the interface metrics and stores them in a time series database. An administrator can 
start traffic capture allowing to monitor metrics for specific protocols between specified endpoints 
or according to topology specifications. All the metrics are available through a REST 
(Representational State Transfer) API (Application Program Interface). These metrics are to be 
consumed by the Monitoring component to evaluate whether an application is achieving its 
performance goals. 

 

2.3.3 Prometheus 

Prometheus [25] is a well-known monitoring technology that implements a time series database to 
store infrastructure metrics. It uses a pull model in which small servers called “exporters” are in 
charge of getting the raw metrics and send to the Prometheus server each time they are asked to. 
Grafana [26] can be used on top of it to visualize those metrics and do alerting over them. The main 
block of the Monitoring component is based on Prometheus. 

 

2.3.4 Croupier / Cloudify 

Cloudify [27] is a general-purpose orchestrator for the Cloud based on workflows driven by events. 
Its design approach enables wide flexibility, such as working on agent/agentless architectures or 
acting as a meta-orchestrator working with lower level schedulers/orchestrators. It provides a 
powerful plugin system that support working with a lot of cloud technologies like OpenStack, 
Kubernetes, Ansible, Puppet [28] and many more. Its DSL is TOSCA-based. 

Croupier [29] is a Cloudify plugin that focuses on supporting HPC infrastructures in Cloudify, as well 
as the execution of batch jobs (jobs that have a concrete start and end point, as opposed to typical 
cloud applications like web servers). It supports HPCs based on Torque [30] and Slurm [31], and it 
is compatible with the other Cloudify plugins to allow execution of applications in hybrid HPC+Cloud 
infrastructures. 

The SODALITE Orchestrator may use Cloudify as base orchestrator. In principle, base orchestrators 
should be interchangeable as long as they are TOSCA compliant. 

 

 
1 TOSCA Simple Profile YAML v1.2 is an OASIS standard for cloud native deployment and application 
orchestration 
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2.3.5 ALDE 

ALDE [32] is a workload scheduling and application lifecycle manager for HPC applications. The 
objectives of ALDE are (i) compiling the source code and packetizing it for different heterogeneous 
architectures, and (ii) deploying the generated artefact into an HPC workload manager (only Slurm 
is supported at this time). It will be part of the drivers/plugins used by the Orchestrator to connect 
to the HPC workload managers. 

 

2.4 WP6 Technologies 
WP6 covers the testbed environment, integration of SODALITE components and implementation of 
the project’s demonstrating use cases. We will utilize state-of-the-art technologies to achieve the 
envisioned outcome and results of this WP. In the following subsections, we describe the 
technologies that will be used in the deployment of HPC and Cloud testbeds for resource 
provisioning, as well as the creation of the project’s development infrastructure. We will try to 
support these technologies with future extensions of supported platforms during the course of the 
project. 

 

2.4.1 OpenStack 

OpenStack [33] is an open-source software platform for provisioning compute resources as well as 
other resources (e.g. network, storage) following the IaaS deployment model of cloud computing. 
OpenStack comprises of the components that enable various services for the cloud users. For 
example, Nova Compute [34] provides virtual machines, whereas Ironic [35] provisions bare-metal 
nodes, and the services such as Cinder [36] and Neutron [37] provide block storage and tenant 
networking, respectively. The resources are managed by the users via CLI or REST API. In SODALITE, 
OpenStack brings a scalable and extendable solution regarding resource provisioning for the 
deployment of the project’s demonstrating use cases, as well as for the experimentation with the 
SODALITE components that will be implemented during the course of the project. 

 

2.4.2 Kubernetes 

Kubernetes [38] is an open-source orchestrating system for deployment, management and scaling 
of containerized applications and services. An application container and its needed resources (e.g. 
network, storage) are encapsulated into a Pod [39], which is the basic execution and deployment 
unit in Kubernetes, and a Service [40] further groups multiple interrelated Pods together. 
Additionally, the pods and services can be labelled providing logical description of application 
deployment. As such, an application can be deployed with respect to different staging 
environments, e.g. development, test or production, isolated by the labels attached to each 
deployment. 

Hence, such a high level of abstraction enables automated deployment and management of the 
containers done by the control plane, which schedules resources, provides an API for the pods and 
services and maintains the life cycle of the pods. Moreover, the control plane has declarative nature 
of deployment, meaning that it drives current state of deployment towards the desired state 
specified in the deployment description. Kubernetes provides both CLI and REST API interfaces for 
its management, as well as the Container Runtime Interface (CRI) that extends it with other 
container technologies, which are OCI-compliant, such as Docker and Singularity 

SODALITE will utilize the Kubernetes features, such as automated orchestration of application 
deployment and labelling to deploy and distinguish the testing and production environments of the 
SODALITE components. Additionally, the Cloud components of the demonstrating use cases can be 
containerized using the container technologies presented in Section 2.2.6 and deployed in the 
Kubernetes cluster.  
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2.4.3 Torque 

Torque [41] is a resource manager providing a low-level functionality to control and monitor the 
batch jobs and compute resources. The jobs can be parameterized in submit scripts, defining e.g. 
number of compute nodes/processors and execution environment, and scheduled by the workload 
managers, such as Moab [42] or Maui [43]. The resource manager then deploys and runs the jobs 
on the compute nodes with the start-up (prologue) and clean-up (epilogue) phases. A job status can 
be monitored, and in order to deal with high demand of compute resources, a job queue can be 
introduced. Torque will be used in SODALITE as a bare-metal resource manager and provisioner, 
providing compute resources for the execution of the jobs submitted as part of the demonstrating 
use cases’ workflows. 

 

2.4.4 vTorque 

vTorque [44] is an open-source extension of Torque resource manager, developed by USTUTT for 
the purposes of the MIKELANGELO [45] H2020 European project, which introduces virtualization 
capabilities in the HPC infrastructure. Due to its non-invasive nature, it is independent of the version 
of Torque. It deploys and executes jobs in virtual machines, transparently created in the prologue 
phase of the job, and the jobs can be further parameterized with additional arguments related to 
virtual resources, e.g. number of vCPUs. In this way, vTorque enables cloud-like functionality in HPC. 
In SODALITE, we plan to extend vTorque in the direction of HPC job containerization, further 
supporting the developments that will take place in WP4 and WP5 with respect to the technologies 
on runtime container engines and images.  

 

2.4.5 Jenkins 

Jenkins [46] is an open-source automation server that allows one to automate the software 
development process with continuous integration and facilitating continuous delivery. This is the 
tool we plan to use for fast and automated building, testing, integration and packaging of the 
components that will be developed in SODALITE. 

2.5 Summary 
In this Section, we listed a number of existing technologies upon which to start the development of 
the SODALITE platform. For each technology, we identified the SODALITE component to which it is 
relevant. Table 1 summarizes the technologies, the supported SODALITE component, and the 
corresponding contributing partners. 
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Technology name Use in SODALITE Contributing / coordinating 
partner 

Protégé Semantic Knowledge Base 
(WP3) 

CERTH 

GraphDB Semantic Knowledge Base 
(WP3) 

CERTH 

SPARQL Semantic Knowledge Base 
(WP3) 

CERTH 

XText SODALITE IDE  (WP3) ATOS 

CRESTA Application Optimiser (WP4) CRAY 

Universal Data Junction Application Optimiser (WP4) CRAY 

Maestro Application Optimiser (WP4) CRAY 

MAMBA Application Optimiser (WP4) CRAY 

Ansible Actuation Deployment Preparation 
(WP4) 

XLAB 

Runtime Container Images Deployment Preparation 
(WP4) 

XLAB 

Prometheus Monitoring (WP5) ATOS 

Skydive Monitoring agent (WP5) IBM 

xOpera Orchestrator (WP5) XLAB 

Croupier / Cloudify Orchestrator (WP5) ATOS 

ALDE Orchestrator plugins (WP5) ATOS 

OpenStack Cloud Testbed (WP6) ATOS 

Kubernetes Cloud Testbed (WP6) ATOS 

Torque HPC Testbed (WP6) USTUTT 

vTorque HPC Testbed (WP6) USTUTT 

Jenkins CI/CD (WP6) IBM 
Table 1: Summary of existing technologies to use for SODALITE components 

It is expected that we will need to build connectors and wrappers around some of these 
technologies to interact with the rest of the system. As development progresses, we expect to 
extend the functionality of some of these technologies and to fill in the gaps needed to implement 
all the components of the SODALITE platform. 
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3 Development Environment 
In order to facilitate the development of SODALITE platform and its components, we introduce the 
project's development environment, which includes the SODALITE repository, CI/CD pipeline and 
an execution environment for running the SODALITE components. For these, we will provide Cloud 
and HPC testbeds that will provision virtual and bare-metal compute resources using technologies 
presented in Section 2.4. 

In the following Sections, we describe the Cloud and HPC testbeds (Section 3.1) and their 
interactions with the SODALITE components (Section 3.2). Section 3.3 presents the development 
flow of SODALITE, whereas Section 3.4 outlines the development timeline of the overall SODALITE 
solution.  

3.1 Cloud and HPC Testbed descriptions 
Cloud and HPC testbeds, presented in Figure 5, will be deployed for the development and 
experimentation with the SODALITE components and will be provided and maintained by ATOS and 
USTUTT, respectively. Along with the testbeds, the SODALITE repository will be provided to store the 
source code of the components. The SODALITE testbeds and repository will be connected via the 
Internet in a secure way. 

 

 
Figure 5: Cloud and HPC testbeds overview 

The purpose of the Cloud testbed is to provide Cloud Resources, such as VMs (virtual machines), 
containers, cloud storage and virtual networks, for the application deployment of the demonstrating 
use cases. These resources will be managed by OpenStack and Kubernetes systems. Moreover, 
the Cloud testbed hosts the development environment (DevCloud), where the SODALITE 
components, described in Section 1.2, will reside for development and usage. In order to ensure 
the integrity and validity of the developed SODALITE components, a CI/CD (Continuous 
Integration/Continuous Delivery) approach will be adopted with the help of the Jenkins open source 
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automation server, which will be responsible for running CI/CD tasks enabling fast and automated 
building, testing, integration and packaging of the SODALITE components. 

The HPC testbed, on the other hand, provides a batch job system and bare-metal resources 
managed by a Torque resource manager extended with vTorque. At the initial stage, the resources 
such as bare-metal compute nodes forming an HPC cluster and sharing a storage pool, as well as 
GPU-enabled compute nodes, will be included in the HPC testbed.  

In the following subsections, we describe in detail the specifications of both testbeds. 

3.1.1 Cloud Testbed Specifications 

The ATOS testbed consists of 3 nodes: 2 compute nodes and 1 storage node interconnected via a 
switch on each NIC (Network Interface Controller). The physical characteristics of the nodes and 
switches are presented below in Tables 2-4: 

 

Compute nodes 

Number of nodes  2 

CPU type Intel Xeon E5-2670 0, 8-Core, 2.60GHz, HT (16 
threads), 20 MB Cache, 8.0 GT/s QPI 

Number of CPUs (Number of cores) ● Per node: 2 (2x8=16 cores) 
● Total: 32 (16x2=32 cores) 

Memory ● Type: DDR3 
● Amount per node: 16x4GB=64GB 
● Total: 2x64GB=128GB 

Internal storage ● Type: HDD (SATA) 
● Size per node: 2x6TB=12TB 
● RAID support: no 

Network card 2x Intel® GbE I350 with PCI Express V2.1 (5 
GT/s) Support 

Table 2: Specifications of the computes nodes in the Cloud testbed (ATOS) 

 

Storage nodes 

Number of nodes  1 

CPU type Intel Xeon E5-2670 0, 8-Core, 2.60GHz, HT (16 
threads), 20 MB Cache, 8.0 GT/s QPI 
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Number of CPUs (Number of cores) ● Per node: 2 (2x8=16 cores) 
● Total: 16  

Memory ● Type: DDR3 
● Amount per node: 16x4GB=64GB 
● Total: 1x64GB=64GB 

Internal storage ● Type: HDD (SATA) 
● Size per node: 3x6TB=18TB 
● RAID support: no 

Network card 2x Intel® GbE I350 with PCI Express V2.1 (5 
GT/s) Support 

Table 3: Specifications of the storage nodes in the Cloud testbed (ATOS) 

 

Interconnect (switches) 

Number of switches  1 

Switch model BROCADE ICX6450  

Ports 24x 10/100/1000 Mbps RJ-45 ports 

Number of switches 1 

Switch model BROCADE VDX6710  

Ports 48 x 10/100/1000 + 6 x 10 Gigabit SFP+ 

Table 4: Specifications of the interconnect in the Cloud testbed (ATOS) 

 

3.1.2 HPC Testbed Specifications 

The testbed hosted in USTUTT consists of 9 nodes: 8 compute nodes and 1 storage node 
interconnected with a ToR (Top-of-Rack) switch. The physical characteristics of the nodes and 
switches are presented below in Tables 5-7: 

 

Compute nodes 

Number of nodes  8 
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CPU type Intel Xeon E5-2630v4, 10-Core, 2,20 GHz, HT, 
25 MB Cache, 8,0 GT/s (Broadwell EP) 

Number of CPUs (Number of cores) ● Per node: 2 (2x10=20 cores) 
● Total: 16 (16x10=160 cores) 

Memory ● Type: DDR4 
● Amount per node: 8x16GB=128GB 
● Total: 8x128GB=1TB 

GPU type MSI GeForce GTX 1080 Ti Aero 11G OC, 3584 
Cores, 11GB GDDR5X Memory 

Number of GPUs ● Per node: 1 
● Total: 8 

Internal storage ● Type: SSD (SATA) 
● Size per node: 2x1.92 TB=3.84TB 
● RAID support: yes 

Network card Mellanox ConnectX-4 VP, dual-port FDR IB and 
40 / 56 GbE, QSFP28 

Table 5: Specifications of the computes nodes in the HPC testbed (USTUTT) 

Storage Node 

Number of nodes  1 

CPU type Intel Xeon E5-2630v4, 10-Core, 2,20 GHz, HT, 
25 MB Cache, 8,0 GT/s (Broadwell EP) 

Number of CPUs (Number of cores) 2 (20 cores) 

Memory ● Type: DDR4 
● Amount: 6x32GB=192GB 

Internal storage ● Type: HDD (SATA) 
● Size per node: 16x4.0TB=64TB 
● RAID support: yes 

Network card Mellanox ConnectX-4 VP, dual-port FDR IB and 
40/56 GbE, QSFP28 

Table 6: Specifications of the storage nodes in the HPC testbed (USTUTT) 
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Interconnect (Top-of-rack switch) 

Number of switches  1 

Switch model Mellanox Spectrum SN2100 

Ports 16xQSFP28 ports, 40 GbE 

Additional features ● VxLAN Hardware VTEP 
● SDN: OpenFlow 1.3 
● Integration with VMware NSX & 

OpenStack 

Table 7: Specifications of the interconnect in the HPC testbed (USTUTT) 
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3.2 SODALITE Components interaction with the testbeds 
The SODALITE components, mainly the components of the Runtime Layer, must interact with the 
resource managers of the Cloud and HPC testbeds for resource provisioning, deployment, 
configuration, monitoring and refactoring of the application components developed by the providers 
of the demonstrating use cases with the use of the SODALITE platform. Figure 6 depicts a detailed 
view of the testbeds’ setup and their interaction with the SODALITE components.  

 
Figure 6: SODALITE HPC and Cloud testbeds 

The development environment (DevCloud) for the deployment and integration of SODALITE 
components will reside on the Cloud testbed, which will be containerized in Kubernetes, such that 
the development and production versions of the developed components will be available. The 
DevCloud will be physically isolated from the resources available for the application deployment, 
due to possible interference (e.g. I/O interrupts) and contention of the resources, which will affect 
the performance of the applications. The CI/CD pipeline, although being part of the DevCloud, is 
not depicted in Figure 6 and will be presented in detail in the following Section 3.3 (Development 
flow description). 

With respect to resource provisioning, it is planned to have OpenStack installed on the Cloud 
testbed, providing VMs via Nova Compute service, block storage via Cinder and networking via 
Neutron services. On top of these compute resources, the application components of the 
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demonstrating use case providers will be deployed. It is also possible to deploy a Kubernetes cluster 
to further orchestrate the application deployment. As such, OpenStack will provision a set of VMs, 
one of which will act as a Kubernetes Controller, whereas the remaining VMs will be allocated as 
Kubernetes Nodes, i.e. the nodes running Pods and Services. The credentials to access both 
OpenStack and Kubernetes will be provided to the users of the Cloud testbed. 

The HPC testbed will also be backed with OpenStack; however, Ironic service will be used. The 
rationale behind this is the flexibility and on-the-fly reconfiguration of the compute nodes on the 
physical infrastructure that Ironic brings, facilitating any future infrastructure modifications as the 
SODALITE project evolves. The Torque resource manager will be deployed providing HPC and GPU 
(Graphics Processing Unit) Resources for running application jobs. The credentials and workspaces 
will be created for the users of the HPC testbed. 

The interaction between the testbeds will be established via the Internet: the Cloud testbed 
provides OpenStack and Kubernetes public endpoints for its management, while the Front-end 
node of the HPC testbed provides public ssh-based endpoints to access the Torque resource 
manager. Furthermore, both testbeds will provide mechanisms and endpoints to monitor various 
parameters from different layers of the whole SODALITE platform. The SODALITE Runtime Layer 
Components will communicate with the aforementioned management and monitoring endpoints in 
order to orchestrate the deployment, monitoring and refactoring of the application components of 
the demonstrating use cases. 
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3.3 Development flow description  
The development of the SODALITE components will follow the CI/CD (Continuous 
Integration/Continuous Delivery) approach to allow fast and automated building, testing, 
integration and packaging of the components. Hence, the Jenkins open source automation server 
was chosen as the integration tool for SODALITE. It is introduced in the SODALITE development 
infrastructure, which is presented in Figure 7, and resides in the DevCloud (described in Section 
3.2). As the changes of the source code of the components are submitted to the SODALITE 
repository (available at https://projects.hlrs.de/projects/SODALITE) by the developers, it triggers 
Jenkins to run the CI/CD pipeline, where automated unit, integration and functional tests of 
SODALITE components are scheduled. These tests validate the changes and verify that the updates 
did not break the build. As soon as the tests are passed, the source code changes are pushed into 
the repository. The SODALITE components are then ready for deployment (as a new production 
version of the SODALITE platform) and are subsequently available to the users, such as Application 
DevOps, Resource and Quality Experts, described in deliverable D2.1, Section 2.2. 

 

 
Figure 7: SODALITE development infrastructure 
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3.4 Timeline for Development 
 

 
Figure 8: WP6 development timeline 

The development timeline for all WP6 tasks is depicted in the Gantt chart in Figure 8. With respect 
to T6.1 “Cloud and HPC Testbeds”, the setup of the physical testbeds (both Cloud and HPC) started 
in M1 of the project and will be completed by the end of M6. One month later (M7), it is expected 
to have OpenStack and Ironic installed on the Cloud and HPC testbeds, respectively. This will be 
followed by the installation of Kubernetes (Cloud testbed) and Torque (HPC testbed), which will be 
completed in M9, thus realizing resource provisioning for the experimentation with the SODALITE 
components. The remaining 3 months until the end of the first project year (M10-M12) will be 
allocated to monitoring and measuring the performance of the SODALITE testbeds. In the second 
and third years of the project, adaptations/reconfigurations of any of the underlying components 
in all testbeds are foreseen, based on the results of the evaluation task (T6.4 “Use Case and 
Architecture Evaluation”) that will be performed on the overall SODALITE solution at the end of each 
project year.  

Regarding the SODALITE component integration task (T6.2), the first activities concern the setup of 
the project’s development infrastructure, namely the SODALITE repository (M4-M6) and the Jenkins 
automation server (M5-M8). The initial version of the SODALITE platform will be provided in M12 of 
the project and will mainly involve the integration of the components that constitute the SODALITE 
system, thus realizing it as a whole, but with limited functionality. The intermediate (M24) and final 
(M36) versions of the SODALITE platform will extend and refine the initial platform version, 
delivering increasingly enriched functionality and further capabilities with each updated version. 
The Use Case Implementation (T6.3) and Use Case and Architecture Evaluation (T6.4) tasks will 
follow the same incremental approach as in the case of the SODALITE platform, with the initial, 
intermediate and final use case implementations and evaluations of the SODALITE platform and 
use cases being delivered at the end of each project year. 
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4 Demonstrating Use Case descriptions and implementation plans 
This Section describes the three demonstrating use cases of SODALITE and provides their detailed 
implementation plans, in terms of the envisioned functionalities of their components, as well as 
their development timelines. The three use cases will highlight the developed work in SODALITE 
and will serve as real-world demonstrators of the novel concepts brought by the project. Each one 
of them covers a specific professional application or industry and their expected impact to the 
broader community is manifold. We note here that the requirements, which are specific to the three 
demonstrating use cases and have been extracted by the use case owners (POLIMI, USTUTT, ADPT) 
during the first iteration of requirements elicitation, within the scope of WP2, are not covered in 
deliverable D2.1 and are instead provided in an Appendix of this deliverable, for a better connection 
and understandability of the use case descriptions. 

 

4.1 POLIMI Snow UC 

4.1.1 Description 

The goal of this use case is to exploit the operational value of information derived from public web 
media content to support environmental decision making in a snow dominated context. An 
automatic system crawls geo-located images from heterogeneous sources at scale, checks the 
presence of mountains in each photo, identifies individual peaks, and extracts a snow mask from 
the portion of the image denoting a mountain. 

Two main image sources are used: we crawl touristic webcams in the Alpine area and search Flickr 
for geo-tagged user-generated mountain photos in the Alpine region. 

Both image types carry, explicitly or implicitly, information about the location where the image is 
taken, but require estimating the orientation of the camera during the shot, identifying the visible 
mountain peaks, and filtering out images not suitable for snow analysis (e.g., due to fog, rain etc.). 

The two multimedia processing pipelines, shown in Figure 9, share common steps but also have 
differences: webcams produce a temporal series of images of the same view, so that only one 
webcam image needs to go through the relevance classification and peak identification steps, 
whose results apply to the entire time series. Instead, all crawled user-generated photos need pre-
filtering, for discarding irrelevant content before processing them for orientation and peak 
detection. 

  

The project is composed of different components indicated in Figure 9, which are described in the 
next Sections. 

4.1.2 Implementation plan: description of components 

4.1.2.1 User generated image processing pipeline 

The type of content that can be extracted from web social media platforms depends on the nature 
of the platform and usually includes one or more of the following: text, images, videos and 
geographical information. Photographs are taken from different locations, possibly capturing 
different views of the same mountain peak, but their density varies significantly depending on the 

Figure 9: Schema of the SNOW use case pipelines 
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location (with higher spatial density near popular tourist destinations) and time of the year (with 
higher temporal density during holidays).   

4.1.2.1.1 User generated image crawler (UGIC) 

Flickr is selected as the data source for user-generated photographs, because it contains a large 
number of publicly available images, many of which have an associated geotag (GPS latitude and 
longitude position saved in the EXIF (Exchangeable Image File Format) container of the 
photograph). 

The Flickr API allows one to query the service using temporal and spatial filters. A user generated 
images (UGI) crawler algorithm is designed to query sub-regions on the area of the Alps.  

Table 8 provides a summary of the user generated image crawler (UGIC) component. 

 

Input  Coordinates of the search region bounding box 
Mountain-related textual keywords 

Processing ● Open a connection to the query API of the user-
generated image repository 

● submit queries formulated with the input keywords, 
● retrieve the images that match the query,  
● stores the images on disk 

Output Images 

Implementation 
technologies and languages 

● Java 
● PosgresSQL to save image metadata 

Table 8: User generated image crawler component summary 

4.1.2.1.2 Mountain relevance classifier (MRC) 

Pictures tagged with a location corresponding to a certain mountainous region do not ensure the 
presence of mountains. For this reason, the presence of mountains in every photograph is 
estimated and the non-relevant photographs are discarded. The process to classify an image first 
computes a fixed-dimensional feature vector, which summarizes the visual content, and then 
provides it to a Support Vector Machine (SVM) classifier to determine whether the image should be 
discarded or not. A dataset of images annotated with mountain/no mountain labels is needed to 
train the model. 

Table 9 summarizes the mountain relevance classifier (MRC) component. 

 
Input  An image 

Processing ● Calculate Image Features 
● Input the features into an SVM 

Output Classification of the image (mountain, no mountain) used to 
decide if image should be discarded or not. 

Implementation 
technologies and languages 

● Python-TensorFlow/Matlab 

Table 9: Mountain relevance classifier component summary 

4.1.2.2 Public webcam processing pipeline  

Outdoor webcams represent a valuable source of visual content. The images need to be filtered by 
the weather conditions, since these can significantly affect short- and long-range visibility. 
Additionally, snow cover changes slowly over time, so that one measurement per day is sufficient; 
for this reason, an aggregation of the images obtained during the day is desirable. 
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4.1.2.2.1 Webcam image crawler (WIC) 

Public webcams expose a URL which returns the most recent available image.  The webcam crawler: 

● Loads the list of all the webcams in the dataset and starts asynchronous loops, one for 
each webcam.  

● At each loop iteration, it checks the corresponding webcam image and adds the image to 
the dataset if it is changed w.r.t. the previous iteration, then idles and starts over again. 
Since downloading the entire image to check a webcam new data consumes bandwidth 
unnecessarily,  the new image check is performed only on a portion of the image. Namely, 
only the first 5KB of the image are downloaded, hashed and compared to the previous 
webcam hash: if the hash is different, it is saved as the new hash and the rest of the image 
is downloaded. After the crawler boots, the first image acquired from every webcam is 
discarded, as there are no guarantees on its timestamp (some webcams, due to failures, 
propose the same images for days or months). 

In Table 10, a summary of the webcam image crawler (WIC) component is provided. 

Input  A list of webcams endpoints 

Processing For each webcam: 
● Connect to the service to download the first 5KB of an 

image 
● Generate the hash of the downloaded portion and 

compare with last downloaded image 
● Compare hash of the two images, if the two hashes are 

equal,  skip 
● Download and save the entire image 
● Wait 1’ 

Output Images for each webcam temporarily saved on disk 

Implementation 
technologies and languages 

● JavaScript 
● NodeJS 

Table 10: Webcam image crawler component summary 

4.1.2.2.2 Weather condition filter (WCF) 

Due to bad weather conditions that significantly affect short- and long-range visibility (e.g., clouds, 
heavy rains and snowfalls), only a fraction of the images can be exploited as a reliable source of 
information for estimating snow cover. The weather condition filter is based on the assumption that 
if the visibility is sufficiently good, the skyline mountain profile is not occluded. 

Table 11 describes the weather condition filter (WCF) component. 

Input  A webcam image 
The binary mask corresponding to the webcam.  

Processing ● The edge map of the input image is computed. 
● The skyline visibility value is computed 

Output Boolean value indicating if it should be deleted or not. 

Implementation 
technologies and languages 

● Python/Matlab 

Table 11: Weather condition filter component summary 

4.1.2.2.3 Daily median image aggregation (DMIA) 

Good weather images might suffer from challenging illumination conditions (such as solar glare 
and shadows) and moving obstacles (such as clouds and persons in front of the webcam). At the 
same time, snow cover changes slowly over time, so that one measurement per day is sufficient. 
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Therefore, the DMIA aggregates the images collected by a webcam in a day, to obtain a single 
representative image to be used for further analysis.  A median aggregation algorithm can deal with 
images taken in different conditions, removing transient occlusions and glares. Given N good 
weather daily images I1, I2, …In the Daily Median Image (DMI) is obtained as applying the median 
operator along the temporal dimension. 

The daily median image aggregation (DMIA) component is summarized in Table 12. 

Input  A list of images obtained in one day for each single webcam 

Processing ● Calculate the global offset of each image with respect to 
the first image of the day 

● Adjust each image based on the calculated offset 
● Calculate DMI 

Output For each webcam, a DMI 

Implementation 
technologies and languages 

●   Python/Matlab 

Table 12: Daily median image aggregation component summary 

4.1.2.3 Snow cover pipeline 

The distance between the shooting location and the framed mountains can be very high (tens of 
KMs). The photo geotag only is not sufficient for the analysis of the mountains. It is necessary to 
determine which portions of the image represent which mountains, identify the geographical 
correspondence of each pixel: estimate whether it is a terrain surface or sky, what is the 
corresponding geographical area, what are its GPS coordinates, altitude and distance from the 
observer. Once an image is geo-registered, the portion of the image that represents the mountain 
area can be analysed and divided into snow and non-snow areas. Mountain Image Geo-registration 
(MIGR) is done by finding the correct overlap between the photograph and a 360-degree cylinder 
with a virtual mountain panorama, i.e., a synthetic image of the visible mountain skyline generated 
with a projection from DEM (Digital Elevation Model) data and from the camera shooting position. 
4.1.2.3.1 Skyline extraction (MIGR-SE) 

To compute the alignment of the photo and the virtual panorama, the two images should have the 
same scale, i.e. the same pixel size. Since the photograph and the virtual panorama are 
taken/generated from the same location, the angular size of the mountains on the photograph and 
that of the mountains on the panorama are equal by definition. The horizontal FOV (Field Of View) 
of the photograph is calculated from the focal length and the size of the camera sensor. Then, the 
photograph is rescaled considering that the width of the panorama corresponds to a FOV equal to 
360°.  The next step is to obtain the landscape skyline of a photograph, i.e., the set of all the points 
that represent the boundary between the terrain slopes and the sky. For this purpose, every pixel 
of the input image is fed to a binary classifier, and only positive edges are retained. The training 
and validation of the classifier is done using a dataset of mountain images, where for each one 
exists an annotation containing the skyline present on it. 

Table 13 presents a summary of the skyline extraction (MIGR-SE) component. 

Input  Image 
Image FOV 

Processing ● Image resize based on FOV 
● Provide the image to the classifier that will output a 

mask indicating for each pixel whether it corresponds to 
the skyline or not. (The new skyline mask does not 
match the size of the original image) 

Output Skyline mask 
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Implementation 
technologies and languages 

● Java 
● OPENCV 

Table 13: Skyline extraction component summary 

4.1.2.3.2 360° panorama generation (MIGR-360PG) 

From the coordinates of the picture, we process the 360° panoramic view of the terrain using the 
DEM of the terrain publicly available. The functionality is exposed as a service. 

The rendering model is composed by a C++ program that initialize the context in which the OpenGL 
graphics API operates and exploit hardware-accelerated graphics capabilities by invoking shader 
programs to perform rendering operations. 

This component uses the DEM files provided by NASA. 

In Table 14, the 360° panorama generation (MIGR-360PG) component is summarized. 

Input  Latitude and Longitude 
Terrain Model Precision (3'' or 1'') 
Relative altitude of the viewer (meters from the ground) 
Maximum visible distance 

Processing ●  Loading of DEM,  
● Initialisation or OpenGL rendering,  
●  Execution of OpenGL rendering,  
●  Extraction and conversion of results 

Output 360° panorama  depthmask 

Implementation 
technologies and languages 

● C++ 14 compliant 
● OPENGL, EGL 
● Java, JavaScript and NodeJS (to make the panorama 

web-accessible) 
Table 14: 360° panorama generation component summary 

4.1.2.3.3 Peak alignment (MIGR-PA) 

The alignment can be seen as the search for the correct overlap between two cylinders (assuming 
the zero tilt of the photograph): one containing the 360° panorama and the other one containing 
the photo, suitably scaled. 

Table 15 describes the peak alignment (MIGR-PA) component. 

Input  An image with its corresponding skyline annotation and the 
360° panorama corresponding to its location 

Processing ● Perform global alignment between skyline and 
panorama 

Output Image annotated with the mountain peaks 
M = A mask indicating pixels that correspond to the mountain 
surface. 

Implementation 
technologies and languages 

● Java 
● OPENCV 

Table 15: Peak alignment component summary 

4.1.2.3.4 Snow mask computation (SMC) 

A snow mask is defined as the output of a pixel-level binary classifier that, given an image and a 
mask M that represents the mountain area as inputs, produces a mask S that assigns each pixel 
of the mountain area a binary label denoting the presence of snow. Snow masks are computed 
using the Random Forest supervised learning classifier with spatio-temporal median smoothing of 
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the output. To perform the supervised learning a dataset of images with an annotation at pixel level 
indicating if the pixel corresponds to the snow area is needed. 
The snow mask computation component (SMC) is described in Table 16. 

Input  An image and a mask indicating the pixels corresponding to the 
mountain area. 

Processing ● Calculate feature vectors for the pixels in the mountain 
area 

● Input the features into the Random Forest Classifier 

Output S = Snow mask indicating for each pixel if it represents snow or 
not in the original image. 

Implementation 
technologies and languages 

● Python/Matlab 

Table 16: Snow mask computation component summary 

4.1.2.3.5 Snow index computation (SIC) 

The pipeline produces a pixel-wise snow cover estimation from images, along with a GPS position, 
camera orientation, and mountain peak alignment. Thanks to the image geo-registration and 
orthorectification (using the associated topography data) it is possible to estimate the geographical 
properties of every pixel, such as its corresponding terrain area and altitude. Consequently, it is 
possible to compute the snow line altitude (the point above which snow and ice cover the ground) 
expressed in meters.  

The virtual snow index for an image is defined as:𝛴 (#,%)	|	)(#,%)	*	+	𝑣𝑠𝑖(𝑥, 𝑦), where 𝑣𝑠𝑖 is a virtual 
snow index function that transforms a pixel position into a snow relevance coefficient and can be 
defined as 𝑣𝑠𝑖 (#,%) = 1 and 𝑆(𝑥, 𝑦) 	= 	1 indicates it will be calculated for each pixel that 
corresponds to the snow mask obtained in previous step. 
Table 17 provides a summary of the snow index computation (SIC) component. 

Input  S = the snow mask 
M = the mountain area mask 

Processing Calculate the VSI 

Output Virtual snow index 

Implementation 
technologies and languages 

● Python/Matlab 

Table 17: Snow index computation component summary 

4.1.3 Implementation plan: timeline  
The development of the components that constitute the SNOW Use Case pipeline is scheduled as 
shown by the Gantt diagram displayed in Figure 10. At the end of the components development 
there is another phase to ensure the flow of data among the components. There is a further phase 
to compare the original baseline with redeployment resulting from the output from the SODALITE 
Platform. 
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Figure 10: Gantt diagram of the development of the Snow use case pipeline components 
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4.2 USTUTT Virtual Clinical Trial UC 

4.2.1 Description 

The in-silico clinical trials for spinal operations use case targets the development of a simulation 
process chain supporting in-silico clinical trials of bone-implant-systems in Neurosurgery, 
Orthopedics and Osteosynthesis. It deals with the analysis and assessment of screw-rod fixation 
systems for instrumented mono- and bi-segmental fusion of the lumbar spine by means of 
continuum mechanical simulation methods. As a novelty, we consider the uncertainty inherent in 
the computation by means of probabilistic programming. The simulation chain consists of a number 
of steps that need to be fulfilled in order and can be thought of as a pipeline. The output of each 
step serves as input to the next step. 

The use case addresses one of the most prevalent health problems experienced by the populations 
of developed nations resulting in enormous losses of productivity and costs for ongoing medical 
care. The simulation process developed within this use case will optimise the screw-rod fixation 
systems based on clinical imaging data recorded during standard examinations and consequently 
target the lowering of the reported rates of screw loosening and revisions, enhance safety, expand 
the knowledge of the internal mechanics of screw-rod fixation systems applied to the lumbar spine 
and finally reveal optimization potential in terms of device application and design. 

 

4.2.2 Implementation plan: description of components 

The individual steps for the simulation chain can be seen in Figure 11 below. First, the extraction 
module component takes imaging data and extracts a geometry for the vertebral bodies. The de 
facto standard for doing this is the marching cubes algorithm, for which many implementations 
exist.  

Next, the discretization module component generates a volume-mesh inside the surface geometry. 
This enables one to treat the mesh as a set of finite elements and to use the existing finite elements 
methodology.   

The density mapping component takes the original image data and maps it onto the volume-mesh. 
In doing this, each element inside the mesh is assigned a density value.  

This enhanced meshed geometry is then fed into the probabilistic mapping module component. 
Here the values for density are transformed into values for elasticity, as this is what is actually 
needed for the simulation. Because of the uncertainty that is inherent in this transformation, we 
use a probabilistic programming approach. Eventually, boundaries for the 95% highest density 
interval as well as the mode are computed.  

These data are used in the input decks for the last step, the solver module component. Here, the 
finite element method is actually used in computing a solution that describes the structural 
mechanics inside the vertebral bodies. 
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Figure 11: Schema of the Virtual Clinical Trial use case pipeline 

4.2.2.1 Extraction 

In this first step the geometry of the vertebral bodies is extracted from CT-data (Computer 
Tomographic) which are recorded pre-operatively, post-operatively and approximately six-weeks 
post-operatively. By means of the marching cubes algorithm three triangulated surface meshes are 
generated which serve as input for the next processing step. Depending on the quality of the CT-
data it might be necessary to introduce additional image filtering techniques into the extraction 
step. These filters are available in the Visualization Toolkit (VTK) or in the Insight Segmentation and 
Registration Toolkit (ITK) which are both open source C++ libraries.[47] Alternatively, manual pre-
processing of the datasets can be performed upfront. 

Table 18 summarizes the functionality of the extraction component.  
Input  Three data sets per patient containing data from CT scans, one 

preoperatively and two postoperatively. 
Processing The marching cubes algorithm is applied to each data set to 

extract a surface geometry. Successful extraction depends on the 
CT data quality. Because of this it might be necessary to do some 
manual processing upfront. 

Internal concurrency No, sequential process 
Output Three so called surface meshes 
Implementation technologies 
and languages 

Fortran/C++ 
 

Table 18: Extraction component summary 

4.2.2.2 Discretization 

Based on the three surface meshes volume meshing of the bone geometries is performed. Targeted 
libraries for 3D volume mesh generation are currently Netgen or NGSolve.  Additionally the 
boundary conditions i.e. the supports and the loadings have to be discretized and structural model 
features like muscle strands, tendons and cartilage have to be attached to the modeled bone 
geometries. As a result of this step the completed models will be written out as so called solver 
input decks still with a homogeneous material distribution. 

In Table 19, the functionality of the discretization component is described. 
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Input  Three data sets with surface meshes per patient. 
Processing A 3-dimensional mesh is generated inside each of the surface 

meshes. 
Internal concurrency No, sequential process 
Output So called meshed geometries in three solver input decks. 
Implementation technologies 
and languages 

Netgen/NGSolve (written in C++, Python Interface) 
 

Table 19: Discretization component summary 

4.2.2.3 Density Mapping 

In this step the three generated input decks as well as the three CT data sets are taken as input. 
By means of direct geometrical mapping the grayscale distribution of the respective CT data set  is 
mapped onto the volume mesh generated in the previous step. After the mapping, each element in 
the volume mesh holds a density value from which in the next step orthotropic material data can 
be generated.  

This step is done by a Fortran implementation as described in Schneider, R. et al. - Inhomogeneous, 
orthotropic material model for the cortical structure of long bones modelled on the basis of clinical 
CT or density data[48]. 

Table 20 provides a summary of the density mapping component’s functionality. 
Input Three input decks with meshed geometries per patient. 

CT data sets. 
Processing From the CT data a value for density is mapped onto each 

element inside the mesh. 
Internal concurrency No, sequential process 
Output Three modified solver input decks per patient. 
Implementation technologies 
and languages 

Fortran 

Table 20: Density mapping component summary 

4.2.2.4 Probabilistic elasticity mapping 

In this step the volume meshes, which are augmented with the density distributions from the CT 
data sets, are fed into the probabilistic mapping module component. Here the values for density 
are transformed into orthotropic material parameters, i.e values representing the elasticity of each 
finite element, as this is what is actually needed for the subsequent solver step. Because of the 
uncertainty that is inherent in this transformation, we use a probabilistic programming approach. 
the targeted output are currently the boundaries for the 95% highest density interval as well as the 
mode. This means each of the three states of the patient, pro-operativ, post-operative and 
approximately six weeks post-operative is transformed into three models representing the 
uncertain material distributions in each state. 

The probabilistic elasticity mapping component is summarized in Table 21. 
Input  Three modified input decks per patient. 
Processing From the density values, a probability distribution for the elasticity 

for each element is computed. To keep the amount of data 
manageable, only the low and high bounds of a to be determined 
density interval (e.g. 95%) and the mode are extracted. 

Internal concurrency MPI is used for parallel computation. 
Output For each patient and for each input deck, three solver input decks 

(low, high, mode) are computed. 
Implementation technologies 
and languages 

Python 
MPI 

Table 21: Probabilistic elasticity mapping component summary 
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4.2.2.5 Solver 

To solve the nine cases per patient resulting from the previous step, the open source software 
package Code Aster is used. Finally, nine results are produced which show the strain and stress 
distribution within the simulated structures as well as the displacement field. These results are 
initially object to manual post-processing procedures but as soon as lessons are learned from the 
manual procedures, automatic or semi-automatic data analytics procedures will be set in place. 

Table 22 describes the functionality of the solver component. 

Input  Nine solver input decks per patient. 
Processing Using finite element methods, a solution is computed for lower 

and upper bound of HDI as well as for the mode. These three 
solutions are computed for the pre- and the two postoperatively 
acquired datasets.  

Internal concurrency MPI can used for parallel computation. 
Output For each input deck a solution file is computed. 
Implementation technologies 
and languages 

Code Aster (written in Fortran) 

Table 22: Solver component summary 

4.2.3 Implementation plan: timeline  
The development of the components that constitute the Virtual Clinical Trial UC process is 
scheduled as shown by the Gantt diagram displayed in Figure 12 below. 

 
Figure 12: Gantt diagram of the development timeline of the Virtual Clinical Trial use case components 

More specifically, the development of the probabilistic mapping and density mapping components 
follow the M4-M5 (finished) and M4-M8 timelines, respectively. The delivery of these two 
components marks the first milestone (Initial UC-Process) in the implementation of the Virtual 
Clinical Trial Use Case (due in M8). The second milestone (Intermediate UC-Process), due in M15 
of the project, is defined by the implementation of the overall solution procedure (M4-M15). This is 
followed by the development of the extraction and discretization components (M16-M24), which 
will finalize the Use Case process implementation and will complete the related milestone (Final 
UC-Process) at the end of the second project year.  

The overall integration of the Use Case process into the SODALITE system environment (will be 
done progressively following the development of the constituting components) will start after the 
implementation of the probabilistic mapping component (M6) and will carry on until the end of 
SODALITE (M36). With respect to the evaluation of the Use Case and the SODALITE Architecture, 
baseline measurements will be acquired throughout the implementation of the initial and 
intermediate Use Case process (M7-M15), followed by continuous benchmarking until the end of 
the project. The validation and evaluation task of the Use Case will start in M9 (after the initial 
baseline measurements have been acquired), following the implementation of the initial, 
intermediate and final Use Case processes.    
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4.3 ADPT Vehicle IoT UC  

4.3.1 Description 

Through the combination of vehicle telemetry, instrumentation, and behavioural data, insurance 
companies are able to shape a more holistic view of an individual driver’s overall risk profile based 
on empirical analysis of driving data (referred to as usage based-insurance, or UBI) - areas that 
have traditionally relied upon static data points over which the individual has little control, and 
which have been more focused on risk probability than empirical analysis (these factors include, 
e.g. age, gender, marital status, make/model of vehicle, etc.). While UBI models have been 
successfully engaged in markets with a more relaxed and homogeneous regulatory environment, 
European industry (and citizens) have been hesitant to pursue this model without adequate 
safeguards for personal data protection and privacy rights - a situation remediated in part by the 
coming into force of the GDPR (General Data Protection Regulation). 

The growth of Connected Car data and concerns over data usage are further compounded by: (1) 
Individual expectation of contextualised service offerings that respect personal preferences and 
privacy expectations; (2) Service providers aiming to deploy service offerings across an increasingly 
dynamic environment; and  (3) growing trend of drivers seeking to analyse and benefit from their 
own driving data directly. 

These growing expectations, both from individuals and businesses, lead to an enormous increase 
in the volume and rate of the sensor data, its aggregation, and its analysis, at various hierarchical 
levels. This data, in turn, must be processed in line with the relevant privacy constraints and 
regulatory restrictions it is subject to - aspects subject to dynamic change, while also being highly 
latency-sensitive. 

This leads to two key architectural demands for SODALITE: (1) an increasing amount of in-vehicle 
data processing and intelligence at the network edge, and (2) increased computational capacity to 
process large amounts of data in a timely manner - at varying levels of granularity (e.g. device-local, 
vehicle-local, fleet-wide) - including both fleet-wide big data analytics, as well as periodic online 
retraining of machine learning models that support the deployment. 

This will be achieved by the use of SODALITE tools ensuring privacy-preserving distributed 
processing on one hand and large-scale data processing on the other. Through the use of modelling, 
it will be possible to enrich the processing workflows with information about data- and latency-
sensitive phases (services), steering the overall placement strategies of the orchestration engines. 
On the fly predictive deployment refactoring will allow for optimal use of available resources by 
reconfiguring the whole system and distributing workloads between the heterogeneous edge 
(IoT/Vehicle, Edge Gateways, Fleet Gateways) and backend compute resources (Cloud or HPC) as 
the application evolves towards a hierarchical deployment throughout the duration of the project 
(as shown in Figure 13 below).  
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Figure 13: Schema of the Vehicle IoT use case deployment phases 

The current architecture (shown in Figure 14, below), furthermore, makes extensive use of deployed 
microservices in the Cloud to provide many of the value-added features upon which the use case 
relies. These include, but are not limited to: 

● License Plate Recognition 
● VIN Decoding 
● Reverse Geocoding 
● Drowsiness Detection 
● Theft and Intrusion Detection 

 
Figure 14: Currently deployed system architecture (Vehicle IoT use case) 

Many of these microservices, in turn, leverage trained machine learning models, and are able to 
quickly provide results with minimal computational overhead, providing the opportunity to re-deploy 
and run these services at different hierarchical levels (backend, in-vehicle edge gateway, 
smartphone, etc.). 

While these models can be improved through subsequent training phases, the computational 
overhead (and costs, in the case of public cloud deployment) involved in this often means that 
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models are only periodically updated - delaying incremental benefits that could be deployed to the 
existing user base at various stages of data availability. The addition of an optional HPC or GPU 
compute resources at the backend, made available through the SODALITE tooling, would allow for 
online re-training and continuous deployment of the machine learning models, making model 
training and deployment a first-class citizen of the application’s production CI/CD pipeline, enabling 
benefits to be brought to the end-user both rapidly and directly. 

Other services, such as the Intrusion and Theft Detection Service introduced in Section 4.3.2.2.2 
below, further require the generation of personalized SVC classifiers, changing the role of model 
training as an infrequent event to periodically carry out offline, to a more frequent and online one - 
creating further challenges in resource identification and utilization both in the Cloud and at the 
Edge. 

4.3.2 Implementation plan: description of components 

4.3.2.1 License Plate Detection Pipeline 

 
Figure 15: Schema of the license plate detection and detection model training pipelines (Vehicle IoT use case) 

Within the Vehicle IoT Use Case, individuals may, at various times, submit license plate images for 
recognition. These purposes include the initial registration of the vehicle with the mobile app (as 
one possible registration mechanism - of particular interest in countries which provide open access 
to their vehicle registration databases), evidence to support claims preparation (in the case of a 
collision), etc. In order to benefit from improved plate recognition, the use case will be expanded to 
include user-generated image crowd-sourcing and dynamic updating of the detection model by 
leveraging appropriate resources (Cloud or HPC). This is envisioned across a number of steps: 

  

1. Inclusion of user-generated images in the training data set 
2. Plate extraction from uncropped training data (Bulk processing) 
3. Re-training model on suitable backend resource (e.g. GPU cluster) 
4. Validating control set against the new model (regression detection) 
5. Re-deployment / update of plate recognition microservice backed by the new model 

 
This is further exemplified by the license plate detection and detection model training pipelines in 
Figure 15 above. 
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4.3.2.1.1 Training 

User-generated images are crowd-sourced from the front-end application (and limited to vehicle 
registration, such that consent can be obtained from the end-user) - these augment the existing 
data set and are used for periodic retraining of the detection algorithm in order to enable more 
precise (and increasingly contextualized) license plate recognition.  

4.3.2.1.2 Plate Extraction 

While the license plate recognition service operates directly on uncropped images based on the 
trained model, plate images that are preserved for the purpose of model training are first cropped 
and extracted, discarding any other identifying characteristics or background content. Examples of 
user-submitted images and extracted plate images are seen in Figure 16 below: 

 

 
Figure 16: Schema of the license plate detection and detection model training pipelines (Vehicle IoT use case) 

  

As training of the ML (Machine Learning) model is presently an infrequent occurrence that happens 
offline (and independent of the deployed application stack), it is sufficient to batch input images 
for periodic extraction. As the input images may contain sensitive information (e.g. the house 
number of the individual) unrelated to the purpose of data collection, source images must be kept 
securely until such a time that they are processed and promptly discarded after successful plate 
extraction. 

A summary of the plate extraction component is provided in Table 23.  

Input  Uncropped user-generated images (various sizes) 

Processing Tesseract OCR / OpenCV 

Internal concurrency No, sequential process 

Output Cropped images of license plates 

Implementation 
technologies and languages 

Technologies: Tesseract OCR, OpenCV; Languages: C++ 

Table 23: Plate extraction component summary 

4.3.2.1.3 Plate Detection 

Plate detection is carried out on the user-submitted image as-is, with failure to detect notifying the 
user and prompting the user if they'd like to try again, submit the image to improve the underlying 
ML model, or use an alternative method of vehicle registration. 
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Table 24 summarizes the functionality of the plate detection component. 

Input  Uncropped user-generated images (as form data) 

Processing Dedicated OpenALPR-backed plate recognition microservice 

Internal concurrency No, sequential process 

Output JSON-encoded detection results 

Implementation 
technologies and languages 

Technologies: OpenALPR, Tesseract OCR, OpenCV; Languages: 
C++, Go 

Table 24: Plate detection component summary 

4.3.2.2 Advanced Video Analytics for Driver Monitoring and Alerting 

A number of further application scenarios are supported through video monitoring and analysis - 
these include both a case where real-time analysis of a video stream is necessary (drowsiness 
detection), and a less latency-sensitive case where custom trained and contextualized classifiers 
must be provided in order for the service to provide meaningful results (intrusion and theft 
detection). These are elaborated in the Sections below. 

 

4.3.2.2.1 Drowsiness Detection (Face Detection) 

Drowsiness Detection aims to determine when a Driver is at risk of falling asleep at the wheel and 
taking evasive actions (e.g. playing a loud noise, triggering a vibration, etc.) in order to alert the 
driver to the problem before a more serious incident occurs. 

Drowsiness detection is typically carried out using a couple of different methods, with differing 
levels of accuracy and invasiveness. While the gold standard (and most accurate method) for 
drowsiness detection remains ECG monitoring, ECG measurement itself is invasive and requires 
active participation by the individual under monitoring, making it a poor fit for passive observation 
of a driver. The most common non-invasive methods, on the other hand, are PERCLOS (Percentage 
of eyelid closure) - measuring the proportion of time that the eyelids are between 80-100% closed, 
and blink detection (Blink detection methods further being split between blink frequency and 
duration detection). While the PERCLOS method is fairly well established, it has also been found to 
generate false positives in scenarios where: 

 

1. subjects under monitoring periodically look down (as in typing on a keyboard) in relation to 
the camera; and 

2. in cases where the camera is oriented in such a way that it does not have head-on visibility 
of the driver's eyes. 

As we can expect drivers to be periodically checking their dashboard readings, and cameras to 
frequently be mounted on an angle relative to the driver's position, blink methods are considered 
to be a more appropriate fit and are what is explored within this use case. An example of the EAR 
(Eye Aspect Ratio) method of blink detection (as is currently used in this service) can be seen in 
Figure 17 below: 
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Figure 17: Blink detection using Eye Aspect Ratio (drowsiness validation service) 

 
Figure 18: Schema of the driver drowsiness detection pipeline (Vehicle IoT UC) 

Drowsiness detection (Figure 18) is highly latency-sensitive and must be done in real-time in order 
to be as accurate as possible and to alert the driver at the time they need to be alerted. Blink 
duration can be summarized as awake (< 400ms blink duration), drowsy (400-800ms blink 
duration) and sleepy (blink duration > 800ms). With current wireless technologies demonstrating 
round-trip latencies near 50-200ms (for 4G) and 500ms (for 3G) with good connectivity, a backend-
deployed monitoring service cannot be expected to reliably identify and respond to drowsiness 
events in time - necessitating a push-down of the service delivery to the Vehicle itself. 

Table 25 provides a summary of the drowsiness detection component’s functionality. 

Input  Video stream from input camera 

Processing ● Real-time eye and face detection with Haar Cascades 
● Eye aspect ratio calculation and contour fitting (Blink 

detection) 
● Blink duration sampling across frames, classification 

and alerting 
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Internal concurrency Multi-threaded non-blocking I/O - dedicated thread extracts 
frames from the video stream, while worker thread(s) handle the 
actual frame analysis. 

Output JSON-encoded detection results 

Implementation 
technologies and languages 

Technologies: OpenCV, Dlib, Kafka; Languages: Python, C++ 

Table 25: Drowsiness detection component summary 

4.3.2.2.2 Intrusion and Theft Detection (Face Recognition) 

Intrusion detection builds on the face detection model developed in the drowsiness detector and 
defines a face recognition model capable of identifying the authorized driver's face. In the case 
where someone other than the designated driver is found to be driving the vehicle, further actions 
can be taken by the system (this may include aspects such as notifying the authorized driver and 
seeking confirmation of a driver switch, notifying a fleet manager, streaming vehicle telemetry to a 
third party, etc.). A general overview of this process is highlighted in the pipeline schema in Figure 
19 below. 

In contrast with drowsiness detection, intrusion and theft detection is not directly latency-sensitive, 
and as it does not require real-time access to the driver's video stream, is suitable for backend 
deployment as a long-lived microservice (notably, the infrequent nature of the invocation also 
makes this an ideal candidate for serverless deployments). While the authorized driver may indeed 
wish to know if someone is stealing their vehicle as quickly as possible, the added round-trip latency 
associated with mobile communications is unlikely to have a measurable impact on any 
asynchronous notifications that may result from the analysis. 

A unique characteristic of this service is that custom classifiers must be modelled and trained in 
order to provide value for the Driver (that is, SVC models capable of identifying the authorized 
Driver's face - which the driver may take with them). This may involve dynamic training of vehicle-
restricted classification models or may be open for sharing across a fleet of vehicles, or any other 
vehicle the end-user may use, dependent upon their individual privacy preferences and sharing 
settings. 

The functionality of the intrusion and theft detection component is described in Table 26. 

 
Figure 19: Schema of the intrusion and theft detection pipeline (Vehicle IoT UC) 
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Input  Image extracted from video stream / camera, authentication 
token 

Processing ● JWT token validation / claims extraction 
● Dynamic loading of trained SVC classifier 
● Facial feature comparison of source image with loaded 

SVC classifier 

Internal concurrency No, sequential process 

Output JSON-encoded detection results 

Implementation 
technologies and languages 

Technologies: OpenCV; Languages: Python 

Table 26: Intrusion and theft detection component summary 

4.3.2.3 API Gateway 

The API gateway, as shown in Figure 14 above, remains the primary entry-point for applications 
interacting with the platform. Multiple instances of the API Gateway can be created (currently in 
different geographical areas, depending on regulatory restrictions based on the type of processing) 
and dynamically routed to through a region-aware router. Rather than using GeoIP and DNS as a 
basis for routing (as popularized by e.g. Amazon’s Route 53 DNS Service), we rely on the client-side 
to determine its own location based off of available vehicle location data. The region router, then, 
accepts a request header with an encoded ISO 3166-1 country code (optionally derived from a 
latitude/longitude pair handed off to a reverse geocoding service by the client), which is used as a 
basis for server discovery via a region-aware service discovery mechanism.  

While this current approach is adequate for load balancing, ensuring regulatory compliance, and 
providing improved QoS for the end-user, the current system is still a centralized deployment model 
in which the bulk of the underlying business logic and processing is carried out in the Cloud 
instance. In order to support the phased deployment evolution identified in Figure 13, and to better 
support the kinds of services being developed for this use case, the architecture must support 
hierarchical deployments and clustering over which dynamic orchestration decisions and 
sufficiently granular data analyses can be made. 

4.3.2.4 Edge Gateway 

Following the planned deployment evolution from Figure 13, a self-contained instance of the 
Gateway will be created at the network Edge (integrated within the vehicle itself) in order to support 
further development and experimentation, which will be communicated with by the mobile app on 
the end-user’s smartphone (or later, directly through the infotainment head unit). 

Owing to the ML and CV requirements for some of the UC services, the Edge Gateway itself will be 
evaluated on two different hardware configurations, as noted in Table 27 below: 

 Raspberry Pi 3B+ NVIDIA Jetson Nano 

CPU 1.4 GHz 64-bit Quad-Core ARM 
Cortex-A53 

1.4 GHz 64-bit Quad-Core ARM 
Cortex-A57 MPCore 

GPU Broadcom VideoCore IV 128-Core NVIDIA Maxwell 

RAM 1GB LPDDR2 4GB LPDDR4 
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Performance 21.4 GFLOPS 472 GFLOPS 

Cameras Raspberry Pi Camera Module V2 (Sony IMX219 8-megapixel sensor) 
Raspberry Pi Pi NoIR Camera V2 - infrared version of the V2 Camera 
Module 

Networking WiFi: 802.11ac, Bluetooth: 4.2 

Table 27: Planned hardware configurations for Edge Gateway (Vehicle IoT UC) 

Precise requirements for the Edge Gateway will vary based on the capabilities of the vehicle and 
the individual preferences of the driver, services that will be delivered, and the way in which they 
are provisioned will be continually subject to change. Furthermore, local instances will need to be 
periodically updated when e.g. ML model updates are made available by a training pipeline. Rather 
than using a fixed configuration for each Edge Gateway instance, the aim of the Vehicle IoT UC is 
to maintain a minimal level of state within the Edge Gateway while shipping services from the Cloud 
as locally runnable functions. 

During Y1, the Edge Gateway will be instantiated with a Cloud Function controller (the precise 
technology of which is still to be evaluated - candidate technologies include OpenFaaS and 
OpenWhisk), providing a mechanism for remote function creation and delivery to the Edge. Existing 
microservices with less stringent latency requirements will be adapted and deployed as Cloud 
functions during this time, further simplifying deployment complexity in preparation for Edge 
deployment and orchestration. During Y2, this will be expanded to include federation between the 
Edge Gateway and its immediate hierarchical parents (e.g. at the Fleet or Cloud level). 

4.3.3 Implementation plan: timeline  

 
Figure 20: Gantt diagram of the development timeline of the Vehicle IoT use case components 

The Vehicle IoT UC timeline highlighted in Figure 20 above is structured into 3 distinct phases to 
align with the project year. Y1 focuses on the development of basic functionality, primarily focused 
on the use of a centralized Cloud backend with some basic functionality pushed down to the Edge 
providing a baseline both in terms of measurements and of functionality to further build upon in Y2 
and Y3. Y2 builds on the components developed during Y1, allowing these to be iteratively 
enhanced and shifted to the Edge, while laying the groundwork for tighter coupling with SODALITE 
components in Y3. Use case-specific component development is expected to wrap up at the end of 
Y2, allowing for Y3 to focus primarily on the integration and continued optimization of the use case 
using SODALITE technologies developed in the technical work packages. 

Based on model re-use between some of the Vehicle IoT UC components, the implementation of 
components is carried out sequentially, with the basic support services (License Plate Detection, 
Drowsiness Detection, and Intrusion and Theft Detection) kicking off in M4 and wrapping up in 
M10. Experimentation with Cloud Functions, including the adaptation and deployment of developed 
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components, will continue in parallel - beginning in M5 and concluding in M11. The results of the 
Cloud Function experimentation and initial component definition will form the basis of the initial 
Edge Gateway implementation at the end of M12. 

Y2 follows a similar pattern as Y1 - allowing for each use case component to be iterated through 
and functionally enhanced, beginning in M13 and wrapping up in M19. The main focus during this 
period will be in the development of the Edge Gateway, the integration of Cloud Functions, and the 
ability to federate Cloud function controllers, thereby allowing for Cloud-to-Edge/Edge-to-Cloud 
orchestration to impact deployment at the function level and to support the kind of adaptation 
flexibility required by the use case. 

Y3 will be focused primarily on integrating SODALITE-developed technologies with the use case 
components. In parallel continuous measurement and optimization of components will be carried 
out, providing the basis for practical validation and evaluation of the SODALITE architecture and 
technologies within the use case application context. 
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4.4 SODALITE Platform Coverage 
In Section 2 (Requirements) of D2.1 “Requirements, KPIs, evaluation plan and architecture - First 
version”, we introduced a number of SODALITE UML use cases and provided sequence diagrams 
for the implementation of each case. These UML use cases will be run as part of the evaluation of 
the SODALITE platform. Table 28 (reproduced from D2.1) shows the planned coverage of the UML 
use cases by the SODALITE demonstrating use cases (defined in this document), and when the 
intermediate and final versions of the UML cases will be ready to be tested by the demonstrating 
use case owners. The table also includes a column concerning the testbed providers. In fact, they 
will act as Resource Experts and as Quality Experts and will therefore experiment with the UML use 
cases associated to these two roles. Demonstrating use case owners, instead, will act mostly as 
Application Ops Experts and will all test the core UML cases. The UML use cases concerning bug 
prediction, selection of specific resources and optimization will be tested by the respective 
demonstrating use case that has specific concerns in the corresponding area.  

UML Use Case 
Virtual 

clinical trial SNOW 
Vehicle 

IoT 
Testbed 

providers Released at 
UC1 Define Application Deployment Model (WP3) X X X  M12, M18, M24 

UC2 Select Resources (WP3) X    M12, M18, M24 

UC3 Generate IaC code (WP4) X X X  M12, M18, M24 

UC4 Verify IaC (WP4) X X X  M12, M18, M24 

UC5 Predict and Correct Bugs (WP4) X    M12, M18, M24 

UC6 Execute Provisioning, Deployment and 
Configuration (WP5) X X X  

M12, M18, M24, 
M33 

UC7 Start Application (WP5) X X X  
M12, M18, M24, 

M33 

UC8 Monitor Runtime (WP5) X X X  
M12, M18, M24, 

M33 

UC9 Identify Refactoring Options (WP5) X X X  
M18, M24, M30, 

M33 

UC10 Execute Partial Redeployment (WP5) X X X  M18, M24, M33 

UC11 Define IaC Bugs Taxonomy (WP4)    X M12, M18 

UC12 Map Resources and Optimisations (WP3) X X X X M12, M24 

UC13 Model Resources (WP3)  X  X M12, M22, M30 

UC14 Estimate Quality Characteristics of 
Applications and Workload (WP3)   X X M18, M24, M33 

UC15 Statically Optimize Application and 
Deployment (WP4) X X X  M18, M30 

UC16 Build Runtime images (WP4) X X X  M12, M18, M24 

Table 28: Planned coverage of the SODALITE UML use cases by the project’s demonstrating use cases 
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5 Conclusions 
In this deliverable, the implementation plan of the SODALITE platform and use cases was 
presented. The document’s goal is to guide, together with deliverable D2.1, the project 
developments in order to transform the SODALITE scientific and technological results into a unified 
platform with running services and tools. Three iterations of the SODALITE platform are envisioned, 
one for each year of the project. By the end of the first year, the initial implementation of the basic 
components forming the SODALITE platform will be provided. In parallel, the first iteration of the 
development of the Demonstrating Use Cases will be performed. During the second project year, 
the focus will be on component integration, delivery of more advanced features, as well as the initial 
evaluation of the improvement provided by the SODALITE platform for the Demonstrating Use 
Cases. Finally, during the third year of the project, iterative measurements of the results produced 
by the SODALITE platform will be taken and based on these measurements, additional 
improvements will be applied to the SODALITE system. 

It easily follows that the requirements stemming from WP2 will evolve over time and as a result, 
the SODALITE requirement catalogue will be updated based on the main iterations within the 
project. Consequently, it is expected that small adaptations/updates on the initial SODALITE 
platform and use cases implementation plan will be required in order to meet the final project 
requirements. Any such adaptations/updates will be reported in future deliverables D6.2, D6.3, 
and D6.4, “Implementation and evaluation of the SODALITE platform and use cases”. 
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Appendix A 
As already described in Section 4 of the document, the Appendix provides the specific requirements 
for the three demonstrating use cases of SODALITE, extracted by the use case owners during the 
first iteration of requirements elicitation within WP2. Please note that the “Rationale” field has not 
been filled out for every requirement, as it was optional for the use case owners to provide 
information in this regard. 

A1. POLIMI Snow UC 
 

Id. Title Description 

SNOW.R1 UGIC throughput The user generated image crawler should acquire images 
respecting the query limit of the API 

Rationale Scope 

The Snow UC starts with either the acquisition of user generated content or of images from 
fixed-position web cams.  Maximum throughput is limited by the admitted frequency 
acquisition of the sources. 

Runtime 

Id. Title Description 

SNOW.R2 UGIC parallelism The user generated image crawler should query sub-regions 
in parallel 

Rationale 
Scope 
Runtime 

 Parallel acquisition increases input throughput. 

Id. Title Description 

SNOW.R3 UGIC API key The user generated image crawler of each sub-region should 
use a different API key 

Rationale 
Scope 
Runtime 

 This technique is used to increase parallelism by using multiple clients. 

Id. Title Description 
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SNOW.R4 UGIC locality Despite distribution, the images of a sub-region should be 
stored in the same logical space 

Rationale 
Scope 
Runtime 

Parallelism may increase the overall throughput, but the data set should be accessed 
uniformly w.r.t. the region of persinence of images. 

Id. Title Description 

SNOW.R5 UGIC scheduling The user generated image crawler should execute at a 
predefined interval (e.g., once per week) at scheduled time 

Rationale 
Scope 
Runtime 

 In this way, images are sampled with known frequency. 

Id. Title Description 

SNOW.R6 MRC throughput2 The mountain relevance classifier should classify 100 
image per second 

Rationale 
Scope 
Runtime 

 MRC should execute fast to discard irrelevant data quickly. 

Id. Title Description 

SNOW.R7 MRC HW1 The SIFT feature extraction could be accelerated exploiting 
the GPU 

Rationale 
Scope 
Runtime 

The present implementation does not exploit GPU computation, which is a desirable 
improvement. 

Id. Title Description 

SNOW.R8 MRC HW2 The SVM classification could be accelerated exploiting the 
GPU 
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Rationale 
Scope 
Runtime 

The present implementation does not exploit GPU computation, which is a desirable 
improvement. 

Id. Title Description 

SNOW.R9 MRC parallelism1 The mountain relevance classifier should batch images 
choosing the batch size based on the conditions of the 
computation infrastructure: size of the batch, available 
transfer bandwidth, number of available GPU nodes. 

Rationale 
Scope 
Runtime 

Batching may improve the throughput, by making better use of classifier instances.  

Id. Title Description 

SNOW.R10 MRC parallelism2 The mountain relevance classifier should extract image 
features in parallel to SVM classification 

Rationale 
Scope 
Runtime 

The two processes are independent, and their parallelization could improve end-to-end 
performance. 

Id. Title Description 

SNOW.R11 MRC availability The mountain relevance classificator should be triggered by 
the availability of (a batch of) images to classify 

Rationale 
Scope 
Runtime 

This solicits the capability of handling application-defined events in the deployed 
architecture. 

Id. Title Description 

SNOW.R12 WIC throughput The webcam crawler should crawl up to 1 image per minute 
per webcam 

Rationale Scope 
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Web cams have  variable frame update frequency, which should be normalized at 1 minute 
for regularizing acquisition. 

Runtime 

Id. Title Description 

SNOW.R13 WIC hw The webcam crawler should have access to distributed 
storage system with guarantees of data replication and high 
availability. 

Rationale Scope 

 Loss of images would harm the temporal continuity of the data set, so high availability is 
important. 

Runtime 

Id. Title Description 

SNOW.R14 WIC parallelism1 The crawler of each webcam should be executed in parallel 

Rationale Scope 

 Parallel acquisition improves input throughput. Runtime 

Id. Title Description 

SNOW.R15 WIC 
parallelism2 

The crawler of each webcam could be executed on different machines but 
should save all the daily images of a webcam in the same logical space 

Rationale Scope 

 Images should be accessible per web cam / location easily. Runtime 

Id. Title Description 

SNOW.R16 WIC availability1 The webcam crawler should run in day time only (6am - 
19pm) 

Rationale Scope 

 Night images cannot be processed. Runtime 

Id. Title Description 
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SNOW.R17 WIC availability2 The webcam crawler should issue an alert if webcam is 
down 

Rationale Scope 

For temporal continuity of the data set, webcam downtime 
should be minimized. 

Runtime 

Id. Title Description 

SNOW.R18 WIC availability3 The failure of a webcam crawler node should be signalled 
and an equivalent process re-instantiated to avoid losing 
unrecoverable data 

Rationale Scope 

 For temporal continuity of the data set, webcam crawling 
downtime should be minimized. 

Runtime 

Id. Title Description 

SNOW.R19 WIC availability4 The crawled images should be replicated against disk 
failures 

Rationale Scope 

No way to re-acquire them, if lost. Runtime 

Id. Title Description 

SNOW.R20 WFC throughput The weather filter should process up to 100 images per 
second 

Rationale Scope 

Discarding irrelevant data as quickly as possible is 
important. 

Runtime 

Id. Title Description 

SNOW.R21 WFC HW Edge extraction could be accelerated exploiting the GPU 

Rationale Scope 



Project No 825480. 
 

D6.1 - SODALITE platform and use cases implementation plan - Public                                               Page 60 
© Copyright Beneficiaries of the SODALITE Project 

The present implementation does not exploit the GPU, 
which is a relevant improvement. 

Runtime 

Id. Title Description 

SNOW.R22 WFC parallel1 The weather filter should filter images of different webcams 
in parallel 

Rationale Scope 

This would improve the throughput for downstream 
processing. 

Runtime 

Id. Title Description 

SNOW.R23 WFC parallel2 The weather filter of each webcam could be executed on 
different machines but should save images in the same 
logical space where the corresponding webcam images 
reside 

Rationale Scope 

Images should be easily accessible per webcam and 
location. 

Runtime 

Id. Title Description 

SNOW.R24 WFC availability The weather filter should be triggered by the availability of 
(a batch of) webcam images 

Rationale Scope 

This solicits the capability of the deployed architecture to 
provide application based triggers. 

Runtime 

Id. Title Description 

SNOW.R25 DMIA throughput The DMI aggregator should process up to 100 images per 
second 

Rationale Scope 

To increase the throughput for downstream processing. Runtime 
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Id. Title Description 

SNOW.R26 DMI - webcams The DMI of different days for different webcams should be 
calculated in parallel 

Rationale Scope 

 As computation is independent, this improves throughput. Runtime 

Id. Title Description 

SNOW.R27 DMI - aggregators The DMI aggregator should batch images to aggregate, 
choosing a batch size based on the conditions of the 
computing infrastructure 

Rationale Scope 

 Batching can better load the available DMI aggregator 
instances. 

Runtime 

Id. Title Description 

SNOW.R28 DMI - storage Despite distribution, the DMI aggregator should store the 
median image in the same logical space as the daily data 
series it comes from 

Rationale Scope 

 DMI should be easily accessible by webcam and location. Runtime 

Id. Title Description 

SNOW.R29 DMI - trigger The DMI aggregator should be triggered by the availability of 
a batch of images 

Rationale Scope 

This solicits the capability of the deployed architecture to 
handle application defined triggers. 

Runtime 

Id. Title Description 

SNOW.R30 MIGR-SE throughput The skyline extractor module should process up to 50 
images per second 
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Rationale Scope 

This ensures the possibility of scaling the number of web 
cams. 

Runtime 

Id. Title Description 

SNOW.R31 MIGR-SE hardware The execution of the DL model of the skyline extraction could 
be accelerated exploiting the GPU 

Rationale Scope 

The present implementation does not exploit the GPU, 
which is a relevant improvement. 

Runtime 

Id. Title Description 

SNOW.R32 MIGR-SE parallelism The execution of the DL model of the skyline extraction 
should be applied one image at a time, but different GPUs 
could run more than one instance 

Rationale Scope 

 The present implementation does not exploit allocation to 
multiple GPUs, which is a relevant improvement. 

Runtime 

Id. Title Description 

SNOW.R33 MIGR-SE scheduling The skyline extraction should be computed on demand 

Rationale Scope 

This solicits the deployed architecture to support user-
defined triggers. 

Runtime 

Id. Title Description 

SNOW.R34 MIGR-SE accessibility The skyline extraction should be exposed as a service 
callable on the internet 

Rationale Scope 

Skyline extraction could be exploited for alternative 
purposes, also by third party applications. 

Runtime 
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Id. Title Description 

SNOW.R35 MIGR-SE throughput The skyline extraction should be computed in real time (e.g., 
100ms) 

Rationale Scope 

This would enable to use skyline extraction also in 
alternative applications, e.g, based on a mobile phone 
interface. 

Runtime 

Id. Title Description 

SNOW.R36 MIGR-SE availability The skyline extraction must have high availability 

Rationale Scope 

Skyline extraction determines the computation of snow 
indexes, which should be maximally continuous in time and 
space 

Runtime 

Id. Title Description 

SNOW.R37 MIGR-360PG throughput The panorama generator should compute 10 panoramas 
per second 

Rationale Scope 

Panorama computation influences the alignment time, 
which is essential for image geo-registration. 

Runtime 

Id. Title Description 

SNOW.R38 MIGR-360PG hardware1 The panorama generator should be accelerated exploiting 
the GPU (for the DEM render generation). 

Rationale Scope 

The present implementation does not exploit the GPU, 
which is a relevant improvement. 

Runtime 

Id. Title Description 
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SNOW.R39 MIGR-360PG Availability1 The panorama generator should be computed on demand 

Rationale Scope 

This solicits the deployed architecture to support user-
defined triggers. 

Runtime 

Id. Title Description 

SNOW.R40 MIGR-360PG Availability2 The panorama generator should be exposed as a service 
callable on the internet 

Rationale Scope 

 For use by third party applications. Runtime 

Id. Title Description 

SNOW.R41 MIGR-360PG Availability3 The panorama generator should be computed in real time 
(e.g., <50ms) 

Rationale Scope 

Panorama generation impacts image geo-registration, 
necessary for downstream processing. 

Runtime 

Id. Title Description 

SNOW.R42 MIGR-360PG Availability4 The panorama generator must have high availability 

Rationale Scope 

 Failures block image geo-registration and downstream 
processing. 

Runtime 

Id. Title Description 

SNOW.R43 MIGR-PA throughput The peak aligner should process 20 images per seconds 

Rationale Scope 
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Alignment conditions image geo-registration, necessary for 
snow index contextualization. 

Runtime 

Id. Title Description 

SNOW.R44 MIGR-PA Parallelism The peak aligner should process images in parallel 

Rationale Scope 

Parallelism would improve throughput for downstream 
processing.  

Runtime 

Id. Title Description 

SNOW.R45 MIGR-PA throughput The peak aligner should be computed in real time (e.g. 
<20ms) 

Rationale Scope 

Fast alignment is required for scaling the number of 
webcam images. 

Runtime 

Id. Title Description 

SNOW.R46 MIGR-PA Availability1 The peak aligner should be computed on demand 

Rationale Scope 

This solicits the deployed architecture to support user-
defined triggers. 

Runtime 

Id. Title Description 

SNOW.R47 MIGR-PA Availability2 The peak aligner should be exposed as a service callable on 
the internet 

Rationale Scope 

 For use by third party applications. Runtime 

Id. Title Description 

SNOW.R48 MIGR-PA Availability4 The peak aligner must have high availability 
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Rationale Scope 

 Alignment conditions snow index calculations. Runtime 

Id. Title Description 

SNOW.R49 SMC throughput The snow mask calculator should process 20 images per 
second 

Rationale Scope 

SMC fast computation is needed to scale the number of 
webcam images. 

Runtime 

Id. Title Description 

SNOW.R50 SMC throughput The snow mask calculator could be accelerated exploiting 
the GPU to run the SVM classifier 

Rationale Scope 

The present implementation does not exploit the GPU, 
which is a relevant improvement. 

Runtime 

Id. Title Description 

SNOW.R51 SMC throughput The snow mask calculator could be accelerated exploiting 
the GPU (requires re-implementing the classifier using CNN) 

Rationale Scope 

The present implementation does not exploit the GPU, 
which is a relevant improvement. 

Runtime 

Id. Title Description 

SNOW.R52 SMC parallel The snow mask calculator should process images in parallel 

Rationale Scope 

 This increases output throughput. Runtime 

Id. Title Description 
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SNOW.R53 SMC availability The snow mask calculator should be triggered offline for a 
batch of image+mountain mask pairs 

Rationale Scope 

This solicits the deployed architecture to support 
application defined triggers. 

Runtime 

Id. Title Description 

SNOW.R54 SIC throughput The snow index calculator should process 20 images 
processed by second 

Rationale Scope 

This is needed for scaling the number of webcam images. Runtime 

Id. Title Description 

SNOW.R55 SIC hw The snow index calculator could be accelerated by exploiting 
the GPU 

Rationale Scope 

The present implementation does not exploit the GPU, 
which is a relevant improvement. 

Runtime 

Id. Title Description 

SNOW.R56 SIC parallel Different images can be processed in parallel 

Rationale Scope 

This would support high output throughput. Runtime 

Id. Title Description 

SNOW.R57 SIC availability 

  

The snow mask calculator should be triggered offline for a 
batch of snow+mountain mask pairs 

Rationale Scope 



Project No 825480. 
 

D6.1 - SODALITE platform and use cases implementation plan - Public                                               Page 68 
© Copyright Beneficiaries of the SODALITE Project 

This solicits the capability of the deployed architecture to 
support user-defined triggers. 

Runtime 

 

 

A1.1 POLIMI Snow UC - Domain assumptions 

Id. Title Description 

SNOW.D1 MIGR-360PG hardware2 If the GPUs are NVIDIA, the drivers installed should be Open-
Source Nouveau. 

Rationale Scope 

  Application Container 

Id. Title Description 

SNOW.D2 MIGR-360PG parallelism The panorama generator should execute in parallel for 
different images 

Rationale Scope 

  Runtime 

Id. Title Description 

SNOW.D3 MIGR-360PG storage The panorama generator should allocate DEM data as 
follows: SPACE: 71GB (DEM3 World coverage), 12GB (DEM 
1 Alps coverage), 638GB (DEM1 World coverage | recently 
released) 

Rationale Scope 

  Application Container 

 

A2. USTUTT Virtual Clinical Trial UC 

Id. Title Description 
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VCT.R1 Deployment of a storage 
system 

SODALITE should support the deployment of a storage 
system able to fulfil the requirements of the virtual clinical 
trials case study in terms of I/O speed 

Rationale Scope 

The simulation chain starts with input data and subsequently data is produced 
at every step in the chain which serves as input to the next step. This data 
needs to be stored and accessed. The patient data may be located in external 
data repositories. 

Runtime 

Id. Title Description 

VCT.R2 MPI  SODALITE must support DevOps team in deploying their 
applications components on an MPI (Message Passing 
Interface)-compliant HPC system 

Rationale Scope 

Some parts of the simulation chain like the Code Aster solver rely on MPI to 
achieve parallelism. So MPI must be supported by the SODALITE framework. 

Runtime 

Id. Title Description 

VCT.R3 Data Parallelism Start multiple instances of a program each with a different 
portion of the input data. 

Rationale Scope 

Independent input data can be handled independently by multiple instances 
of a process in the simulation chain, such that data parallelism can be 
employed as an optimization step. 

Application Optimiser 

Id. Title Description 

VCT.R4 IDE Data Parallelism Specify which parts of an application use data parallelism. 

Rationale Scope 

The IDE should enable data parallelism modelling (see requirement VCT.R3). Application Developer 
Editor 

Id. Title Description 
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VCT.R5 Different Runtime 
Environments 

Support different runtime environments. 

Rationale Scope 

The different components of the application are written in different 
programming languages and need different runtime environments. So far. 
mostly C/C++, Fortran and Python are used. In addition, some implementation 
of MPI (preferably OpenMPI) must be available for some components. It 
should also be possible to add more if needed (e.g. JVM). 

Runtime 

Id. Title Description 

VCT.R6 Automatic resource allocation Automatically allocate, configure and start storage and 
compute nodes for components of the simulation chain. 

Rationale Scope 

Automation in resource provisioning will decrease deployment time, as well as 
enable a reusable configuration. 

Runtime 

Id. Title Description 

VCT.R7 Extraction process SODALITE must support the deployment and configuration 
of the Extraction component on a vCPU 

Rationale Scope 

Extraction process is a single core problem. Runtime 

Id. Title Description 

VCT.R8 Discretization process Discretizing and generating a mesh requires 1-2 vCPUs and 
3-4 GB RAM 

Rationale Scope 

Discretization process is more or less a single core problem. Runtime 

Id. Title Description 
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VCT.R9 Parallel Material Mapper Support parallel execution within parts of the simulation 
chain. This will probably require 1-2 HPC nodes or 1-2 
HPVMs (High Performance Virtual Machines). This 
requirement is yet to be determined. 

Rationale Scope 

In the probabilistic approach to mapping density to elasticity, the 
computations for the cells within the geometry can be executed independently 
of each other. A parallel workflow is needed to speed up the overall 
computation time. 

Runtime 

Id. Title Description 

VCT.R10 Solver Process Solver must be run on 2 HPC nodes with the characteristics 
defined in the testbed description 

Rationale Scope 

To the best of our knowledge, solving using finite element methods is 
computationally intensive and requires at least 2 HPC nodes to be run on. 

Runtime 

Id. Title Description 

VCT.R11 Fast interconnect Support fast networking performance 

Rationale Scope 

The intercommunication between processes deals with large dataset 
(messages), therefore the communication between the processes must not 
bottleneck the overall performance. 

Runtime 

Id. Title Description 

VCT.R12 Fast storage Support fast I/O performance 

Rationale Scope 

The read and write operations on the storage devices must perform well with 
large dataset. 

Runtime 

Id. Title Description 

VCT.R13 MTU (Maximum Transmission 
Unit) size 

Support for jumbo frames 
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Rationale Scope 

To boost communication performance, jumbo frames must be supported on 
the underlying network infrastructure to transmit larger messages, e.g. 
switches/routers. 

Runtime 

Id. Title Description 

VCT.R14 Data Model Persistence 
property 

The IDE must provide the persistence property of the data 
model, such that the data will be stored permanently or 
temporarily 

Rationale Scope 

The lifetimes of the data that is produced at various stages of the simulation 
differs. Some needs to be stored only temporarily, some needs to be stored 
for the whole simulation process, some needs to even outlive the simulation. 

Application Developer 
Editor 

Id. Title Description 

VCT.R15 Establish the relationship 
between data models and 
process models 

IDE must provide a way to establish a relationship between 
data model and a process model 

Rationale Scope 

It is important for the simulation chain to map the input and output data that 
are consumed and produced by the respective processes in the chain. 

Application Developer 
Editor 

Id. Title Description 

VCT.R16 Incorporating third party 
components 

IDE must provide a way to specify third party components 
(programs/algorithms) that act on data. This can either take 
the form of the application model itself or it can be a service 
model/container to be specified. 

Rationale Scope 

Due to the complexity of describing certain computational tasks in terms of 
models (modelling functional requirements of application) it must be possible 
to use existing software packages/libraries. 

Application Developer 
Editor 
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Id. Title Description 

VCT.R17 Geometry Surface Data 
Model 

IDE must provide a data model that represents the geometry 
surface of the vertebral bodies. It must have a “temporary” 
persistence property. 

Rationale Scope 

See requirement VCT.R14. Application Developer 
Editor 

Id. Title Description 

VCT.R18 Send produced data to 
temporal storage 

IDE must provide a way to specify that the output data from 
this step needs to be stored until the discretization 
component (yet to be specified) has finished. 

Rationale Scope 

For each step in the chain, the data that is produced needs to live at least 
until the next step has finished. This is because all data produced in one step 
are consumed in the next step. 

Application Developer 
Editor 

 

A2.1 USTUTT Virtual Clinical Trial UC - Domain assumptions 

Id. Title Description 

VCT.D1 MCA Model Within the extraction component some implementation of 
MCA (Marching Cubes Algorithm) needs to be available as 
a third-party model/service. 

Rationale Scope 

See requirement VCT.R16. Application Developer 
Editor 

 

A3. ADPT Vehicle IoT UC 

Id. Title Description 

VIoT.R1 Standards compliance Platform must be compliant with ISO 20078 
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Rationale Scope 

ISO 20078 (the Extended Vehicle) provides clear requirements for platforms 
managing Connected Car data, resources access, and service deployment 
which the use case must ultimately be capable of satisfying. 

Runtime, Use Case 
Implementation 

Id. Title Description 

VIoT.R2 Multi-arch Container 
Deployment & Orchestration 

Platform must be able to support deployment and 
orchestration across multi-arch container images. 

Rationale Scope 

The Vehicle IoT UC involves deployment of containerized components onto 
systems with different CPU architectures (specifically - x86_64, armhf, 
arm64). This scenario is prepared for by providing multi-arch Docker images 
through the Docker manifest - SODALITE orchestration should be able to 
match the appropriate image to the deployment target. 

Runtime 

Id. Title Description 

VIoT.R3 GPU Acceleration for Online 
ML model training 

Platform should make use of (dynamically available) GPU 
resources for accelerated training of ML models by the use 
case, this may include resources both in the Cloud and at 
the Edge. 

Rationale Scope 

A number of ML pipelines used by the use case depend on CV application, 
which can be accelerated with GPUs. GPU resources may exist at various times 
at various locations in the deployment (e.g. in the Cloud backend, or in the 
Edge Gateway) which may be used. 

Runtime 

Id. Title Description 

VIoT.R4 Cloud Function Deployment & 
Orchestration from Cloud-to-
Edge 

Platform must support deployment and orchestration of 
cloud functions from Cloud-to-Edge 

Rationale Scope 

Services that support the use case will be deployed as dedicated cloud 
functions, which may at various times need to be deployed and activated at 
different hierarchical levels (Cloud backend, Edge Gateway, etc.).  

Runtime 

Id. Title Description 
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VIoT.R5 Encrypted Data Storage & 
Analytics 

Platform must be able to store and operate on large 
encrypted data sets based on sensitive data, including 
personal data, vehicle telemetry, etc. 

Rationale Scope 

GDPR requirements and DPA guidelines necessitate encryption at rest and in-
processing 

Runtime 

Id. Title Description 

VIoT.R6 Encrypted / Sensitive Data 
Storage Classification 

The IDE must provide a mechanism by which a developer is 
able to define data as sensitive/non-sensitive for 
subsequent data-at-rest/data-in-processing encryption. 

Rationale Scope 

GDPR requirements and DPA guidelines necessitate encryption at rest and in-
processing (further provides support for the implementation of VIoT.R5) 

Application Developer 
Editor 

 

A3.1 ADPT Vehicle IoT UC - Domain assumptions 

Id. Title Description 

VIoT.D1 Cloud Backend<->Edge Gateway Connectivity The Cloud backend and 
Edge gateways must be 
able to communicate with 
each other. 

Rationale Scope 

The Edge gateway will implement a subset of functionality available from the 
Cloud backend, and will further defer to the Cloud backend for certain 
operations (as well as to synchronize state across instances). The Cloud 
backend, in turn, must be able to access the Edge gateways in order to 
reconfigure and deploy Edge-based services, while also providing a central 
point for e.g. fleet-wide analytics across multiple Edge instances in later 
stages of the project. 

Runtime 

Id. Title Description 

VIoT.D2 Multi-arch Container Deployment & Orchestration Container orchestration 
and deployment is able to 
handle x86_64, armhf, and 
arm64 target architectures. 

Rationale Scope 
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See VIoT.R2 Runtime 
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