

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 825480.

SOftware Defined AppLication Infrastructures managemenT and Engineering

SODALITE Platform and
Use Case

Implementation Plan
D6.1
IBM

July 2019

Project No 825480.

D6.1 - SODALITE platform and use cases implementation plan - Public Page 1
© Copyright Beneficiaries of the SODALITE Project

Deliverable data

Deliverable SODALITE platform and use cases implementation plan

Authors

Kalman Meth (IBM),
Dimitris Liparas (USTUTT),
Kamil Tokmakov (USTUTT),
Ralf Schneider (USTUTT),
Paul Mundt (ADPT),
Román Sosa González (ATOS),
Yosu Gorroñogoitia (ATOS),
Javier Carnero (ATOS),
Dragan Radolović (XLAB),
Elisabetta Di Nitto (POLIMI),
Piero Fraternali (POLIMI),
Rocio Nahime Torres (POLIMI),
Panos Mitzias (CERTH),
Adrian Tate (CRAY),
Karthee Sivalingam (CRAY)

Reviewers Daniel Vladušič (XLAB)
Luciano Baresi (POLIMI)

Dissemination
level Public

History of
changes

Kalman Meth, IBM
Dimitris Liparas,

USTUTT
Outline created 23 May 2019, outline

All Initial partner
contributions 14 June 2019, Initial version

All Additional partner
contributions 5 July 2019, Initial version

All
Reactions to

comments of first
review

22 July 2019, reviewed

Kalman Meth, IBM
Dimitris Liparas,

USTUTT
Final edits 30 July 2019, final

Acknowledgement
The work described in this document has been conducted within the Research & Innovation action
SODALITE (project no. 825480), started in February 2019, and co-funded by the European
Commission under the Information and Communication Technologies (ICT) theme of the H2020
framework programme (H2020-ICT-16-2018: Software Technologies)

Project No 825480.

D6.1 - SODALITE platform and use cases implementation plan - Public Page 2
© Copyright Beneficiaries of the SODALITE Project

Table of Contents
Executive Summary 7

Glossary 8

1 Introduction 11

1.1 Structure of the Document 11

1.2 SODALITE Components 12

1.2.1 SODALITE Modelling Layer 13

1.2.2 SODALITE Infrastructure as Code layer 14

1.2.3 SODALITE Runtime layer 15

1.3 Testing the SODALITE Stack 15

2 Description of Technology Stack 16

2.1 WP3 Technologies 16

2.1.1 Protégé 16

2.1.2 GraphDB 16

2.1.3 SPARQL 16

2.1.4 XText 17

2.2 WP4 Technologies 17

2.2.1 CRESTA Autotuning framework 17

2.2.2 Universal Data Junction 17

2.2.3 Maestro data orchestration middleware 18

2.2.4 MAMBA - Managed Abstract Memory Arrays 18

2.2.5 Ansible Actuation 18

2.2.6 Runtime Container Images 18

2.3 WP5 Technologies 18

2.3.1 xOpera 19

2.3.2 Skydive 19

2.3.3 Prometheus 19

2.3.4 Croupier / Cloudify 19

2.3.5 ALDE 20

2.4 WP6 Technologies 20

2.4.1 OpenStack 20

2.4.2 Kubernetes 20

2.4.3 Torque 21

2.4.4 vTorque 21

2.4.5 Jenkins 21

2.5 Summary 21

3 Development Environment 23

Project No 825480.

D6.1 - SODALITE platform and use cases implementation plan - Public Page 3
© Copyright Beneficiaries of the SODALITE Project

3.1 Cloud and HPC Testbed descriptions 23

3.1.1 Cloud Testbed Specifications 24

3.1.2 HPC Testbed Specifications 25

3.2 SODALITE Components interaction with the testbeds 28

3.3 Development flow description 30

3.4 Timeline for Development 31

4 Demonstrating Use Case descriptions and implementation plans 32

4.1 POLIMI Snow UC 32

4.1.1 Description 32

4.1.2 Implementation plan: description of components 32

4.1.2.1 User generated image processing pipeline 32

4.1.2.1.1 User generated image crawler (UGIC) 33

4.1.2.1.2 Mountain relevance classifier (MRC) 33

4.1.2.2 Public webcam processing pipeline 33

4.1.2.2.1 Webcam image crawler (WIC) 34

4.1.2.2.2 Weather condition filter (WCF) 34

4.1.2.2.3 Daily median image aggregation (DMIA) 34

4.1.2.3 Snow cover pipeline 35

4.1.2.3.1 Skyline extraction (MIGR-SE) 35

4.1.2.3.2 360° panorama generation (MIGR-360PG) 36

4.1.2.3.3 Peak alignment (MIGR-PA) 36

4.1.2.3.4 Snow mask computation (SMC) 36

4.1.2.3.5 Snow index computation (SIC) 37

4.1.3 Implementation plan: timeline 37

4.2 USTUTT Virtual Clinical Trial UC 39

4.2.1 Description 39

4.2.2 Implementation plan: description of components 39

4.2.2.1 Extraction 40

4.2.2.2 Discretization 40

4.2.2.3 Density Mapping 41

4.2.2.4 Probabilistic elasticity mapping 41

4.2.2.5 Solver 42

4.2.3 Implementation plan: timeline 42

4.3 ADPT Vehicle IoT UC 43

4.3.1 Description 43

4.3.2 Implementation plan: description of components 45

4.3.2.1 License Plate Detection Pipeline 45

4.3.2.1.1 Training 46

Project No 825480.

D6.1 - SODALITE platform and use cases implementation plan - Public Page 4
© Copyright Beneficiaries of the SODALITE Project

4.3.2.1.2 Plate Extraction 46

4.3.2.1.3 Plate Detection 46

4.3.2.2 Advanced Video Analytics for Driver Monitoring and Alerting 47

4.3.2.2.1 Drowsiness Detection (Face Detection) 47

4.3.2.2.2 Intrusion and Theft Detection (Face Recognition) 49

4.3.2.3 API Gateway 50

4.3.2.4 Edge Gateway 50

4.3.3 Implementation plan: timeline 51

4.4 SODALITE Platform Coverage 53

5 Conclusions 54

Appendix A 55

A1. POLIMI Snow UC 55

A1.1 POLIMI Snow UC - Domain assumptions 68

A2. USTUTT Virtual Clinical Trial UC 68

A2.1 USTUTT Virtual Clinical Trial UC - Domain assumptions 73

A3. ADPT Vehicle IoT UC 73

A3.1 ADPT Vehicle IoT UC - Domain assumptions 75

References 77

Project No 825480.

D6.1 - SODALITE platform and use cases implementation plan - Public Page 5
© Copyright Beneficiaries of the SODALITE Project

Table of Figures
Figure 1: SODALITE overall Architecture ... 12

Figure 2: SODALITE modelling layer components (WP3) .. 13

Figure 3: SODALITE infrastructure as code layer components (WP4) .. 14

Figure 4: SODALITE runtime layer components (WP5) .. 15

Figure 5: Cloud and HPC testbeds overview .. 23

Figure 6: SODALITE HPC and Cloud testbeds ... 28

Figure 7: SODALITE development infrastructure ... 30

Figure 8: WP6 development timeline .. 31

Figure 9: Schema of the SNOW use case pipelines ... 32

Figure 10: Gantt diagram of the development of the Snow use case pipeline components 38

Figure 11: Schema of the Virtual Clinical Trial use case pipeline ... 40

Figure 12: Gantt diagram of the development timeline of the Virtual Clinical Trial use case
components .. 42

Figure 13: Schema of the Vehicle IoT use case deployment phases ... 44

Figure 14: Currently deployed system architecture (Vehicle IoT use case) 44

Figure 15: Schema of the license plate detection and detection model training pipelines (Vehicle
IoT use case) ... 45

Figure 16: Schema of the license plate detection and detection model training pipelines (Vehicle
IoT use case) ... 46

Figure 17: Blink detection using Eye Aspect Ratio (drowsiness validation service) 48

Figure 18: Schema of the driver drowsiness detection pipeline (Vehicle IoT UC) 48

Figure 19: Schema of the intrusion and theft detection pipeline (Vehicle IoT UC) 49

Figure 20: Gantt diagram of the development timeline of the Vehicle IoT use case components 51

Project No 825480.

D6.1 - SODALITE platform and use cases implementation plan - Public Page 6
© Copyright Beneficiaries of the SODALITE Project

Table of Tables
Table 1: Summary of existing technologies to use for SODALITE components 22

Table 2: Specifications of the computes nodes in the Cloud testbed (ATOS) 24

Table 3: Specifications of the storage nodes in the Cloud testbed (ATOS) 25

Table 4: Specifications of the interconnect in the Cloud testbed (ATOS) ... 25

Table 5: Specifications of the computes nodes in the HPC testbed (USTUTT) 26

Table 6: Specifications of the storage nodes in the HPC testbed (USTUTT) 26

Table 7: Specifications of the interconnect in the HPC testbed (USTUTT) 27

Table 8: User generated image crawler component summary ... 33

Table 9: Mountain relevance classifier component summary .. 33

Table 10: Webcam image crawler component summary .. 34

Table 11: Weather condition filter component summary .. 34

Table 12: Daily median image aggregation component summary ... 35

Table 13: Skyline extraction component summary .. 36

Table 14: 360° panorama generation component summary .. 36

Table 15: Peak alignment component summary ... 36

Table 16: Snow mask computation component summary .. 37

Table 17: Snow index computation component summary .. 37

Table 18: Extraction component summary .. 40

Table 19: Discretization component summary .. 41

Table 20: Density mapping component summary ... 41

Table 21: Probabilistic elasticity mapping component summary ... 41

Table 22: Solver component summary ... 42

Table 23: Plate extraction component summary ... 46

Table 24: Plate detection component summary .. 47

Table 25: Drowsiness detection component summary ... 49

Table 26: Intrusion and theft detection component summary ... 50

Table 27: Planned hardware configurations for Edge Gateway (Vehicle IoT UC) 51

Table 28: Planned coverage of the SODALITE UML use cases by the project’s demonstrating use
cases ... 53

Project No 825480.

D6.1 - SODALITE platform and use cases implementation plan - Public Page 7
© Copyright Beneficiaries of the SODALITE Project

Executive Summary
This deliverable presents the time plan for the development of the SODALITE platform, as well as
the implementation plan of the project’s use cases. This document is delivered in parallel to
deliverable D2.1 “Requirements, KPIs, evaluation plan and architecture - First version”, in which
the architecture components and their interactions are described in detail. More specifically, D6.1
provides a description of the technologies that we expect to use for the implementation of the
components constituting the SODALITE platform. Then the deliverable presents the implementation
timeline of the HPC and Cloud testbeds that will be provided for the experimentation with the
platform’s components. In addition, the document describes the provisioning and setup of the
project’s development infrastructure, followed by a timeline, defining the foreseen iterations of the
SODALITE platform. Finally, a description of the SODALITE use cases, along with their
implementation plan, is provided.

We envision 3 iterations of delivery of the SODALITE platform, one in each year of the project. By
the end of Year 1, we expect the initial implementation of the basic components making up the
SODALITE platform. During Year 2 we expect to progress with integration of the components, more
advanced features, and initial evaluation of the improvement provided by the SODALITE platform.
In Year 3 we expect to iteratively measure the results produced by the SODALITE platform and to
make ongoing additional improvements.

Project No 825480.

D6.1 - SODALITE platform and use cases implementation plan - Public Page 8
© Copyright Beneficiaries of the SODALITE Project

Glossary

Acronym Explanation

ALPR Automatic License-Plate Recognition

API Application Program Interface

CI/CD Continuous Integration/Continuous Delivery

CLI Command-Line Interface

CRI Container Runtime Interface

CT Computer Tomography

CV Computer Vision

DEM Digital Elevation Model

DMI Daily Median Image

DSL Domain-Specific Language

EAR Eye Aspect Ratio

ECG Electrocardiogram

EMF Eclipse Modelling Framework

EXIF Exchangeable Image File Format

FOV Field of View

GA Grant Agreement

GDPR General Data Protection Regulation

GPU Graphics Processing Unit

Project No 825480.

D6.1 - SODALITE platform and use cases implementation plan - Public Page 9
© Copyright Beneficiaries of the SODALITE Project

HPC High Performance Computing

HPVM High Performance Virtual Machine

IaC Infrastructure as Code

IaaS Infrastructure-as-a-Service

IDE Integrated Development Environment

ITK Insight Segmentation and Registration Toolkit

M2T Model-to-Text

MCA Marching Cubes Algorithm

MIGR Mountain Image Geo-registration

ML Machine Learning

MPI Message Passing Interface

MTU Maximum Transmission Unit

NIC Network Interface Controller

OCI Open Container Initiative

OCR Optical Character Recognition

PERCLOS Percentage of Eyelid Closure

QoS Quality of Service

RDF Resource Description Framework

REST Representational State Transfer

SVC Support Vector Classifier

Project No 825480.

D6.1 - SODALITE platform and use cases implementation plan - Public Page 10
© Copyright Beneficiaries of the SODALITE Project

SVM Support Vector Machine

ToR Top-of-Rack

UDJ Universal Data Junction

UGI User Generated Images

VIN Vehicle Identification Number

VM Virtual Machine

VTK Visualization Toolkit

WP Work Package

Project No 825480.

D6.1 - SODALITE platform and use cases implementation plan - Public Page 11
© Copyright Beneficiaries of the SODALITE Project

1 Introduction
The objective of this deliverable is to present the plan of the Consortium regarding the development
of the SODALITE platform, as well as the implementation of the three SODALITE demonstrating use
cases. To this end, this document provides a detailed description of the resources needed to
achieve the components’ functionality that will be developed within SODALITE and of the platform
as a whole, as well as a report on the plans of each demonstrating use case, coupled with realistic
and concise information about their practical implementation.

This document is delivered in parallel to deliverable D2.1 “Requirements, KPIs, evaluation plan and
architecture - First version”, in which the architecture components and their interactions are
described in detail.

1.1 Structure of the Document
This deliverable is structured as follows:

● The remainder of the Introduction Section reviews the component structure of the
SODALITE platform. This material is a highlight of what is presented in detail in the
Architecture Section of deliverable D2.1 “Requirements, KPIs, evaluation plan and
architecture - First version”.

● Section 2 provides a description of the existing technologies that will be used for the
development of the platform’s components, as well as the setup and provisioning of the
SODALITE infrastructure.

● Section 3 presents the SODALITE testbeds and development infrastructure and provides
the overall timeline for the development of the SODALITE platform and the implementation
of the components in Work Packages (WPs) 3 (Semantic Abstractions Design and
Modelling), 4 (IaC Management) and 5 (Runtime Implementation).

● Section 4 presents the implementation plans for the three SODALITE demonstrating use
cases and finally,

● Section 5 provides some concluding remarks.

It should be noted that while (based on the SODALITE GA (Grant Agreement)) this deliverable
must also provide detailed specifications of the components’ functionality that will compose
the SODALITE platform, it was decided to include this information in deliverable D2.1
“Requirements, KPIs, evaluation plan and architecture - First version” (also due in M6 of the
project, submitted together with D6.1) for a better presentation, since D2.1 provides the
initial outline of the SODALITE architecture. Therefore, in D2.1, under Section 3
(Architecture), a detailed description of the SODALITE platform’s envisioned components is
provided, in terms of their functionality, dependencies, supporting technologies, as well as
critical factors with respect to their implementation. In this document, we provide only a
synopsis of the components that are more fully described in D2.1.

Project No 825480.

D6.1 - SODALITE platform and use cases implementation plan - Public Page 12
© Copyright Beneficiaries of the SODALITE Project

1.2 SODALITE Components
We reproduce here a synopsis of the SODALITE architecture that is described in D2.1. Please see
the architecture Section (Section 3) in D2.1 for full details of the functional description, inputs,
outputs, and dependencies of each component.

SODALITE aims to provide developers and infrastructure operators with tools that abstract their
application and infrastructure requirements to enable simpler and faster development,
deployment, operation, and execution of heterogeneous applications on heterogeneous, software-
defined, high-performance, cloud infrastructures. To this end, SODALITE aims to produce:

● A pattern-based abstraction library that includes application, infrastructure, and
performance abstractions;

● A design and programming model for both full-stack applications and infrastructures based
on the abstraction library;

● A deployment framework that enables the static optimization of abstracted applications
onto specific infrastructure;

● Automated run-time optimization and management of applications.

The SODALITE platform is divided into three main layers, each covered by a separate work package.
These layers are the Modelling layer (WP3), the Infrastructure as Code layer (WP4), and the Runtime
layer (WP5). Figure 1 below shows these layers together with their relationships.

Figure 1: SODALITE overall Architecture

Project No 825480.

D6.1 - SODALITE platform and use cases implementation plan - Public Page 13
© Copyright Beneficiaries of the SODALITE Project

1.2.1 SODALITE Modelling Layer

The components of the SODALITE Modelling Layer are depicted in Figure 2.

Figure 2: SODALITE modelling layer components (WP3)

The SODALITE IDE provides complete support for the authoring lifecycle of abstract application
deployment models (see D2.1 for details). The Semantic Knowledge Base (KB) is SODALITE’s
semantic repository that hosts the models (ontologies) created in WP3. The Semantic Reasoner is
a middleware facilitating the interaction with the KB. In particular, it provides an API to support the
insertion and retrieval of knowledge to/from the KB, and the application of rule-based semantic
reasoning over the data stored in the KB.

Project No 825480.

D6.1 - SODALITE platform and use cases implementation plan - Public Page 14
© Copyright Beneficiaries of the SODALITE Project

1.2.2 SODALITE Infrastructure as Code layer

The components of the SODALITE Infrastructure as Code (IaC) Layer are depicted in Figure 3.

Figure 3: SODALITE infrastructure as code layer components (WP4)

The main task of the IaC layer is to take the modelling information provided by the SODALITE IDE
(WP3) and produce an IaC blueprint. Deployment Preparation involves a number of operations to
build an IaC blueprint. These operations are handled by sub-components depicted in Figure 3 and
are detailed in deliverable D2.1. Additional components are envisioned to verify correctness of the
provided model, to predict possible bugs in the provided model, and to optimise the application for
a given target execution platform.

Project No 825480.

D6.1 - SODALITE platform and use cases implementation plan - Public Page 15
© Copyright Beneficiaries of the SODALITE Project

1.2.3 SODALITE Runtime layer

The components of the SODALITE Runtime Layer are depicted in Figure 4.

Figure 4: SODALITE runtime layer components (WP5)

The Runtime layer of SODALITE orchestrates the deployment of an application, monitors its
execution and proposes changes to the application's runtime. It is composed of three main blocks:
Orchestrator, Monitoring and Refactoring. The Orchestrator manages the lifecycle of an application
deployed in heterogeneous infrastructures. The Monitoring component gathers metrics from the
heterogeneous infrastructures. These metrics are used to determine to what extent the application
is running as expected. The Deployment Refactorer refactors the deployment model of an
application in response to violations in the application goals.

1.3 Testing the SODALITE Stack
We plan to have 3 Demonstrating Use Cases to verify the SODALITE Platform: The POLIMI Snow use
Case, The USTUTT Clinical Trial use Case, and the ADPT Vehicle IoT Use Case. Each of the use cases
is expected to undergo several iterations of development and benchmarking using the SODALITE
platform.

We envision 3 iterations of delivery of the SODALITE platform, one in each year of the project. By
the end of Year 1, we expect the initial implementation of the basic components making up the
SODALITE platform. During Year 2 we expect to progress with integration of the components, more
advanced features, and initial evaluation of the improvement provided by the SODALITE platform.
In Year 3 we expect to iteratively measure the results produced by the SODALITE platform and to
make ongoing additional improvements.

Project No 825480.

D6.1 - SODALITE platform and use cases implementation plan - Public Page 16
© Copyright Beneficiaries of the SODALITE Project

2 Description of Technology Stack
As already explained in the Introduction Section, the currently envisaged components that make
up the first iteration of the SODALITE platform are summarized above and described in detail in
deliverable D2.1 under the Architecture Section. We describe in this Section technologies that are
planned to be used to implement some of those components. We expect to augment these
technologies with the necessary features that will be further required to implement the SODALITE
solution. It should be noted that these technologies were selected based on the consortium
partners’ expertise, as well as the potential to further uptake the work in several tools/technologies
that were developed as part of past European projects or initiatives, in which the consortium
partners have been involved.

2.1 WP3 Technologies
WP3 is concerned with the semantic abstractions and the relevant design and modelling of
applications and cloud infrastructures along with their performance characteristics and
deployments. The main software components to support these are:

● The Semantic Knowledge Base - A semantic repository to accommodate SODALITE’s
knowledge in the domains of applications, infrastructure, performance optimisations,
deployment and lifecycle, and more. This knowledge will be generated by multiple
stakeholders (e.g. resource experts) and represented into RDF-based knowledge graphs
(ontologies).

● The Semantic Reasoner- A dedicated middleware to interact with the Semantic Knowledge
Base by importing/retrieving data, and applying complex, rule-based semantic reasoning.
Thus, the Semantic Reasoner will expose an API to be accessible by other system
components.

● The SODALITE IDE - A software component to provide complete support for the authoring of
abstract application deployment models with the use of the SODALITE DSL. It will also
enable the monitoring of each deployment’s lifecycle, applied optimisations, etc.

The following technologies are being considered to be used for the WP3 developments.

2.1.1 Protégé

Protégé [1] is a free, open-source ontology editor that will be used for the creation of the project’s
domain ontologies, which will be the core of SODALITE’s Semantic Knowledge Base. Protégé
provides the necessary features for the definition of class hierarchies, datatype and object
properties, axioms, etc., and the generation of all popular ontology file formats, like owl and rdf.

2.1.2 GraphDB

GraphDB [2] is a semantic graph database that acts as a SPARQL-served endpoint for ontologies.
SODALITE’s ontologies, created within Protégé, will be hosted by a GraphDB deployment, which will
support the population of system data and the execution of rule-based semantic reasoning. This
GraphDB deployment will act as SODALITE’s Semantic Knowledge Base - repository.

2.1.3 SPARQL

SPARQL [3] is a query language for RDF (Resource Description Framework) data and ontologies.
SPARQL queries will enable the insertion, update and retrieval of system data to/from the Semantic
Knowledge Base. The semantic reasoning process will also be based on SPARQL queries. Thus,
SPARQL will support a great part of the Semantic Reasoner functionality.

Project No 825480.

D6.1 - SODALITE platform and use cases implementation plan - Public Page 17
© Copyright Beneficiaries of the SODALITE Project

2.1.4 XText

XText [4] is an Eclipse [5] -based framework for specifying DSL (Domain-Specific Language)
metamodels and textual edition of conforming model instances. It includes several components,
namely a parser, linker, typechecker, compiler, as well as a textual editor for Eclipse. It is also
compatible with any editor that supports the Language Server Protocol and your favourite web
browser. DSL metamodels/models are EMF (Eclipse Modelling Framework)/Ecore-based.
Therefore, it is compatible with EMF-based M2T (Model-to-Text) transformations tools, such as
Xpand [6] or Acceleo [7] for DSL conversion (to SPARQL queries, for example).

Xtext also provides support for Web DSL edition, leveraging on existing Web editors such as Orion
[8], Ace [9] or CodeMirror [10].

Around Xtext there are some related technologies. Concretely, DSLForge [11] provides an
integrated Web IDE (Integrated Development Environment) Workbench for Xtext DSL editors, with
a Project Explorer view and model persistence. Sirius [12] and Graphiti [13] provide a graphical
DSL modelling framework for Eclipse. Using these latter technologies, users can define their DSL
using graphical notation (in contrast to the textual notation available in XText). These technologies
will be used by SODALITE IDE component.

2.2 WP4 Technologies
WP4 covers the aspects of IaC (Infrastructure as Code) within the SODALITE project. This includes
verifying the validity of models provided as well as building and optimising of an IaC blueprint. Since
TOSCA and actuation scripts are needed by the orchestrator to put to life an application
deployment, we plan to build and use TOSCA IaC node repository and Ansible16 actuation playbooks
for building and preparation of the application deployment plan. As one of the most important of
the WP4 goals is the optimal preparation of the deployment blueprint we plan to build components
that optimise, verify and validate the IaC from the topology perspective before the execution and
deployment itself. From the perspective of optimisation of the deployed application we plan to use
CRAY’s vast knowledge of application optimisation toolkit such as CRESTA, UDJ, Maestro etc., to
fully optimise the application components before deployment. In the context of runtime
environment, we decided to use the Docker virtualisation technology for deployments in the cloud
execution platforms and considering a few container technology options for the deployment in the
HPC environment (Singularity, CharlieCloud, Sarus). At the current stage of the project, the following
technologies are being considered to be used for the WP4 developments.

2.2.1 CRESTA Autotuning framework

As part of the CRESTA [14] European project, a DSL-based autotuning framework was developed
(initial implementation) by CRAY. This focuses on addressing the inherent complexity of the latest
and future computer architectures. Autotuning is the process by which an application may be
optimised for a target platform by making automated optimal choices of how the application is built
and deployed. DSL that was developed exposes choices within an application for optimisation. This
will be used as part of the Application Optimiser component.

2.2.2 Universal Data Junction

Universal Data Junction (UDJ) is a library-based transport that provides efficient communication of
data between applications. It provides a capability to describe data that may be distributed and to
communicate that data using put/get semantics. Distributed data (to multiple processes within an
application) may be redistributed during transport. Various underlying (backend) transports are
provided and may be selected at runtime. This will be used as part of the Application Optimiser
component.

Project No 825480.

D6.1 - SODALITE platform and use cases implementation plan - Public Page 18
© Copyright Beneficiaries of the SODALITE Project

2.2.3 Maestro data orchestration middleware

Maestro data orchestration middleware [15] addresses ubiquitous problems of data movement in
complex memory hierarchies and at many levels of the HPC (High Performance Computing)
software stack. This middleware framework provides object-like data abstractions for management
and reasoning about user data in applications and across workflows, with the ultimate goal of
optimising data-movement across the memory-storage hierarchy. This will be used as part of the
Application Optimiser component.

2.2.4 MAMBA - Managed Abstract Memory Arrays

A library-based programming model for C, C++ and Fortran based on Managed Abstract Memory
Arrays, aiming to deliver simplified and efficient usage of diverse memory systems to application
developers in a performance-portable way. MAMBA arrays exploit a unified memory interface to
abstract memory from both traditional memory devices, accelerators and storage. This library aims
to achieve good performance portability with an easy-to-use approach that requires minimal code
intrusion. This will be used as part of the Application Optimiser component.

2.2.5 Ansible Actuation

XLAB provides initial node modelling through configurable Ansible [16] roles and playbooks as part
of the Infrastructure Management Support, thus creating a repository of predefined actuation
scripts used by the orchestrator to deploy, start and monitor application artefacts. A decision has
to be made about whether Chef [17] is to be used as well. This technology may be used for creating
the deployment artefact images by the SODALITE Deployment Preparation package and will be used
by the SODALITE Orchestrator as a deployment actuation tool.

2.2.6 Runtime Container Images

The open sourcing of Docker [18] container technologies marked a new milestone in virtualisation.
Simplicity of building up application environments, transportability, the ease of deployment and
responsiveness are key benefits for choosing the deployment of containerized applications on
private and public cloud infrastructures.

Most of the technologies and tools built around containers are well documented and open sourced
with a very alive and vast community of developers and supporters, backed by industry leading IaaS
(Infrastructure-as-a-Service) giants such as Amazon, Google, Microsoft and others.

As bringing orchestration to HPC and Cloud environments is one of the key goals of the SODALITE
project, choosing the right container technology and tools for building up the runtime environment
is an essential part of application design and deployment pipeline. At this point few HPC Container
technologies are being considered:

● Singularity [19]
● CharlieCloud [20]
● SARUS [21]

The decision will be made based on benchmarking of the mentioned technologies. These
technologies will be used in SODALITE Deployment preparation package and by SODALITE
Orchestrator.

2.3 WP5 Technologies
WP5 deals with the SODALITE Runtime environment. The objectives of WP5 are the orchestration
of deployments on heterogeneous infrastructures, the monitoring of the deployed applications and
their adaptation and improvement in response to violations in the application goals. To achieve its

Project No 825480.

D6.1 - SODALITE platform and use cases implementation plan - Public Page 19
© Copyright Beneficiaries of the SODALITE Project

objectives, WP5 relies on several existing technologies for deployment, orchestration and
monitoring on HPC and Cloud, but extending them or adding new functionality through new
components where necessary. The following technologies are being considered to be used for the
WP5 developments.

2.3.1 xOpera

xOpera [22] is a lightweight orchestrator compliant with the TOSCA Simple Profile YAML v1.21.

It is currently available as a CLI (Command-Line Interface) tool, designed to be modular and
extensible. xOpera uses Ansible playbooks as actuation scripts for TOSCA [23] node lifecycle and
relationship configuration. Supports deployments to OpenStack through Ansible playbooks. The
SODALITE Orchestrator may use xOpera as base orchestrator. In principle, base orchestrators
should be interchangeable as long as they are TOSCA compliant.

2.3.2 Skydive

Skydive [24] is an open source real-time network topology and protocols analyser providing a
comprehensive way of understanding what is happening in network infrastructure. Skydive
captures all the interface metrics and stores them in a time series database. An administrator can
start traffic capture allowing to monitor metrics for specific protocols between specified endpoints
or according to topology specifications. All the metrics are available through a REST
(Representational State Transfer) API (Application Program Interface). These metrics are to be
consumed by the Monitoring component to evaluate whether an application is achieving its
performance goals.

2.3.3 Prometheus

Prometheus [25] is a well-known monitoring technology that implements a time series database to
store infrastructure metrics. It uses a pull model in which small servers called “exporters” are in
charge of getting the raw metrics and send to the Prometheus server each time they are asked to.
Grafana [26] can be used on top of it to visualize those metrics and do alerting over them. The main
block of the Monitoring component is based on Prometheus.

2.3.4 Croupier / Cloudify

Cloudify [27] is a general-purpose orchestrator for the Cloud based on workflows driven by events.
Its design approach enables wide flexibility, such as working on agent/agentless architectures or
acting as a meta-orchestrator working with lower level schedulers/orchestrators. It provides a
powerful plugin system that support working with a lot of cloud technologies like OpenStack,
Kubernetes, Ansible, Puppet [28] and many more. Its DSL is TOSCA-based.

Croupier [29] is a Cloudify plugin that focuses on supporting HPC infrastructures in Cloudify, as well
as the execution of batch jobs (jobs that have a concrete start and end point, as opposed to typical
cloud applications like web servers). It supports HPCs based on Torque [30] and Slurm [31], and it
is compatible with the other Cloudify plugins to allow execution of applications in hybrid HPC+Cloud
infrastructures.

The SODALITE Orchestrator may use Cloudify as base orchestrator. In principle, base orchestrators
should be interchangeable as long as they are TOSCA compliant.

1 TOSCA Simple Profile YAML v1.2 is an OASIS standard for cloud native deployment and application
orchestration

Project No 825480.

D6.1 - SODALITE platform and use cases implementation plan - Public Page 20
© Copyright Beneficiaries of the SODALITE Project

2.3.5 ALDE

ALDE [32] is a workload scheduling and application lifecycle manager for HPC applications. The
objectives of ALDE are (i) compiling the source code and packetizing it for different heterogeneous
architectures, and (ii) deploying the generated artefact into an HPC workload manager (only Slurm
is supported at this time). It will be part of the drivers/plugins used by the Orchestrator to connect
to the HPC workload managers.

2.4 WP6 Technologies
WP6 covers the testbed environment, integration of SODALITE components and implementation of
the project’s demonstrating use cases. We will utilize state-of-the-art technologies to achieve the
envisioned outcome and results of this WP. In the following subsections, we describe the
technologies that will be used in the deployment of HPC and Cloud testbeds for resource
provisioning, as well as the creation of the project’s development infrastructure. We will try to
support these technologies with future extensions of supported platforms during the course of the
project.

2.4.1 OpenStack

OpenStack [33] is an open-source software platform for provisioning compute resources as well as
other resources (e.g. network, storage) following the IaaS deployment model of cloud computing.
OpenStack comprises of the components that enable various services for the cloud users. For
example, Nova Compute [34] provides virtual machines, whereas Ironic [35] provisions bare-metal
nodes, and the services such as Cinder [36] and Neutron [37] provide block storage and tenant
networking, respectively. The resources are managed by the users via CLI or REST API. In SODALITE,
OpenStack brings a scalable and extendable solution regarding resource provisioning for the
deployment of the project’s demonstrating use cases, as well as for the experimentation with the
SODALITE components that will be implemented during the course of the project.

2.4.2 Kubernetes

Kubernetes [38] is an open-source orchestrating system for deployment, management and scaling
of containerized applications and services. An application container and its needed resources (e.g.
network, storage) are encapsulated into a Pod [39], which is the basic execution and deployment
unit in Kubernetes, and a Service [40] further groups multiple interrelated Pods together.
Additionally, the pods and services can be labelled providing logical description of application
deployment. As such, an application can be deployed with respect to different staging
environments, e.g. development, test or production, isolated by the labels attached to each
deployment.

Hence, such a high level of abstraction enables automated deployment and management of the
containers done by the control plane, which schedules resources, provides an API for the pods and
services and maintains the life cycle of the pods. Moreover, the control plane has declarative nature
of deployment, meaning that it drives current state of deployment towards the desired state
specified in the deployment description. Kubernetes provides both CLI and REST API interfaces for
its management, as well as the Container Runtime Interface (CRI) that extends it with other
container technologies, which are OCI-compliant, such as Docker and Singularity

SODALITE will utilize the Kubernetes features, such as automated orchestration of application
deployment and labelling to deploy and distinguish the testing and production environments of the
SODALITE components. Additionally, the Cloud components of the demonstrating use cases can be
containerized using the container technologies presented in Section 2.2.6 and deployed in the
Kubernetes cluster.

Project No 825480.

D6.1 - SODALITE platform and use cases implementation plan - Public Page 21
© Copyright Beneficiaries of the SODALITE Project

2.4.3 Torque

Torque [41] is a resource manager providing a low-level functionality to control and monitor the
batch jobs and compute resources. The jobs can be parameterized in submit scripts, defining e.g.
number of compute nodes/processors and execution environment, and scheduled by the workload
managers, such as Moab [42] or Maui [43]. The resource manager then deploys and runs the jobs
on the compute nodes with the start-up (prologue) and clean-up (epilogue) phases. A job status can
be monitored, and in order to deal with high demand of compute resources, a job queue can be
introduced. Torque will be used in SODALITE as a bare-metal resource manager and provisioner,
providing compute resources for the execution of the jobs submitted as part of the demonstrating
use cases’ workflows.

2.4.4 vTorque

vTorque [44] is an open-source extension of Torque resource manager, developed by USTUTT for
the purposes of the MIKELANGELO [45] H2020 European project, which introduces virtualization
capabilities in the HPC infrastructure. Due to its non-invasive nature, it is independent of the version
of Torque. It deploys and executes jobs in virtual machines, transparently created in the prologue
phase of the job, and the jobs can be further parameterized with additional arguments related to
virtual resources, e.g. number of vCPUs. In this way, vTorque enables cloud-like functionality in HPC.
In SODALITE, we plan to extend vTorque in the direction of HPC job containerization, further
supporting the developments that will take place in WP4 and WP5 with respect to the technologies
on runtime container engines and images.

2.4.5 Jenkins

Jenkins [46] is an open-source automation server that allows one to automate the software
development process with continuous integration and facilitating continuous delivery. This is the
tool we plan to use for fast and automated building, testing, integration and packaging of the
components that will be developed in SODALITE.

2.5 Summary
In this Section, we listed a number of existing technologies upon which to start the development of
the SODALITE platform. For each technology, we identified the SODALITE component to which it is
relevant. Table 1 summarizes the technologies, the supported SODALITE component, and the
corresponding contributing partners.

Project No 825480.

D6.1 - SODALITE platform and use cases implementation plan - Public Page 22
© Copyright Beneficiaries of the SODALITE Project

Technology name Use in SODALITE Contributing / coordinating
partner

Protégé Semantic Knowledge Base
(WP3)

CERTH

GraphDB Semantic Knowledge Base
(WP3)

CERTH

SPARQL Semantic Knowledge Base
(WP3)

CERTH

XText SODALITE IDE (WP3) ATOS

CRESTA Application Optimiser (WP4) CRAY

Universal Data Junction Application Optimiser (WP4) CRAY

Maestro Application Optimiser (WP4) CRAY

MAMBA Application Optimiser (WP4) CRAY

Ansible Actuation Deployment Preparation
(WP4)

XLAB

Runtime Container Images Deployment Preparation
(WP4)

XLAB

Prometheus Monitoring (WP5) ATOS

Skydive Monitoring agent (WP5) IBM

xOpera Orchestrator (WP5) XLAB

Croupier / Cloudify Orchestrator (WP5) ATOS

ALDE Orchestrator plugins (WP5) ATOS

OpenStack Cloud Testbed (WP6) ATOS

Kubernetes Cloud Testbed (WP6) ATOS

Torque HPC Testbed (WP6) USTUTT

vTorque HPC Testbed (WP6) USTUTT

Jenkins CI/CD (WP6) IBM
Table 1: Summary of existing technologies to use for SODALITE components

It is expected that we will need to build connectors and wrappers around some of these
technologies to interact with the rest of the system. As development progresses, we expect to
extend the functionality of some of these technologies and to fill in the gaps needed to implement
all the components of the SODALITE platform.

Project No 825480.

D6.1 - SODALITE platform and use cases implementation plan - Public Page 23
© Copyright Beneficiaries of the SODALITE Project

3 Development Environment
In order to facilitate the development of SODALITE platform and its components, we introduce the
project's development environment, which includes the SODALITE repository, CI/CD pipeline and
an execution environment for running the SODALITE components. For these, we will provide Cloud
and HPC testbeds that will provision virtual and bare-metal compute resources using technologies
presented in Section 2.4.

In the following Sections, we describe the Cloud and HPC testbeds (Section 3.1) and their
interactions with the SODALITE components (Section 3.2). Section 3.3 presents the development
flow of SODALITE, whereas Section 3.4 outlines the development timeline of the overall SODALITE
solution.

3.1 Cloud and HPC Testbed descriptions
Cloud and HPC testbeds, presented in Figure 5, will be deployed for the development and
experimentation with the SODALITE components and will be provided and maintained by ATOS and
USTUTT, respectively. Along with the testbeds, the SODALITE repository will be provided to store the
source code of the components. The SODALITE testbeds and repository will be connected via the
Internet in a secure way.

Figure 5: Cloud and HPC testbeds overview

The purpose of the Cloud testbed is to provide Cloud Resources, such as VMs (virtual machines),
containers, cloud storage and virtual networks, for the application deployment of the demonstrating
use cases. These resources will be managed by OpenStack and Kubernetes systems. Moreover,
the Cloud testbed hosts the development environment (DevCloud), where the SODALITE
components, described in Section 1.2, will reside for development and usage. In order to ensure
the integrity and validity of the developed SODALITE components, a CI/CD (Continuous
Integration/Continuous Delivery) approach will be adopted with the help of the Jenkins open source

Project No 825480.

D6.1 - SODALITE platform and use cases implementation plan - Public Page 24
© Copyright Beneficiaries of the SODALITE Project

automation server, which will be responsible for running CI/CD tasks enabling fast and automated
building, testing, integration and packaging of the SODALITE components.

The HPC testbed, on the other hand, provides a batch job system and bare-metal resources
managed by a Torque resource manager extended with vTorque. At the initial stage, the resources
such as bare-metal compute nodes forming an HPC cluster and sharing a storage pool, as well as
GPU-enabled compute nodes, will be included in the HPC testbed.

In the following subsections, we describe in detail the specifications of both testbeds.

3.1.1 Cloud Testbed Specifications

The ATOS testbed consists of 3 nodes: 2 compute nodes and 1 storage node interconnected via a
switch on each NIC (Network Interface Controller). The physical characteristics of the nodes and
switches are presented below in Tables 2-4:

Compute nodes

Number of nodes 2

CPU type Intel Xeon E5-2670 0, 8-Core, 2.60GHz, HT (16
threads), 20 MB Cache, 8.0 GT/s QPI

Number of CPUs (Number of cores) ● Per node: 2 (2x8=16 cores)
● Total: 32 (16x2=32 cores)

Memory ● Type: DDR3
● Amount per node: 16x4GB=64GB
● Total: 2x64GB=128GB

Internal storage ● Type: HDD (SATA)
● Size per node: 2x6TB=12TB
● RAID support: no

Network card 2x Intel® GbE I350 with PCI Express V2.1 (5
GT/s) Support

Table 2: Specifications of the computes nodes in the Cloud testbed (ATOS)

Storage nodes

Number of nodes 1

CPU type Intel Xeon E5-2670 0, 8-Core, 2.60GHz, HT (16
threads), 20 MB Cache, 8.0 GT/s QPI

Project No 825480.

D6.1 - SODALITE platform and use cases implementation plan - Public Page 25
© Copyright Beneficiaries of the SODALITE Project

Number of CPUs (Number of cores) ● Per node: 2 (2x8=16 cores)
● Total: 16

Memory ● Type: DDR3
● Amount per node: 16x4GB=64GB
● Total: 1x64GB=64GB

Internal storage ● Type: HDD (SATA)
● Size per node: 3x6TB=18TB
● RAID support: no

Network card 2x Intel® GbE I350 with PCI Express V2.1 (5
GT/s) Support

Table 3: Specifications of the storage nodes in the Cloud testbed (ATOS)

Interconnect (switches)

Number of switches 1

Switch model BROCADE ICX6450

Ports 24x 10/100/1000 Mbps RJ-45 ports

Number of switches 1

Switch model BROCADE VDX6710

Ports 48 x 10/100/1000 + 6 x 10 Gigabit SFP+

Table 4: Specifications of the interconnect in the Cloud testbed (ATOS)

3.1.2 HPC Testbed Specifications

The testbed hosted in USTUTT consists of 9 nodes: 8 compute nodes and 1 storage node
interconnected with a ToR (Top-of-Rack) switch. The physical characteristics of the nodes and
switches are presented below in Tables 5-7:

Compute nodes

Number of nodes 8

Project No 825480.

D6.1 - SODALITE platform and use cases implementation plan - Public Page 26
© Copyright Beneficiaries of the SODALITE Project

CPU type Intel Xeon E5-2630v4, 10-Core, 2,20 GHz, HT,
25 MB Cache, 8,0 GT/s (Broadwell EP)

Number of CPUs (Number of cores) ● Per node: 2 (2x10=20 cores)
● Total: 16 (16x10=160 cores)

Memory ● Type: DDR4
● Amount per node: 8x16GB=128GB
● Total: 8x128GB=1TB

GPU type MSI GeForce GTX 1080 Ti Aero 11G OC, 3584
Cores, 11GB GDDR5X Memory

Number of GPUs ● Per node: 1
● Total: 8

Internal storage ● Type: SSD (SATA)
● Size per node: 2x1.92 TB=3.84TB
● RAID support: yes

Network card Mellanox ConnectX-4 VP, dual-port FDR IB and
40 / 56 GbE, QSFP28

Table 5: Specifications of the computes nodes in the HPC testbed (USTUTT)

Storage Node

Number of nodes 1

CPU type Intel Xeon E5-2630v4, 10-Core, 2,20 GHz, HT,
25 MB Cache, 8,0 GT/s (Broadwell EP)

Number of CPUs (Number of cores) 2 (20 cores)

Memory ● Type: DDR4
● Amount: 6x32GB=192GB

Internal storage ● Type: HDD (SATA)
● Size per node: 16x4.0TB=64TB
● RAID support: yes

Network card Mellanox ConnectX-4 VP, dual-port FDR IB and
40/56 GbE, QSFP28

Table 6: Specifications of the storage nodes in the HPC testbed (USTUTT)

Project No 825480.

D6.1 - SODALITE platform and use cases implementation plan - Public Page 27
© Copyright Beneficiaries of the SODALITE Project

Interconnect (Top-of-rack switch)

Number of switches 1

Switch model Mellanox Spectrum SN2100

Ports 16xQSFP28 ports, 40 GbE

Additional features ● VxLAN Hardware VTEP
● SDN: OpenFlow 1.3
● Integration with VMware NSX &

OpenStack

Table 7: Specifications of the interconnect in the HPC testbed (USTUTT)

Project No 825480.

D6.1 - SODALITE platform and use cases implementation plan - Public Page 28
© Copyright Beneficiaries of the SODALITE Project

3.2 SODALITE Components interaction with the testbeds
The SODALITE components, mainly the components of the Runtime Layer, must interact with the
resource managers of the Cloud and HPC testbeds for resource provisioning, deployment,
configuration, monitoring and refactoring of the application components developed by the providers
of the demonstrating use cases with the use of the SODALITE platform. Figure 6 depicts a detailed
view of the testbeds’ setup and their interaction with the SODALITE components.

Figure 6: SODALITE HPC and Cloud testbeds

The development environment (DevCloud) for the deployment and integration of SODALITE
components will reside on the Cloud testbed, which will be containerized in Kubernetes, such that
the development and production versions of the developed components will be available. The
DevCloud will be physically isolated from the resources available for the application deployment,
due to possible interference (e.g. I/O interrupts) and contention of the resources, which will affect
the performance of the applications. The CI/CD pipeline, although being part of the DevCloud, is
not depicted in Figure 6 and will be presented in detail in the following Section 3.3 (Development
flow description).

With respect to resource provisioning, it is planned to have OpenStack installed on the Cloud
testbed, providing VMs via Nova Compute service, block storage via Cinder and networking via
Neutron services. On top of these compute resources, the application components of the

Project No 825480.

D6.1 - SODALITE platform and use cases implementation plan - Public Page 29
© Copyright Beneficiaries of the SODALITE Project

demonstrating use case providers will be deployed. It is also possible to deploy a Kubernetes cluster
to further orchestrate the application deployment. As such, OpenStack will provision a set of VMs,
one of which will act as a Kubernetes Controller, whereas the remaining VMs will be allocated as
Kubernetes Nodes, i.e. the nodes running Pods and Services. The credentials to access both
OpenStack and Kubernetes will be provided to the users of the Cloud testbed.

The HPC testbed will also be backed with OpenStack; however, Ironic service will be used. The
rationale behind this is the flexibility and on-the-fly reconfiguration of the compute nodes on the
physical infrastructure that Ironic brings, facilitating any future infrastructure modifications as the
SODALITE project evolves. The Torque resource manager will be deployed providing HPC and GPU
(Graphics Processing Unit) Resources for running application jobs. The credentials and workspaces
will be created for the users of the HPC testbed.

The interaction between the testbeds will be established via the Internet: the Cloud testbed
provides OpenStack and Kubernetes public endpoints for its management, while the Front-end
node of the HPC testbed provides public ssh-based endpoints to access the Torque resource
manager. Furthermore, both testbeds will provide mechanisms and endpoints to monitor various
parameters from different layers of the whole SODALITE platform. The SODALITE Runtime Layer
Components will communicate with the aforementioned management and monitoring endpoints in
order to orchestrate the deployment, monitoring and refactoring of the application components of
the demonstrating use cases.

Project No 825480.

D6.1 - SODALITE platform and use cases implementation plan - Public Page 30
© Copyright Beneficiaries of the SODALITE Project

3.3 Development flow description
The development of the SODALITE components will follow the CI/CD (Continuous
Integration/Continuous Delivery) approach to allow fast and automated building, testing,
integration and packaging of the components. Hence, the Jenkins open source automation server
was chosen as the integration tool for SODALITE. It is introduced in the SODALITE development
infrastructure, which is presented in Figure 7, and resides in the DevCloud (described in Section
3.2). As the changes of the source code of the components are submitted to the SODALITE
repository (available at https://projects.hlrs.de/projects/SODALITE) by the developers, it triggers
Jenkins to run the CI/CD pipeline, where automated unit, integration and functional tests of
SODALITE components are scheduled. These tests validate the changes and verify that the updates
did not break the build. As soon as the tests are passed, the source code changes are pushed into
the repository. The SODALITE components are then ready for deployment (as a new production
version of the SODALITE platform) and are subsequently available to the users, such as Application
DevOps, Resource and Quality Experts, described in deliverable D2.1, Section 2.2.

Figure 7: SODALITE development infrastructure

Project No 825480.

D6.1 - SODALITE platform and use cases implementation plan - Public Page 31
© Copyright Beneficiaries of the SODALITE Project

3.4 Timeline for Development

Figure 8: WP6 development timeline

The development timeline for all WP6 tasks is depicted in the Gantt chart in Figure 8. With respect
to T6.1 “Cloud and HPC Testbeds”, the setup of the physical testbeds (both Cloud and HPC) started
in M1 of the project and will be completed by the end of M6. One month later (M7), it is expected
to have OpenStack and Ironic installed on the Cloud and HPC testbeds, respectively. This will be
followed by the installation of Kubernetes (Cloud testbed) and Torque (HPC testbed), which will be
completed in M9, thus realizing resource provisioning for the experimentation with the SODALITE
components. The remaining 3 months until the end of the first project year (M10-M12) will be
allocated to monitoring and measuring the performance of the SODALITE testbeds. In the second
and third years of the project, adaptations/reconfigurations of any of the underlying components
in all testbeds are foreseen, based on the results of the evaluation task (T6.4 “Use Case and
Architecture Evaluation”) that will be performed on the overall SODALITE solution at the end of each
project year.

Regarding the SODALITE component integration task (T6.2), the first activities concern the setup of
the project’s development infrastructure, namely the SODALITE repository (M4-M6) and the Jenkins
automation server (M5-M8). The initial version of the SODALITE platform will be provided in M12 of
the project and will mainly involve the integration of the components that constitute the SODALITE
system, thus realizing it as a whole, but with limited functionality. The intermediate (M24) and final
(M36) versions of the SODALITE platform will extend and refine the initial platform version,
delivering increasingly enriched functionality and further capabilities with each updated version.
The Use Case Implementation (T6.3) and Use Case and Architecture Evaluation (T6.4) tasks will
follow the same incremental approach as in the case of the SODALITE platform, with the initial,
intermediate and final use case implementations and evaluations of the SODALITE platform and
use cases being delivered at the end of each project year.

Project No 825480.

D6.1 - SODALITE platform and use cases implementation plan - Public Page 32
© Copyright Beneficiaries of the SODALITE Project

4 Demonstrating Use Case descriptions and implementation plans
This Section describes the three demonstrating use cases of SODALITE and provides their detailed
implementation plans, in terms of the envisioned functionalities of their components, as well as
their development timelines. The three use cases will highlight the developed work in SODALITE
and will serve as real-world demonstrators of the novel concepts brought by the project. Each one
of them covers a specific professional application or industry and their expected impact to the
broader community is manifold. We note here that the requirements, which are specific to the three
demonstrating use cases and have been extracted by the use case owners (POLIMI, USTUTT, ADPT)
during the first iteration of requirements elicitation, within the scope of WP2, are not covered in
deliverable D2.1 and are instead provided in an Appendix of this deliverable, for a better connection
and understandability of the use case descriptions.

4.1 POLIMI Snow UC

4.1.1 Description

The goal of this use case is to exploit the operational value of information derived from public web
media content to support environmental decision making in a snow dominated context. An
automatic system crawls geo-located images from heterogeneous sources at scale, checks the
presence of mountains in each photo, identifies individual peaks, and extracts a snow mask from
the portion of the image denoting a mountain.

Two main image sources are used: we crawl touristic webcams in the Alpine area and search Flickr
for geo-tagged user-generated mountain photos in the Alpine region.

Both image types carry, explicitly or implicitly, information about the location where the image is
taken, but require estimating the orientation of the camera during the shot, identifying the visible
mountain peaks, and filtering out images not suitable for snow analysis (e.g., due to fog, rain etc.).

The two multimedia processing pipelines, shown in Figure 9, share common steps but also have
differences: webcams produce a temporal series of images of the same view, so that only one
webcam image needs to go through the relevance classification and peak identification steps,
whose results apply to the entire time series. Instead, all crawled user-generated photos need pre-
filtering, for discarding irrelevant content before processing them for orientation and peak
detection.

The project is composed of different components indicated in Figure 9, which are described in the
next Sections.

4.1.2 Implementation plan: description of components

4.1.2.1 User generated image processing pipeline

The type of content that can be extracted from web social media platforms depends on the nature
of the platform and usually includes one or more of the following: text, images, videos and
geographical information. Photographs are taken from different locations, possibly capturing
different views of the same mountain peak, but their density varies significantly depending on the

Figure 9: Schema of the SNOW use case pipelines

Project No 825480.

D6.1 - SODALITE platform and use cases implementation plan - Public Page 33
© Copyright Beneficiaries of the SODALITE Project

location (with higher spatial density near popular tourist destinations) and time of the year (with
higher temporal density during holidays).

4.1.2.1.1 User generated image crawler (UGIC)

Flickr is selected as the data source for user-generated photographs, because it contains a large
number of publicly available images, many of which have an associated geotag (GPS latitude and
longitude position saved in the EXIF (Exchangeable Image File Format) container of the
photograph).

The Flickr API allows one to query the service using temporal and spatial filters. A user generated
images (UGI) crawler algorithm is designed to query sub-regions on the area of the Alps.

Table 8 provides a summary of the user generated image crawler (UGIC) component.

Input Coordinates of the search region bounding box
Mountain-related textual keywords

Processing ● Open a connection to the query API of the user-
generated image repository

● submit queries formulated with the input keywords,
● retrieve the images that match the query,
● stores the images on disk

Output Images

Implementation
technologies and languages

● Java
● PosgresSQL to save image metadata

Table 8: User generated image crawler component summary

4.1.2.1.2 Mountain relevance classifier (MRC)

Pictures tagged with a location corresponding to a certain mountainous region do not ensure the
presence of mountains. For this reason, the presence of mountains in every photograph is
estimated and the non-relevant photographs are discarded. The process to classify an image first
computes a fixed-dimensional feature vector, which summarizes the visual content, and then
provides it to a Support Vector Machine (SVM) classifier to determine whether the image should be
discarded or not. A dataset of images annotated with mountain/no mountain labels is needed to
train the model.

Table 9 summarizes the mountain relevance classifier (MRC) component.

Input An image

Processing ● Calculate Image Features
● Input the features into an SVM

Output Classification of the image (mountain, no mountain) used to
decide if image should be discarded or not.

Implementation
technologies and languages

● Python-TensorFlow/Matlab

Table 9: Mountain relevance classifier component summary

4.1.2.2 Public webcam processing pipeline

Outdoor webcams represent a valuable source of visual content. The images need to be filtered by
the weather conditions, since these can significantly affect short- and long-range visibility.
Additionally, snow cover changes slowly over time, so that one measurement per day is sufficient;
for this reason, an aggregation of the images obtained during the day is desirable.

Project No 825480.

D6.1 - SODALITE platform and use cases implementation plan - Public Page 34
© Copyright Beneficiaries of the SODALITE Project

4.1.2.2.1 Webcam image crawler (WIC)

Public webcams expose a URL which returns the most recent available image. The webcam crawler:

● Loads the list of all the webcams in the dataset and starts asynchronous loops, one for
each webcam.

● At each loop iteration, it checks the corresponding webcam image and adds the image to
the dataset if it is changed w.r.t. the previous iteration, then idles and starts over again.
Since downloading the entire image to check a webcam new data consumes bandwidth
unnecessarily, the new image check is performed only on a portion of the image. Namely,
only the first 5KB of the image are downloaded, hashed and compared to the previous
webcam hash: if the hash is different, it is saved as the new hash and the rest of the image
is downloaded. After the crawler boots, the first image acquired from every webcam is
discarded, as there are no guarantees on its timestamp (some webcams, due to failures,
propose the same images for days or months).

In Table 10, a summary of the webcam image crawler (WIC) component is provided.

Input A list of webcams endpoints

Processing For each webcam:
● Connect to the service to download the first 5KB of an

image
● Generate the hash of the downloaded portion and

compare with last downloaded image
● Compare hash of the two images, if the two hashes are

equal, skip
● Download and save the entire image
● Wait 1’

Output Images for each webcam temporarily saved on disk

Implementation
technologies and languages

● JavaScript
● NodeJS

Table 10: Webcam image crawler component summary

4.1.2.2.2 Weather condition filter (WCF)

Due to bad weather conditions that significantly affect short- and long-range visibility (e.g., clouds,
heavy rains and snowfalls), only a fraction of the images can be exploited as a reliable source of
information for estimating snow cover. The weather condition filter is based on the assumption that
if the visibility is sufficiently good, the skyline mountain profile is not occluded.

Table 11 describes the weather condition filter (WCF) component.

Input A webcam image
The binary mask corresponding to the webcam.

Processing ● The edge map of the input image is computed.
● The skyline visibility value is computed

Output Boolean value indicating if it should be deleted or not.

Implementation
technologies and languages

● Python/Matlab

Table 11: Weather condition filter component summary

4.1.2.2.3 Daily median image aggregation (DMIA)

Good weather images might suffer from challenging illumination conditions (such as solar glare
and shadows) and moving obstacles (such as clouds and persons in front of the webcam). At the
same time, snow cover changes slowly over time, so that one measurement per day is sufficient.

Project No 825480.

D6.1 - SODALITE platform and use cases implementation plan - Public Page 35
© Copyright Beneficiaries of the SODALITE Project

Therefore, the DMIA aggregates the images collected by a webcam in a day, to obtain a single
representative image to be used for further analysis. A median aggregation algorithm can deal with
images taken in different conditions, removing transient occlusions and glares. Given N good
weather daily images I1, I2, …In the Daily Median Image (DMI) is obtained as applying the median
operator along the temporal dimension.

The daily median image aggregation (DMIA) component is summarized in Table 12.

Input A list of images obtained in one day for each single webcam

Processing ● Calculate the global offset of each image with respect to
the first image of the day

● Adjust each image based on the calculated offset
● Calculate DMI

Output For each webcam, a DMI

Implementation
technologies and languages

● Python/Matlab

Table 12: Daily median image aggregation component summary

4.1.2.3 Snow cover pipeline

The distance between the shooting location and the framed mountains can be very high (tens of
KMs). The photo geotag only is not sufficient for the analysis of the mountains. It is necessary to
determine which portions of the image represent which mountains, identify the geographical
correspondence of each pixel: estimate whether it is a terrain surface or sky, what is the
corresponding geographical area, what are its GPS coordinates, altitude and distance from the
observer. Once an image is geo-registered, the portion of the image that represents the mountain
area can be analysed and divided into snow and non-snow areas. Mountain Image Geo-registration
(MIGR) is done by finding the correct overlap between the photograph and a 360-degree cylinder
with a virtual mountain panorama, i.e., a synthetic image of the visible mountain skyline generated
with a projection from DEM (Digital Elevation Model) data and from the camera shooting position.
4.1.2.3.1 Skyline extraction (MIGR-SE)

To compute the alignment of the photo and the virtual panorama, the two images should have the
same scale, i.e. the same pixel size. Since the photograph and the virtual panorama are
taken/generated from the same location, the angular size of the mountains on the photograph and
that of the mountains on the panorama are equal by definition. The horizontal FOV (Field Of View)
of the photograph is calculated from the focal length and the size of the camera sensor. Then, the
photograph is rescaled considering that the width of the panorama corresponds to a FOV equal to
360°. The next step is to obtain the landscape skyline of a photograph, i.e., the set of all the points
that represent the boundary between the terrain slopes and the sky. For this purpose, every pixel
of the input image is fed to a binary classifier, and only positive edges are retained. The training
and validation of the classifier is done using a dataset of mountain images, where for each one
exists an annotation containing the skyline present on it.

Table 13 presents a summary of the skyline extraction (MIGR-SE) component.

Input Image
Image FOV

Processing ● Image resize based on FOV
● Provide the image to the classifier that will output a

mask indicating for each pixel whether it corresponds to
the skyline or not. (The new skyline mask does not
match the size of the original image)

Output Skyline mask

Project No 825480.

D6.1 - SODALITE platform and use cases implementation plan - Public Page 36
© Copyright Beneficiaries of the SODALITE Project

Implementation
technologies and languages

● Java
● OPENCV

Table 13: Skyline extraction component summary

4.1.2.3.2 360° panorama generation (MIGR-360PG)

From the coordinates of the picture, we process the 360° panoramic view of the terrain using the
DEM of the terrain publicly available. The functionality is exposed as a service.

The rendering model is composed by a C++ program that initialize the context in which the OpenGL
graphics API operates and exploit hardware-accelerated graphics capabilities by invoking shader
programs to perform rendering operations.

This component uses the DEM files provided by NASA.

In Table 14, the 360° panorama generation (MIGR-360PG) component is summarized.

Input Latitude and Longitude
Terrain Model Precision (3'' or 1'')
Relative altitude of the viewer (meters from the ground)
Maximum visible distance

Processing ● Loading of DEM,
● Initialisation or OpenGL rendering,
● Execution of OpenGL rendering,
● Extraction and conversion of results

Output 360° panorama depthmask

Implementation
technologies and languages

● C++ 14 compliant
● OPENGL, EGL
● Java, JavaScript and NodeJS (to make the panorama

web-accessible)
Table 14: 360° panorama generation component summary

4.1.2.3.3 Peak alignment (MIGR-PA)

The alignment can be seen as the search for the correct overlap between two cylinders (assuming
the zero tilt of the photograph): one containing the 360° panorama and the other one containing
the photo, suitably scaled.

Table 15 describes the peak alignment (MIGR-PA) component.

Input An image with its corresponding skyline annotation and the
360° panorama corresponding to its location

Processing ● Perform global alignment between skyline and
panorama

Output Image annotated with the mountain peaks
M = A mask indicating pixels that correspond to the mountain
surface.

Implementation
technologies and languages

● Java
● OPENCV

Table 15: Peak alignment component summary

4.1.2.3.4 Snow mask computation (SMC)

A snow mask is defined as the output of a pixel-level binary classifier that, given an image and a
mask M that represents the mountain area as inputs, produces a mask S that assigns each pixel
of the mountain area a binary label denoting the presence of snow. Snow masks are computed
using the Random Forest supervised learning classifier with spatio-temporal median smoothing of

Project No 825480.

D6.1 - SODALITE platform and use cases implementation plan - Public Page 37
© Copyright Beneficiaries of the SODALITE Project

the output. To perform the supervised learning a dataset of images with an annotation at pixel level
indicating if the pixel corresponds to the snow area is needed.
The snow mask computation component (SMC) is described in Table 16.

Input An image and a mask indicating the pixels corresponding to the
mountain area.

Processing ● Calculate feature vectors for the pixels in the mountain
area

● Input the features into the Random Forest Classifier

Output S = Snow mask indicating for each pixel if it represents snow or
not in the original image.

Implementation
technologies and languages

● Python/Matlab

Table 16: Snow mask computation component summary

4.1.2.3.5 Snow index computation (SIC)

The pipeline produces a pixel-wise snow cover estimation from images, along with a GPS position,
camera orientation, and mountain peak alignment. Thanks to the image geo-registration and
orthorectification (using the associated topography data) it is possible to estimate the geographical
properties of every pixel, such as its corresponding terrain area and altitude. Consequently, it is
possible to compute the snow line altitude (the point above which snow and ice cover the ground)
expressed in meters.

The virtual snow index for an image is defined as:𝛴 (#,%)	|)(#,%)	*	+	𝑣𝑠𝑖(𝑥, 𝑦), where 𝑣𝑠𝑖 is a virtual
snow index function that transforms a pixel position into a snow relevance coefficient and can be
defined as 𝑣𝑠𝑖 (#,%) = 1 and 𝑆(𝑥, 𝑦) 	= 	1 indicates it will be calculated for each pixel that
corresponds to the snow mask obtained in previous step.
Table 17 provides a summary of the snow index computation (SIC) component.

Input S = the snow mask
M = the mountain area mask

Processing Calculate the VSI

Output Virtual snow index

Implementation
technologies and languages

● Python/Matlab

Table 17: Snow index computation component summary

4.1.3 Implementation plan: timeline
The development of the components that constitute the SNOW Use Case pipeline is scheduled as
shown by the Gantt diagram displayed in Figure 10. At the end of the components development
there is another phase to ensure the flow of data among the components. There is a further phase
to compare the original baseline with redeployment resulting from the output from the SODALITE
Platform.

Project No 825480.

D6.1 - SODALITE platform and use cases implementation plan - Public Page 38
© Copyright Beneficiaries of the SODALITE Project

Figure 10: Gantt diagram of the development of the Snow use case pipeline components

Project No 825480.

D6.1 - SODALITE platform and use cases implementation plan - Public Page 39
© Copyright Beneficiaries of the SODALITE Project

4.2 USTUTT Virtual Clinical Trial UC

4.2.1 Description

The in-silico clinical trials for spinal operations use case targets the development of a simulation
process chain supporting in-silico clinical trials of bone-implant-systems in Neurosurgery,
Orthopedics and Osteosynthesis. It deals with the analysis and assessment of screw-rod fixation
systems for instrumented mono- and bi-segmental fusion of the lumbar spine by means of
continuum mechanical simulation methods. As a novelty, we consider the uncertainty inherent in
the computation by means of probabilistic programming. The simulation chain consists of a number
of steps that need to be fulfilled in order and can be thought of as a pipeline. The output of each
step serves as input to the next step.

The use case addresses one of the most prevalent health problems experienced by the populations
of developed nations resulting in enormous losses of productivity and costs for ongoing medical
care. The simulation process developed within this use case will optimise the screw-rod fixation
systems based on clinical imaging data recorded during standard examinations and consequently
target the lowering of the reported rates of screw loosening and revisions, enhance safety, expand
the knowledge of the internal mechanics of screw-rod fixation systems applied to the lumbar spine
and finally reveal optimization potential in terms of device application and design.

4.2.2 Implementation plan: description of components

The individual steps for the simulation chain can be seen in Figure 11 below. First, the extraction
module component takes imaging data and extracts a geometry for the vertebral bodies. The de
facto standard for doing this is the marching cubes algorithm, for which many implementations
exist.

Next, the discretization module component generates a volume-mesh inside the surface geometry.
This enables one to treat the mesh as a set of finite elements and to use the existing finite elements
methodology.

The density mapping component takes the original image data and maps it onto the volume-mesh.
In doing this, each element inside the mesh is assigned a density value.

This enhanced meshed geometry is then fed into the probabilistic mapping module component.
Here the values for density are transformed into values for elasticity, as this is what is actually
needed for the simulation. Because of the uncertainty that is inherent in this transformation, we
use a probabilistic programming approach. Eventually, boundaries for the 95% highest density
interval as well as the mode are computed.

These data are used in the input decks for the last step, the solver module component. Here, the
finite element method is actually used in computing a solution that describes the structural
mechanics inside the vertebral bodies.

Project No 825480.

D6.1 - SODALITE platform and use cases implementation plan - Public Page 40
© Copyright Beneficiaries of the SODALITE Project

Figure 11: Schema of the Virtual Clinical Trial use case pipeline

4.2.2.1 Extraction

In this first step the geometry of the vertebral bodies is extracted from CT-data (Computer
Tomographic) which are recorded pre-operatively, post-operatively and approximately six-weeks
post-operatively. By means of the marching cubes algorithm three triangulated surface meshes are
generated which serve as input for the next processing step. Depending on the quality of the CT-
data it might be necessary to introduce additional image filtering techniques into the extraction
step. These filters are available in the Visualization Toolkit (VTK) or in the Insight Segmentation and
Registration Toolkit (ITK) which are both open source C++ libraries.[47] Alternatively, manual pre-
processing of the datasets can be performed upfront.

Table 18 summarizes the functionality of the extraction component.
Input Three data sets per patient containing data from CT scans, one

preoperatively and two postoperatively.
Processing The marching cubes algorithm is applied to each data set to

extract a surface geometry. Successful extraction depends on the
CT data quality. Because of this it might be necessary to do some
manual processing upfront.

Internal concurrency No, sequential process
Output Three so called surface meshes
Implementation technologies
and languages

Fortran/C++

Table 18: Extraction component summary

4.2.2.2 Discretization

Based on the three surface meshes volume meshing of the bone geometries is performed. Targeted
libraries for 3D volume mesh generation are currently Netgen or NGSolve. Additionally the
boundary conditions i.e. the supports and the loadings have to be discretized and structural model
features like muscle strands, tendons and cartilage have to be attached to the modeled bone
geometries. As a result of this step the completed models will be written out as so called solver
input decks still with a homogeneous material distribution.

In Table 19, the functionality of the discretization component is described.

Project No 825480.

D6.1 - SODALITE platform and use cases implementation plan - Public Page 41
© Copyright Beneficiaries of the SODALITE Project

Input Three data sets with surface meshes per patient.
Processing A 3-dimensional mesh is generated inside each of the surface

meshes.
Internal concurrency No, sequential process
Output So called meshed geometries in three solver input decks.
Implementation technologies
and languages

Netgen/NGSolve (written in C++, Python Interface)

Table 19: Discretization component summary

4.2.2.3 Density Mapping

In this step the three generated input decks as well as the three CT data sets are taken as input.
By means of direct geometrical mapping the grayscale distribution of the respective CT data set is
mapped onto the volume mesh generated in the previous step. After the mapping, each element in
the volume mesh holds a density value from which in the next step orthotropic material data can
be generated.

This step is done by a Fortran implementation as described in Schneider, R. et al. - Inhomogeneous,
orthotropic material model for the cortical structure of long bones modelled on the basis of clinical
CT or density data[48].

Table 20 provides a summary of the density mapping component’s functionality.
Input Three input decks with meshed geometries per patient.

CT data sets.
Processing From the CT data a value for density is mapped onto each

element inside the mesh.
Internal concurrency No, sequential process
Output Three modified solver input decks per patient.
Implementation technologies
and languages

Fortran

Table 20: Density mapping component summary

4.2.2.4 Probabilistic elasticity mapping

In this step the volume meshes, which are augmented with the density distributions from the CT
data sets, are fed into the probabilistic mapping module component. Here the values for density
are transformed into orthotropic material parameters, i.e values representing the elasticity of each
finite element, as this is what is actually needed for the subsequent solver step. Because of the
uncertainty that is inherent in this transformation, we use a probabilistic programming approach.
the targeted output are currently the boundaries for the 95% highest density interval as well as the
mode. This means each of the three states of the patient, pro-operativ, post-operative and
approximately six weeks post-operative is transformed into three models representing the
uncertain material distributions in each state.

The probabilistic elasticity mapping component is summarized in Table 21.
Input Three modified input decks per patient.
Processing From the density values, a probability distribution for the elasticity

for each element is computed. To keep the amount of data
manageable, only the low and high bounds of a to be determined
density interval (e.g. 95%) and the mode are extracted.

Internal concurrency MPI is used for parallel computation.
Output For each patient and for each input deck, three solver input decks

(low, high, mode) are computed.
Implementation technologies
and languages

Python
MPI

Table 21: Probabilistic elasticity mapping component summary

Project No 825480.

D6.1 - SODALITE platform and use cases implementation plan - Public Page 42
© Copyright Beneficiaries of the SODALITE Project

4.2.2.5 Solver

To solve the nine cases per patient resulting from the previous step, the open source software
package Code Aster is used. Finally, nine results are produced which show the strain and stress
distribution within the simulated structures as well as the displacement field. These results are
initially object to manual post-processing procedures but as soon as lessons are learned from the
manual procedures, automatic or semi-automatic data analytics procedures will be set in place.

Table 22 describes the functionality of the solver component.

Input Nine solver input decks per patient.
Processing Using finite element methods, a solution is computed for lower

and upper bound of HDI as well as for the mode. These three
solutions are computed for the pre- and the two postoperatively
acquired datasets.

Internal concurrency MPI can used for parallel computation.
Output For each input deck a solution file is computed.
Implementation technologies
and languages

Code Aster (written in Fortran)

Table 22: Solver component summary

4.2.3 Implementation plan: timeline
The development of the components that constitute the Virtual Clinical Trial UC process is
scheduled as shown by the Gantt diagram displayed in Figure 12 below.

Figure 12: Gantt diagram of the development timeline of the Virtual Clinical Trial use case components

More specifically, the development of the probabilistic mapping and density mapping components
follow the M4-M5 (finished) and M4-M8 timelines, respectively. The delivery of these two
components marks the first milestone (Initial UC-Process) in the implementation of the Virtual
Clinical Trial Use Case (due in M8). The second milestone (Intermediate UC-Process), due in M15
of the project, is defined by the implementation of the overall solution procedure (M4-M15). This is
followed by the development of the extraction and discretization components (M16-M24), which
will finalize the Use Case process implementation and will complete the related milestone (Final
UC-Process) at the end of the second project year.

The overall integration of the Use Case process into the SODALITE system environment (will be
done progressively following the development of the constituting components) will start after the
implementation of the probabilistic mapping component (M6) and will carry on until the end of
SODALITE (M36). With respect to the evaluation of the Use Case and the SODALITE Architecture,
baseline measurements will be acquired throughout the implementation of the initial and
intermediate Use Case process (M7-M15), followed by continuous benchmarking until the end of
the project. The validation and evaluation task of the Use Case will start in M9 (after the initial
baseline measurements have been acquired), following the implementation of the initial,
intermediate and final Use Case processes.

Project No 825480.

D6.1 - SODALITE platform and use cases implementation plan - Public Page 43
© Copyright Beneficiaries of the SODALITE Project

4.3 ADPT Vehicle IoT UC

4.3.1 Description

Through the combination of vehicle telemetry, instrumentation, and behavioural data, insurance
companies are able to shape a more holistic view of an individual driver’s overall risk profile based
on empirical analysis of driving data (referred to as usage based-insurance, or UBI) - areas that
have traditionally relied upon static data points over which the individual has little control, and
which have been more focused on risk probability than empirical analysis (these factors include,
e.g. age, gender, marital status, make/model of vehicle, etc.). While UBI models have been
successfully engaged in markets with a more relaxed and homogeneous regulatory environment,
European industry (and citizens) have been hesitant to pursue this model without adequate
safeguards for personal data protection and privacy rights - a situation remediated in part by the
coming into force of the GDPR (General Data Protection Regulation).

The growth of Connected Car data and concerns over data usage are further compounded by: (1)
Individual expectation of contextualised service offerings that respect personal preferences and
privacy expectations; (2) Service providers aiming to deploy service offerings across an increasingly
dynamic environment; and (3) growing trend of drivers seeking to analyse and benefit from their
own driving data directly.

These growing expectations, both from individuals and businesses, lead to an enormous increase
in the volume and rate of the sensor data, its aggregation, and its analysis, at various hierarchical
levels. This data, in turn, must be processed in line with the relevant privacy constraints and
regulatory restrictions it is subject to - aspects subject to dynamic change, while also being highly
latency-sensitive.

This leads to two key architectural demands for SODALITE: (1) an increasing amount of in-vehicle
data processing and intelligence at the network edge, and (2) increased computational capacity to
process large amounts of data in a timely manner - at varying levels of granularity (e.g. device-local,
vehicle-local, fleet-wide) - including both fleet-wide big data analytics, as well as periodic online
retraining of machine learning models that support the deployment.

This will be achieved by the use of SODALITE tools ensuring privacy-preserving distributed
processing on one hand and large-scale data processing on the other. Through the use of modelling,
it will be possible to enrich the processing workflows with information about data- and latency-
sensitive phases (services), steering the overall placement strategies of the orchestration engines.
On the fly predictive deployment refactoring will allow for optimal use of available resources by
reconfiguring the whole system and distributing workloads between the heterogeneous edge
(IoT/Vehicle, Edge Gateways, Fleet Gateways) and backend compute resources (Cloud or HPC) as
the application evolves towards a hierarchical deployment throughout the duration of the project
(as shown in Figure 13 below).

Project No 825480.

D6.1 - SODALITE platform and use cases implementation plan - Public Page 44
© Copyright Beneficiaries of the SODALITE Project

Figure 13: Schema of the Vehicle IoT use case deployment phases

The current architecture (shown in Figure 14, below), furthermore, makes extensive use of deployed
microservices in the Cloud to provide many of the value-added features upon which the use case
relies. These include, but are not limited to:

● License Plate Recognition
● VIN Decoding
● Reverse Geocoding
● Drowsiness Detection
● Theft and Intrusion Detection

Figure 14: Currently deployed system architecture (Vehicle IoT use case)

Many of these microservices, in turn, leverage trained machine learning models, and are able to
quickly provide results with minimal computational overhead, providing the opportunity to re-deploy
and run these services at different hierarchical levels (backend, in-vehicle edge gateway,
smartphone, etc.).

While these models can be improved through subsequent training phases, the computational
overhead (and costs, in the case of public cloud deployment) involved in this often means that

Project No 825480.

D6.1 - SODALITE platform and use cases implementation plan - Public Page 45
© Copyright Beneficiaries of the SODALITE Project

models are only periodically updated - delaying incremental benefits that could be deployed to the
existing user base at various stages of data availability. The addition of an optional HPC or GPU
compute resources at the backend, made available through the SODALITE tooling, would allow for
online re-training and continuous deployment of the machine learning models, making model
training and deployment a first-class citizen of the application’s production CI/CD pipeline, enabling
benefits to be brought to the end-user both rapidly and directly.

Other services, such as the Intrusion and Theft Detection Service introduced in Section 4.3.2.2.2
below, further require the generation of personalized SVC classifiers, changing the role of model
training as an infrequent event to periodically carry out offline, to a more frequent and online one -
creating further challenges in resource identification and utilization both in the Cloud and at the
Edge.

4.3.2 Implementation plan: description of components

4.3.2.1 License Plate Detection Pipeline

Figure 15: Schema of the license plate detection and detection model training pipelines (Vehicle IoT use case)

Within the Vehicle IoT Use Case, individuals may, at various times, submit license plate images for
recognition. These purposes include the initial registration of the vehicle with the mobile app (as
one possible registration mechanism - of particular interest in countries which provide open access
to their vehicle registration databases), evidence to support claims preparation (in the case of a
collision), etc. In order to benefit from improved plate recognition, the use case will be expanded to
include user-generated image crowd-sourcing and dynamic updating of the detection model by
leveraging appropriate resources (Cloud or HPC). This is envisioned across a number of steps:

1. Inclusion of user-generated images in the training data set
2. Plate extraction from uncropped training data (Bulk processing)
3. Re-training model on suitable backend resource (e.g. GPU cluster)
4. Validating control set against the new model (regression detection)
5. Re-deployment / update of plate recognition microservice backed by the new model

This is further exemplified by the license plate detection and detection model training pipelines in
Figure 15 above.

Project No 825480.

D6.1 - SODALITE platform and use cases implementation plan - Public Page 46
© Copyright Beneficiaries of the SODALITE Project

4.3.2.1.1 Training

User-generated images are crowd-sourced from the front-end application (and limited to vehicle
registration, such that consent can be obtained from the end-user) - these augment the existing
data set and are used for periodic retraining of the detection algorithm in order to enable more
precise (and increasingly contextualized) license plate recognition.

4.3.2.1.2 Plate Extraction

While the license plate recognition service operates directly on uncropped images based on the
trained model, plate images that are preserved for the purpose of model training are first cropped
and extracted, discarding any other identifying characteristics or background content. Examples of
user-submitted images and extracted plate images are seen in Figure 16 below:

Figure 16: Schema of the license plate detection and detection model training pipelines (Vehicle IoT use case)

As training of the ML (Machine Learning) model is presently an infrequent occurrence that happens
offline (and independent of the deployed application stack), it is sufficient to batch input images
for periodic extraction. As the input images may contain sensitive information (e.g. the house
number of the individual) unrelated to the purpose of data collection, source images must be kept
securely until such a time that they are processed and promptly discarded after successful plate
extraction.

A summary of the plate extraction component is provided in Table 23.

Input Uncropped user-generated images (various sizes)

Processing Tesseract OCR / OpenCV

Internal concurrency No, sequential process

Output Cropped images of license plates

Implementation
technologies and languages

Technologies: Tesseract OCR, OpenCV; Languages: C++

Table 23: Plate extraction component summary

4.3.2.1.3 Plate Detection

Plate detection is carried out on the user-submitted image as-is, with failure to detect notifying the
user and prompting the user if they'd like to try again, submit the image to improve the underlying
ML model, or use an alternative method of vehicle registration.

Project No 825480.

D6.1 - SODALITE platform and use cases implementation plan - Public Page 47
© Copyright Beneficiaries of the SODALITE Project

Table 24 summarizes the functionality of the plate detection component.

Input Uncropped user-generated images (as form data)

Processing Dedicated OpenALPR-backed plate recognition microservice

Internal concurrency No, sequential process

Output JSON-encoded detection results

Implementation
technologies and languages

Technologies: OpenALPR, Tesseract OCR, OpenCV; Languages:
C++, Go

Table 24: Plate detection component summary

4.3.2.2 Advanced Video Analytics for Driver Monitoring and Alerting

A number of further application scenarios are supported through video monitoring and analysis -
these include both a case where real-time analysis of a video stream is necessary (drowsiness
detection), and a less latency-sensitive case where custom trained and contextualized classifiers
must be provided in order for the service to provide meaningful results (intrusion and theft
detection). These are elaborated in the Sections below.

4.3.2.2.1 Drowsiness Detection (Face Detection)

Drowsiness Detection aims to determine when a Driver is at risk of falling asleep at the wheel and
taking evasive actions (e.g. playing a loud noise, triggering a vibration, etc.) in order to alert the
driver to the problem before a more serious incident occurs.

Drowsiness detection is typically carried out using a couple of different methods, with differing
levels of accuracy and invasiveness. While the gold standard (and most accurate method) for
drowsiness detection remains ECG monitoring, ECG measurement itself is invasive and requires
active participation by the individual under monitoring, making it a poor fit for passive observation
of a driver. The most common non-invasive methods, on the other hand, are PERCLOS (Percentage
of eyelid closure) - measuring the proportion of time that the eyelids are between 80-100% closed,
and blink detection (Blink detection methods further being split between blink frequency and
duration detection). While the PERCLOS method is fairly well established, it has also been found to
generate false positives in scenarios where:

1. subjects under monitoring periodically look down (as in typing on a keyboard) in relation to
the camera; and

2. in cases where the camera is oriented in such a way that it does not have head-on visibility
of the driver's eyes.

As we can expect drivers to be periodically checking their dashboard readings, and cameras to
frequently be mounted on an angle relative to the driver's position, blink methods are considered
to be a more appropriate fit and are what is explored within this use case. An example of the EAR
(Eye Aspect Ratio) method of blink detection (as is currently used in this service) can be seen in
Figure 17 below:

Project No 825480.

D6.1 - SODALITE platform and use cases implementation plan - Public Page 48
© Copyright Beneficiaries of the SODALITE Project

Figure 17: Blink detection using Eye Aspect Ratio (drowsiness validation service)

Figure 18: Schema of the driver drowsiness detection pipeline (Vehicle IoT UC)

Drowsiness detection (Figure 18) is highly latency-sensitive and must be done in real-time in order
to be as accurate as possible and to alert the driver at the time they need to be alerted. Blink
duration can be summarized as awake (< 400ms blink duration), drowsy (400-800ms blink
duration) and sleepy (blink duration > 800ms). With current wireless technologies demonstrating
round-trip latencies near 50-200ms (for 4G) and 500ms (for 3G) with good connectivity, a backend-
deployed monitoring service cannot be expected to reliably identify and respond to drowsiness
events in time - necessitating a push-down of the service delivery to the Vehicle itself.

Table 25 provides a summary of the drowsiness detection component’s functionality.

Input Video stream from input camera

Processing ● Real-time eye and face detection with Haar Cascades
● Eye aspect ratio calculation and contour fitting (Blink

detection)
● Blink duration sampling across frames, classification

and alerting

Project No 825480.

D6.1 - SODALITE platform and use cases implementation plan - Public Page 49
© Copyright Beneficiaries of the SODALITE Project

Internal concurrency Multi-threaded non-blocking I/O - dedicated thread extracts
frames from the video stream, while worker thread(s) handle the
actual frame analysis.

Output JSON-encoded detection results

Implementation
technologies and languages

Technologies: OpenCV, Dlib, Kafka; Languages: Python, C++

Table 25: Drowsiness detection component summary

4.3.2.2.2 Intrusion and Theft Detection (Face Recognition)

Intrusion detection builds on the face detection model developed in the drowsiness detector and
defines a face recognition model capable of identifying the authorized driver's face. In the case
where someone other than the designated driver is found to be driving the vehicle, further actions
can be taken by the system (this may include aspects such as notifying the authorized driver and
seeking confirmation of a driver switch, notifying a fleet manager, streaming vehicle telemetry to a
third party, etc.). A general overview of this process is highlighted in the pipeline schema in Figure
19 below.

In contrast with drowsiness detection, intrusion and theft detection is not directly latency-sensitive,
and as it does not require real-time access to the driver's video stream, is suitable for backend
deployment as a long-lived microservice (notably, the infrequent nature of the invocation also
makes this an ideal candidate for serverless deployments). While the authorized driver may indeed
wish to know if someone is stealing their vehicle as quickly as possible, the added round-trip latency
associated with mobile communications is unlikely to have a measurable impact on any
asynchronous notifications that may result from the analysis.

A unique characteristic of this service is that custom classifiers must be modelled and trained in
order to provide value for the Driver (that is, SVC models capable of identifying the authorized
Driver's face - which the driver may take with them). This may involve dynamic training of vehicle-
restricted classification models or may be open for sharing across a fleet of vehicles, or any other
vehicle the end-user may use, dependent upon their individual privacy preferences and sharing
settings.

The functionality of the intrusion and theft detection component is described in Table 26.

Figure 19: Schema of the intrusion and theft detection pipeline (Vehicle IoT UC)

Project No 825480.

D6.1 - SODALITE platform and use cases implementation plan - Public Page 50
© Copyright Beneficiaries of the SODALITE Project

Input Image extracted from video stream / camera, authentication
token

Processing ● JWT token validation / claims extraction
● Dynamic loading of trained SVC classifier
● Facial feature comparison of source image with loaded

SVC classifier

Internal concurrency No, sequential process

Output JSON-encoded detection results

Implementation
technologies and languages

Technologies: OpenCV; Languages: Python

Table 26: Intrusion and theft detection component summary

4.3.2.3 API Gateway

The API gateway, as shown in Figure 14 above, remains the primary entry-point for applications
interacting with the platform. Multiple instances of the API Gateway can be created (currently in
different geographical areas, depending on regulatory restrictions based on the type of processing)
and dynamically routed to through a region-aware router. Rather than using GeoIP and DNS as a
basis for routing (as popularized by e.g. Amazon’s Route 53 DNS Service), we rely on the client-side
to determine its own location based off of available vehicle location data. The region router, then,
accepts a request header with an encoded ISO 3166-1 country code (optionally derived from a
latitude/longitude pair handed off to a reverse geocoding service by the client), which is used as a
basis for server discovery via a region-aware service discovery mechanism.

While this current approach is adequate for load balancing, ensuring regulatory compliance, and
providing improved QoS for the end-user, the current system is still a centralized deployment model
in which the bulk of the underlying business logic and processing is carried out in the Cloud
instance. In order to support the phased deployment evolution identified in Figure 13, and to better
support the kinds of services being developed for this use case, the architecture must support
hierarchical deployments and clustering over which dynamic orchestration decisions and
sufficiently granular data analyses can be made.

4.3.2.4 Edge Gateway

Following the planned deployment evolution from Figure 13, a self-contained instance of the
Gateway will be created at the network Edge (integrated within the vehicle itself) in order to support
further development and experimentation, which will be communicated with by the mobile app on
the end-user’s smartphone (or later, directly through the infotainment head unit).

Owing to the ML and CV requirements for some of the UC services, the Edge Gateway itself will be
evaluated on two different hardware configurations, as noted in Table 27 below:

 Raspberry Pi 3B+ NVIDIA Jetson Nano

CPU 1.4 GHz 64-bit Quad-Core ARM
Cortex-A53

1.4 GHz 64-bit Quad-Core ARM
Cortex-A57 MPCore

GPU Broadcom VideoCore IV 128-Core NVIDIA Maxwell

RAM 1GB LPDDR2 4GB LPDDR4

Project No 825480.

D6.1 - SODALITE platform and use cases implementation plan - Public Page 51
© Copyright Beneficiaries of the SODALITE Project

Performance 21.4 GFLOPS 472 GFLOPS

Cameras Raspberry Pi Camera Module V2 (Sony IMX219 8-megapixel sensor)
Raspberry Pi Pi NoIR Camera V2 - infrared version of the V2 Camera
Module

Networking WiFi: 802.11ac, Bluetooth: 4.2

Table 27: Planned hardware configurations for Edge Gateway (Vehicle IoT UC)

Precise requirements for the Edge Gateway will vary based on the capabilities of the vehicle and
the individual preferences of the driver, services that will be delivered, and the way in which they
are provisioned will be continually subject to change. Furthermore, local instances will need to be
periodically updated when e.g. ML model updates are made available by a training pipeline. Rather
than using a fixed configuration for each Edge Gateway instance, the aim of the Vehicle IoT UC is
to maintain a minimal level of state within the Edge Gateway while shipping services from the Cloud
as locally runnable functions.

During Y1, the Edge Gateway will be instantiated with a Cloud Function controller (the precise
technology of which is still to be evaluated - candidate technologies include OpenFaaS and
OpenWhisk), providing a mechanism for remote function creation and delivery to the Edge. Existing
microservices with less stringent latency requirements will be adapted and deployed as Cloud
functions during this time, further simplifying deployment complexity in preparation for Edge
deployment and orchestration. During Y2, this will be expanded to include federation between the
Edge Gateway and its immediate hierarchical parents (e.g. at the Fleet or Cloud level).

4.3.3 Implementation plan: timeline

Figure 20: Gantt diagram of the development timeline of the Vehicle IoT use case components

The Vehicle IoT UC timeline highlighted in Figure 20 above is structured into 3 distinct phases to
align with the project year. Y1 focuses on the development of basic functionality, primarily focused
on the use of a centralized Cloud backend with some basic functionality pushed down to the Edge
providing a baseline both in terms of measurements and of functionality to further build upon in Y2
and Y3. Y2 builds on the components developed during Y1, allowing these to be iteratively
enhanced and shifted to the Edge, while laying the groundwork for tighter coupling with SODALITE
components in Y3. Use case-specific component development is expected to wrap up at the end of
Y2, allowing for Y3 to focus primarily on the integration and continued optimization of the use case
using SODALITE technologies developed in the technical work packages.

Based on model re-use between some of the Vehicle IoT UC components, the implementation of
components is carried out sequentially, with the basic support services (License Plate Detection,
Drowsiness Detection, and Intrusion and Theft Detection) kicking off in M4 and wrapping up in
M10. Experimentation with Cloud Functions, including the adaptation and deployment of developed

Project No 825480.

D6.1 - SODALITE platform and use cases implementation plan - Public Page 52
© Copyright Beneficiaries of the SODALITE Project

components, will continue in parallel - beginning in M5 and concluding in M11. The results of the
Cloud Function experimentation and initial component definition will form the basis of the initial
Edge Gateway implementation at the end of M12.

Y2 follows a similar pattern as Y1 - allowing for each use case component to be iterated through
and functionally enhanced, beginning in M13 and wrapping up in M19. The main focus during this
period will be in the development of the Edge Gateway, the integration of Cloud Functions, and the
ability to federate Cloud function controllers, thereby allowing for Cloud-to-Edge/Edge-to-Cloud
orchestration to impact deployment at the function level and to support the kind of adaptation
flexibility required by the use case.

Y3 will be focused primarily on integrating SODALITE-developed technologies with the use case
components. In parallel continuous measurement and optimization of components will be carried
out, providing the basis for practical validation and evaluation of the SODALITE architecture and
technologies within the use case application context.

Project No 825480.

D6.1 - SODALITE platform and use cases implementation plan - Public Page 53
© Copyright Beneficiaries of the SODALITE Project

4.4 SODALITE Platform Coverage
In Section 2 (Requirements) of D2.1 “Requirements, KPIs, evaluation plan and architecture - First
version”, we introduced a number of SODALITE UML use cases and provided sequence diagrams
for the implementation of each case. These UML use cases will be run as part of the evaluation of
the SODALITE platform. Table 28 (reproduced from D2.1) shows the planned coverage of the UML
use cases by the SODALITE demonstrating use cases (defined in this document), and when the
intermediate and final versions of the UML cases will be ready to be tested by the demonstrating
use case owners. The table also includes a column concerning the testbed providers. In fact, they
will act as Resource Experts and as Quality Experts and will therefore experiment with the UML use
cases associated to these two roles. Demonstrating use case owners, instead, will act mostly as
Application Ops Experts and will all test the core UML cases. The UML use cases concerning bug
prediction, selection of specific resources and optimization will be tested by the respective
demonstrating use case that has specific concerns in the corresponding area.

UML Use Case
Virtual

clinical trial SNOW
Vehicle

IoT
Testbed

providers Released at
UC1 Define Application Deployment Model (WP3) X X X M12, M18, M24

UC2 Select Resources (WP3) X M12, M18, M24

UC3 Generate IaC code (WP4) X X X M12, M18, M24

UC4 Verify IaC (WP4) X X X M12, M18, M24

UC5 Predict and Correct Bugs (WP4) X M12, M18, M24

UC6 Execute Provisioning, Deployment and
Configuration (WP5) X X X

M12, M18, M24,
M33

UC7 Start Application (WP5) X X X
M12, M18, M24,

M33

UC8 Monitor Runtime (WP5) X X X
M12, M18, M24,

M33

UC9 Identify Refactoring Options (WP5) X X X
M18, M24, M30,

M33

UC10 Execute Partial Redeployment (WP5) X X X M18, M24, M33

UC11 Define IaC Bugs Taxonomy (WP4) X M12, M18

UC12 Map Resources and Optimisations (WP3) X X X X M12, M24

UC13 Model Resources (WP3) X X M12, M22, M30

UC14 Estimate Quality Characteristics of
Applications and Workload (WP3) X X M18, M24, M33

UC15 Statically Optimize Application and
Deployment (WP4) X X X M18, M30

UC16 Build Runtime images (WP4) X X X M12, M18, M24

Table 28: Planned coverage of the SODALITE UML use cases by the project’s demonstrating use cases

Project No 825480.

D6.1 - SODALITE platform and use cases implementation plan - Public Page 54
© Copyright Beneficiaries of the SODALITE Project

5 Conclusions
In this deliverable, the implementation plan of the SODALITE platform and use cases was
presented. The document’s goal is to guide, together with deliverable D2.1, the project
developments in order to transform the SODALITE scientific and technological results into a unified
platform with running services and tools. Three iterations of the SODALITE platform are envisioned,
one for each year of the project. By the end of the first year, the initial implementation of the basic
components forming the SODALITE platform will be provided. In parallel, the first iteration of the
development of the Demonstrating Use Cases will be performed. During the second project year,
the focus will be on component integration, delivery of more advanced features, as well as the initial
evaluation of the improvement provided by the SODALITE platform for the Demonstrating Use
Cases. Finally, during the third year of the project, iterative measurements of the results produced
by the SODALITE platform will be taken and based on these measurements, additional
improvements will be applied to the SODALITE system.

It easily follows that the requirements stemming from WP2 will evolve over time and as a result,
the SODALITE requirement catalogue will be updated based on the main iterations within the
project. Consequently, it is expected that small adaptations/updates on the initial SODALITE
platform and use cases implementation plan will be required in order to meet the final project
requirements. Any such adaptations/updates will be reported in future deliverables D6.2, D6.3,
and D6.4, “Implementation and evaluation of the SODALITE platform and use cases”.

Project No 825480.

D6.1 - SODALITE platform and use cases implementation plan - Public Page 55
© Copyright Beneficiaries of the SODALITE Project

Appendix A
As already described in Section 4 of the document, the Appendix provides the specific requirements
for the three demonstrating use cases of SODALITE, extracted by the use case owners during the
first iteration of requirements elicitation within WP2. Please note that the “Rationale” field has not
been filled out for every requirement, as it was optional for the use case owners to provide
information in this regard.

A1. POLIMI Snow UC

Id. Title Description

SNOW.R1 UGIC throughput The user generated image crawler should acquire images
respecting the query limit of the API

Rationale Scope

The Snow UC starts with either the acquisition of user generated content or of images from
fixed-position web cams. Maximum throughput is limited by the admitted frequency
acquisition of the sources.

Runtime

Id. Title Description

SNOW.R2 UGIC parallelism The user generated image crawler should query sub-regions
in parallel

Rationale
Scope
Runtime

 Parallel acquisition increases input throughput.

Id. Title Description

SNOW.R3 UGIC API key The user generated image crawler of each sub-region should
use a different API key

Rationale
Scope
Runtime

 This technique is used to increase parallelism by using multiple clients.

Id. Title Description

Project No 825480.

D6.1 - SODALITE platform and use cases implementation plan - Public Page 56
© Copyright Beneficiaries of the SODALITE Project

SNOW.R4 UGIC locality Despite distribution, the images of a sub-region should be
stored in the same logical space

Rationale
Scope
Runtime

Parallelism may increase the overall throughput, but the data set should be accessed
uniformly w.r.t. the region of persinence of images.

Id. Title Description

SNOW.R5 UGIC scheduling The user generated image crawler should execute at a
predefined interval (e.g., once per week) at scheduled time

Rationale
Scope
Runtime

 In this way, images are sampled with known frequency.

Id. Title Description

SNOW.R6 MRC throughput2 The mountain relevance classifier should classify 100
image per second

Rationale
Scope
Runtime

 MRC should execute fast to discard irrelevant data quickly.

Id. Title Description

SNOW.R7 MRC HW1 The SIFT feature extraction could be accelerated exploiting
the GPU

Rationale
Scope
Runtime

The present implementation does not exploit GPU computation, which is a desirable
improvement.

Id. Title Description

SNOW.R8 MRC HW2 The SVM classification could be accelerated exploiting the
GPU

Project No 825480.

D6.1 - SODALITE platform and use cases implementation plan - Public Page 57
© Copyright Beneficiaries of the SODALITE Project

Rationale
Scope
Runtime

The present implementation does not exploit GPU computation, which is a desirable
improvement.

Id. Title Description

SNOW.R9 MRC parallelism1 The mountain relevance classifier should batch images
choosing the batch size based on the conditions of the
computation infrastructure: size of the batch, available
transfer bandwidth, number of available GPU nodes.

Rationale
Scope
Runtime

Batching may improve the throughput, by making better use of classifier instances.

Id. Title Description

SNOW.R10 MRC parallelism2 The mountain relevance classifier should extract image
features in parallel to SVM classification

Rationale
Scope
Runtime

The two processes are independent, and their parallelization could improve end-to-end
performance.

Id. Title Description

SNOW.R11 MRC availability The mountain relevance classificator should be triggered by
the availability of (a batch of) images to classify

Rationale
Scope
Runtime

This solicits the capability of handling application-defined events in the deployed
architecture.

Id. Title Description

SNOW.R12 WIC throughput The webcam crawler should crawl up to 1 image per minute
per webcam

Rationale Scope

Project No 825480.

D6.1 - SODALITE platform and use cases implementation plan - Public Page 58
© Copyright Beneficiaries of the SODALITE Project

Web cams have variable frame update frequency, which should be normalized at 1 minute
for regularizing acquisition.

Runtime

Id. Title Description

SNOW.R13 WIC hw The webcam crawler should have access to distributed
storage system with guarantees of data replication and high
availability.

Rationale Scope

 Loss of images would harm the temporal continuity of the data set, so high availability is
important.

Runtime

Id. Title Description

SNOW.R14 WIC parallelism1 The crawler of each webcam should be executed in parallel

Rationale Scope

 Parallel acquisition improves input throughput. Runtime

Id. Title Description

SNOW.R15 WIC
parallelism2

The crawler of each webcam could be executed on different machines but
should save all the daily images of a webcam in the same logical space

Rationale Scope

 Images should be accessible per web cam / location easily. Runtime

Id. Title Description

SNOW.R16 WIC availability1 The webcam crawler should run in day time only (6am -
19pm)

Rationale Scope

 Night images cannot be processed. Runtime

Id. Title Description

Project No 825480.

D6.1 - SODALITE platform and use cases implementation plan - Public Page 59
© Copyright Beneficiaries of the SODALITE Project

SNOW.R17 WIC availability2 The webcam crawler should issue an alert if webcam is
down

Rationale Scope

For temporal continuity of the data set, webcam downtime
should be minimized.

Runtime

Id. Title Description

SNOW.R18 WIC availability3 The failure of a webcam crawler node should be signalled
and an equivalent process re-instantiated to avoid losing
unrecoverable data

Rationale Scope

 For temporal continuity of the data set, webcam crawling
downtime should be minimized.

Runtime

Id. Title Description

SNOW.R19 WIC availability4 The crawled images should be replicated against disk
failures

Rationale Scope

No way to re-acquire them, if lost. Runtime

Id. Title Description

SNOW.R20 WFC throughput The weather filter should process up to 100 images per
second

Rationale Scope

Discarding irrelevant data as quickly as possible is
important.

Runtime

Id. Title Description

SNOW.R21 WFC HW Edge extraction could be accelerated exploiting the GPU

Rationale Scope

Project No 825480.

D6.1 - SODALITE platform and use cases implementation plan - Public Page 60
© Copyright Beneficiaries of the SODALITE Project

The present implementation does not exploit the GPU,
which is a relevant improvement.

Runtime

Id. Title Description

SNOW.R22 WFC parallel1 The weather filter should filter images of different webcams
in parallel

Rationale Scope

This would improve the throughput for downstream
processing.

Runtime

Id. Title Description

SNOW.R23 WFC parallel2 The weather filter of each webcam could be executed on
different machines but should save images in the same
logical space where the corresponding webcam images
reside

Rationale Scope

Images should be easily accessible per webcam and
location.

Runtime

Id. Title Description

SNOW.R24 WFC availability The weather filter should be triggered by the availability of
(a batch of) webcam images

Rationale Scope

This solicits the capability of the deployed architecture to
provide application based triggers.

Runtime

Id. Title Description

SNOW.R25 DMIA throughput The DMI aggregator should process up to 100 images per
second

Rationale Scope

To increase the throughput for downstream processing. Runtime

Project No 825480.

D6.1 - SODALITE platform and use cases implementation plan - Public Page 61
© Copyright Beneficiaries of the SODALITE Project

Id. Title Description

SNOW.R26 DMI - webcams The DMI of different days for different webcams should be
calculated in parallel

Rationale Scope

 As computation is independent, this improves throughput. Runtime

Id. Title Description

SNOW.R27 DMI - aggregators The DMI aggregator should batch images to aggregate,
choosing a batch size based on the conditions of the
computing infrastructure

Rationale Scope

 Batching can better load the available DMI aggregator
instances.

Runtime

Id. Title Description

SNOW.R28 DMI - storage Despite distribution, the DMI aggregator should store the
median image in the same logical space as the daily data
series it comes from

Rationale Scope

 DMI should be easily accessible by webcam and location. Runtime

Id. Title Description

SNOW.R29 DMI - trigger The DMI aggregator should be triggered by the availability of
a batch of images

Rationale Scope

This solicits the capability of the deployed architecture to
handle application defined triggers.

Runtime

Id. Title Description

SNOW.R30 MIGR-SE throughput The skyline extractor module should process up to 50
images per second

Project No 825480.

D6.1 - SODALITE platform and use cases implementation plan - Public Page 62
© Copyright Beneficiaries of the SODALITE Project

Rationale Scope

This ensures the possibility of scaling the number of web
cams.

Runtime

Id. Title Description

SNOW.R31 MIGR-SE hardware The execution of the DL model of the skyline extraction could
be accelerated exploiting the GPU

Rationale Scope

The present implementation does not exploit the GPU,
which is a relevant improvement.

Runtime

Id. Title Description

SNOW.R32 MIGR-SE parallelism The execution of the DL model of the skyline extraction
should be applied one image at a time, but different GPUs
could run more than one instance

Rationale Scope

 The present implementation does not exploit allocation to
multiple GPUs, which is a relevant improvement.

Runtime

Id. Title Description

SNOW.R33 MIGR-SE scheduling The skyline extraction should be computed on demand

Rationale Scope

This solicits the deployed architecture to support user-
defined triggers.

Runtime

Id. Title Description

SNOW.R34 MIGR-SE accessibility The skyline extraction should be exposed as a service
callable on the internet

Rationale Scope

Skyline extraction could be exploited for alternative
purposes, also by third party applications.

Runtime

Project No 825480.

D6.1 - SODALITE platform and use cases implementation plan - Public Page 63
© Copyright Beneficiaries of the SODALITE Project

Id. Title Description

SNOW.R35 MIGR-SE throughput The skyline extraction should be computed in real time (e.g.,
100ms)

Rationale Scope

This would enable to use skyline extraction also in
alternative applications, e.g, based on a mobile phone
interface.

Runtime

Id. Title Description

SNOW.R36 MIGR-SE availability The skyline extraction must have high availability

Rationale Scope

Skyline extraction determines the computation of snow
indexes, which should be maximally continuous in time and
space

Runtime

Id. Title Description

SNOW.R37 MIGR-360PG throughput The panorama generator should compute 10 panoramas
per second

Rationale Scope

Panorama computation influences the alignment time,
which is essential for image geo-registration.

Runtime

Id. Title Description

SNOW.R38 MIGR-360PG hardware1 The panorama generator should be accelerated exploiting
the GPU (for the DEM render generation).

Rationale Scope

The present implementation does not exploit the GPU,
which is a relevant improvement.

Runtime

Id. Title Description

Project No 825480.

D6.1 - SODALITE platform and use cases implementation plan - Public Page 64
© Copyright Beneficiaries of the SODALITE Project

SNOW.R39 MIGR-360PG Availability1 The panorama generator should be computed on demand

Rationale Scope

This solicits the deployed architecture to support user-
defined triggers.

Runtime

Id. Title Description

SNOW.R40 MIGR-360PG Availability2 The panorama generator should be exposed as a service
callable on the internet

Rationale Scope

 For use by third party applications. Runtime

Id. Title Description

SNOW.R41 MIGR-360PG Availability3 The panorama generator should be computed in real time
(e.g., <50ms)

Rationale Scope

Panorama generation impacts image geo-registration,
necessary for downstream processing.

Runtime

Id. Title Description

SNOW.R42 MIGR-360PG Availability4 The panorama generator must have high availability

Rationale Scope

 Failures block image geo-registration and downstream
processing.

Runtime

Id. Title Description

SNOW.R43 MIGR-PA throughput The peak aligner should process 20 images per seconds

Rationale Scope

Project No 825480.

D6.1 - SODALITE platform and use cases implementation plan - Public Page 65
© Copyright Beneficiaries of the SODALITE Project

Alignment conditions image geo-registration, necessary for
snow index contextualization.

Runtime

Id. Title Description

SNOW.R44 MIGR-PA Parallelism The peak aligner should process images in parallel

Rationale Scope

Parallelism would improve throughput for downstream
processing.

Runtime

Id. Title Description

SNOW.R45 MIGR-PA throughput The peak aligner should be computed in real time (e.g.
<20ms)

Rationale Scope

Fast alignment is required for scaling the number of
webcam images.

Runtime

Id. Title Description

SNOW.R46 MIGR-PA Availability1 The peak aligner should be computed on demand

Rationale Scope

This solicits the deployed architecture to support user-
defined triggers.

Runtime

Id. Title Description

SNOW.R47 MIGR-PA Availability2 The peak aligner should be exposed as a service callable on
the internet

Rationale Scope

 For use by third party applications. Runtime

Id. Title Description

SNOW.R48 MIGR-PA Availability4 The peak aligner must have high availability

Project No 825480.

D6.1 - SODALITE platform and use cases implementation plan - Public Page 66
© Copyright Beneficiaries of the SODALITE Project

Rationale Scope

 Alignment conditions snow index calculations. Runtime

Id. Title Description

SNOW.R49 SMC throughput The snow mask calculator should process 20 images per
second

Rationale Scope

SMC fast computation is needed to scale the number of
webcam images.

Runtime

Id. Title Description

SNOW.R50 SMC throughput The snow mask calculator could be accelerated exploiting
the GPU to run the SVM classifier

Rationale Scope

The present implementation does not exploit the GPU,
which is a relevant improvement.

Runtime

Id. Title Description

SNOW.R51 SMC throughput The snow mask calculator could be accelerated exploiting
the GPU (requires re-implementing the classifier using CNN)

Rationale Scope

The present implementation does not exploit the GPU,
which is a relevant improvement.

Runtime

Id. Title Description

SNOW.R52 SMC parallel The snow mask calculator should process images in parallel

Rationale Scope

 This increases output throughput. Runtime

Id. Title Description

Project No 825480.

D6.1 - SODALITE platform and use cases implementation plan - Public Page 67
© Copyright Beneficiaries of the SODALITE Project

SNOW.R53 SMC availability The snow mask calculator should be triggered offline for a
batch of image+mountain mask pairs

Rationale Scope

This solicits the deployed architecture to support
application defined triggers.

Runtime

Id. Title Description

SNOW.R54 SIC throughput The snow index calculator should process 20 images
processed by second

Rationale Scope

This is needed for scaling the number of webcam images. Runtime

Id. Title Description

SNOW.R55 SIC hw The snow index calculator could be accelerated by exploiting
the GPU

Rationale Scope

The present implementation does not exploit the GPU,
which is a relevant improvement.

Runtime

Id. Title Description

SNOW.R56 SIC parallel Different images can be processed in parallel

Rationale Scope

This would support high output throughput. Runtime

Id. Title Description

SNOW.R57 SIC availability

The snow mask calculator should be triggered offline for a
batch of snow+mountain mask pairs

Rationale Scope

Project No 825480.

D6.1 - SODALITE platform and use cases implementation plan - Public Page 68
© Copyright Beneficiaries of the SODALITE Project

This solicits the capability of the deployed architecture to
support user-defined triggers.

Runtime

A1.1 POLIMI Snow UC - Domain assumptions

Id. Title Description

SNOW.D1 MIGR-360PG hardware2 If the GPUs are NVIDIA, the drivers installed should be Open-
Source Nouveau.

Rationale Scope

 Application Container

Id. Title Description

SNOW.D2 MIGR-360PG parallelism The panorama generator should execute in parallel for
different images

Rationale Scope

 Runtime

Id. Title Description

SNOW.D3 MIGR-360PG storage The panorama generator should allocate DEM data as
follows: SPACE: 71GB (DEM3 World coverage), 12GB (DEM
1 Alps coverage), 638GB (DEM1 World coverage | recently
released)

Rationale Scope

 Application Container

A2. USTUTT Virtual Clinical Trial UC

Id. Title Description

Project No 825480.

D6.1 - SODALITE platform and use cases implementation plan - Public Page 69
© Copyright Beneficiaries of the SODALITE Project

VCT.R1 Deployment of a storage
system

SODALITE should support the deployment of a storage
system able to fulfil the requirements of the virtual clinical
trials case study in terms of I/O speed

Rationale Scope

The simulation chain starts with input data and subsequently data is produced
at every step in the chain which serves as input to the next step. This data
needs to be stored and accessed. The patient data may be located in external
data repositories.

Runtime

Id. Title Description

VCT.R2 MPI SODALITE must support DevOps team in deploying their
applications components on an MPI (Message Passing
Interface)-compliant HPC system

Rationale Scope

Some parts of the simulation chain like the Code Aster solver rely on MPI to
achieve parallelism. So MPI must be supported by the SODALITE framework.

Runtime

Id. Title Description

VCT.R3 Data Parallelism Start multiple instances of a program each with a different
portion of the input data.

Rationale Scope

Independent input data can be handled independently by multiple instances
of a process in the simulation chain, such that data parallelism can be
employed as an optimization step.

Application Optimiser

Id. Title Description

VCT.R4 IDE Data Parallelism Specify which parts of an application use data parallelism.

Rationale Scope

The IDE should enable data parallelism modelling (see requirement VCT.R3). Application Developer
Editor

Id. Title Description

Project No 825480.

D6.1 - SODALITE platform and use cases implementation plan - Public Page 70
© Copyright Beneficiaries of the SODALITE Project

VCT.R5 Different Runtime
Environments

Support different runtime environments.

Rationale Scope

The different components of the application are written in different
programming languages and need different runtime environments. So far.
mostly C/C++, Fortran and Python are used. In addition, some implementation
of MPI (preferably OpenMPI) must be available for some components. It
should also be possible to add more if needed (e.g. JVM).

Runtime

Id. Title Description

VCT.R6 Automatic resource allocation Automatically allocate, configure and start storage and
compute nodes for components of the simulation chain.

Rationale Scope

Automation in resource provisioning will decrease deployment time, as well as
enable a reusable configuration.

Runtime

Id. Title Description

VCT.R7 Extraction process SODALITE must support the deployment and configuration
of the Extraction component on a vCPU

Rationale Scope

Extraction process is a single core problem. Runtime

Id. Title Description

VCT.R8 Discretization process Discretizing and generating a mesh requires 1-2 vCPUs and
3-4 GB RAM

Rationale Scope

Discretization process is more or less a single core problem. Runtime

Id. Title Description

Project No 825480.

D6.1 - SODALITE platform and use cases implementation plan - Public Page 71
© Copyright Beneficiaries of the SODALITE Project

VCT.R9 Parallel Material Mapper Support parallel execution within parts of the simulation
chain. This will probably require 1-2 HPC nodes or 1-2
HPVMs (High Performance Virtual Machines). This
requirement is yet to be determined.

Rationale Scope

In the probabilistic approach to mapping density to elasticity, the
computations for the cells within the geometry can be executed independently
of each other. A parallel workflow is needed to speed up the overall
computation time.

Runtime

Id. Title Description

VCT.R10 Solver Process Solver must be run on 2 HPC nodes with the characteristics
defined in the testbed description

Rationale Scope

To the best of our knowledge, solving using finite element methods is
computationally intensive and requires at least 2 HPC nodes to be run on.

Runtime

Id. Title Description

VCT.R11 Fast interconnect Support fast networking performance

Rationale Scope

The intercommunication between processes deals with large dataset
(messages), therefore the communication between the processes must not
bottleneck the overall performance.

Runtime

Id. Title Description

VCT.R12 Fast storage Support fast I/O performance

Rationale Scope

The read and write operations on the storage devices must perform well with
large dataset.

Runtime

Id. Title Description

VCT.R13 MTU (Maximum Transmission
Unit) size

Support for jumbo frames

Project No 825480.

D6.1 - SODALITE platform and use cases implementation plan - Public Page 72
© Copyright Beneficiaries of the SODALITE Project

Rationale Scope

To boost communication performance, jumbo frames must be supported on
the underlying network infrastructure to transmit larger messages, e.g.
switches/routers.

Runtime

Id. Title Description

VCT.R14 Data Model Persistence
property

The IDE must provide the persistence property of the data
model, such that the data will be stored permanently or
temporarily

Rationale Scope

The lifetimes of the data that is produced at various stages of the simulation
differs. Some needs to be stored only temporarily, some needs to be stored
for the whole simulation process, some needs to even outlive the simulation.

Application Developer
Editor

Id. Title Description

VCT.R15 Establish the relationship
between data models and
process models

IDE must provide a way to establish a relationship between
data model and a process model

Rationale Scope

It is important for the simulation chain to map the input and output data that
are consumed and produced by the respective processes in the chain.

Application Developer
Editor

Id. Title Description

VCT.R16 Incorporating third party
components

IDE must provide a way to specify third party components
(programs/algorithms) that act on data. This can either take
the form of the application model itself or it can be a service
model/container to be specified.

Rationale Scope

Due to the complexity of describing certain computational tasks in terms of
models (modelling functional requirements of application) it must be possible
to use existing software packages/libraries.

Application Developer
Editor

Project No 825480.

D6.1 - SODALITE platform and use cases implementation plan - Public Page 73
© Copyright Beneficiaries of the SODALITE Project

Id. Title Description

VCT.R17 Geometry Surface Data
Model

IDE must provide a data model that represents the geometry
surface of the vertebral bodies. It must have a “temporary”
persistence property.

Rationale Scope

See requirement VCT.R14. Application Developer
Editor

Id. Title Description

VCT.R18 Send produced data to
temporal storage

IDE must provide a way to specify that the output data from
this step needs to be stored until the discretization
component (yet to be specified) has finished.

Rationale Scope

For each step in the chain, the data that is produced needs to live at least
until the next step has finished. This is because all data produced in one step
are consumed in the next step.

Application Developer
Editor

A2.1 USTUTT Virtual Clinical Trial UC - Domain assumptions

Id. Title Description

VCT.D1 MCA Model Within the extraction component some implementation of
MCA (Marching Cubes Algorithm) needs to be available as
a third-party model/service.

Rationale Scope

See requirement VCT.R16. Application Developer
Editor

A3. ADPT Vehicle IoT UC

Id. Title Description

VIoT.R1 Standards compliance Platform must be compliant with ISO 20078

Project No 825480.

D6.1 - SODALITE platform and use cases implementation plan - Public Page 74
© Copyright Beneficiaries of the SODALITE Project

Rationale Scope

ISO 20078 (the Extended Vehicle) provides clear requirements for platforms
managing Connected Car data, resources access, and service deployment
which the use case must ultimately be capable of satisfying.

Runtime, Use Case
Implementation

Id. Title Description

VIoT.R2 Multi-arch Container
Deployment & Orchestration

Platform must be able to support deployment and
orchestration across multi-arch container images.

Rationale Scope

The Vehicle IoT UC involves deployment of containerized components onto
systems with different CPU architectures (specifically - x86_64, armhf,
arm64). This scenario is prepared for by providing multi-arch Docker images
through the Docker manifest - SODALITE orchestration should be able to
match the appropriate image to the deployment target.

Runtime

Id. Title Description

VIoT.R3 GPU Acceleration for Online
ML model training

Platform should make use of (dynamically available) GPU
resources for accelerated training of ML models by the use
case, this may include resources both in the Cloud and at
the Edge.

Rationale Scope

A number of ML pipelines used by the use case depend on CV application,
which can be accelerated with GPUs. GPU resources may exist at various times
at various locations in the deployment (e.g. in the Cloud backend, or in the
Edge Gateway) which may be used.

Runtime

Id. Title Description

VIoT.R4 Cloud Function Deployment &
Orchestration from Cloud-to-
Edge

Platform must support deployment and orchestration of
cloud functions from Cloud-to-Edge

Rationale Scope

Services that support the use case will be deployed as dedicated cloud
functions, which may at various times need to be deployed and activated at
different hierarchical levels (Cloud backend, Edge Gateway, etc.).

Runtime

Id. Title Description

Project No 825480.

D6.1 - SODALITE platform and use cases implementation plan - Public Page 75
© Copyright Beneficiaries of the SODALITE Project

VIoT.R5 Encrypted Data Storage &
Analytics

Platform must be able to store and operate on large
encrypted data sets based on sensitive data, including
personal data, vehicle telemetry, etc.

Rationale Scope

GDPR requirements and DPA guidelines necessitate encryption at rest and in-
processing

Runtime

Id. Title Description

VIoT.R6 Encrypted / Sensitive Data
Storage Classification

The IDE must provide a mechanism by which a developer is
able to define data as sensitive/non-sensitive for
subsequent data-at-rest/data-in-processing encryption.

Rationale Scope

GDPR requirements and DPA guidelines necessitate encryption at rest and in-
processing (further provides support for the implementation of VIoT.R5)

Application Developer
Editor

A3.1 ADPT Vehicle IoT UC - Domain assumptions

Id. Title Description

VIoT.D1 Cloud Backend<->Edge Gateway Connectivity The Cloud backend and
Edge gateways must be
able to communicate with
each other.

Rationale Scope

The Edge gateway will implement a subset of functionality available from the
Cloud backend, and will further defer to the Cloud backend for certain
operations (as well as to synchronize state across instances). The Cloud
backend, in turn, must be able to access the Edge gateways in order to
reconfigure and deploy Edge-based services, while also providing a central
point for e.g. fleet-wide analytics across multiple Edge instances in later
stages of the project.

Runtime

Id. Title Description

VIoT.D2 Multi-arch Container Deployment & Orchestration Container orchestration
and deployment is able to
handle x86_64, armhf, and
arm64 target architectures.

Rationale Scope

Project No 825480.

D6.1 - SODALITE platform and use cases implementation plan - Public Page 76
© Copyright Beneficiaries of the SODALITE Project

See VIoT.R2 Runtime

Project No 825480.

D6.1 - SODALITE platform and use cases implementation plan - Public Page 77
© Copyright Beneficiaries of the SODALITE Project

References

[1] https://protege.stanford.edu/
[2] http://graphdb.net/
[3] https://www.w3.org/TR/sparql11-query/
[4] https://www.eclipse.org/Xtext/
[5] https://www.eclipse.org/
[6] https://wiki.eclipse.org/Xpand
[7] https://www.eclipse.org/acceleo/
[8] https://wiki.eclipse.org/Orion
[9] https://ace.c9.io/
[10] https://codemirror.net/
[11] https://dslforge.org/
[12] https://www.eclipse.org/sirius/
[13] https://www.eclipse.org/graphiti/
[14] https://www.cresta-project.eu/
[15] https://www.maestro-data.eu/
[16] https://www.ansible.com/
[17] https://www.chef.io/ansible/
[18] https://www.docker.com/
[19] https://sylabs.io/singularity/
[20] https://hpc.github.io/charliecloud/index.html
[21] https://github.com/eth-cscs/sarus
[22] https://github.com/xlab-si/xopera-opera
[23] https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca
[24] http://skydive.network/
[25] https://prometheus.io/
[26] https://grafana.com/
[27] https://wp.cloudify.co/
[28] https://puppet.com/
[29] https://github.com/ari-apc-lab/croupier
[30] http://www.adaptivecomputing.com/products/torque/
[31] https://slurm.schedmd.com/
[32] https://github.com/TANGO-Project/alde
[33] https://www.openstack.org/
[34] https://docs.openstack.org/nova/latest/
[35] https://wiki.openstack.org/wiki/Ironic
[36] https://wiki.openstack.org/wiki/Cinder
[37] https://wiki.openstack.org/wiki/Neutron
[38] https://kubernetes.io/
[39] https://kubernetes.io/docs/concepts/workloads/pods/pod/
[40] https://kubernetes.io/docs/concepts/services-networking/service/
[41] http://www.adaptivecomputing.com/products/torque/
[42] http://www.adaptivecomputing.com/moab-hpc-basic-edition/
[43] http://docs.adaptivecomputing.com/maui/
[44] https://www.mikelangelo-project.eu/technology/vtorque-virtualization-support-for-torque/
[45] https://www.mikelangelo-project.eu/
[46] https://jenkins.io/
[47] See www.vtk.org and www.itk.org
[48] https://www.sciencedirect.com/science/article/pii/S004578250900084X

