C’ Sodalite

SOftware Defined AppLication Infrastructures managemenT and Engineering

|aC Management -
initial version

D4.1

XLAB
31.7.2020

* X %

E This project has received funding from the European Union’s Horizon 2020 research and innovation

* *

Fak programme under grant agreement No 825480.



Project No 825480.

‘¥ Sodalite

Deliverable data

Deliverable

laC management - Initial version

Dragan Radolovi¢ (XLAB)
Nejc Bat (XLAB)

Elisabetta Di Nitto (POLIMI)

Mehrnoosh Askarpour (POLIMI)

Authors Karthee Sivalingam (CRAY)
Indika Kumara (JADS/UVT)
Panagiotis Mhtzias, Georgios Meditskos (CERTH)
Kalman Meth (IBM)
Reviewers Mario Martinez Requena (ATOS)
Anastasios Karakostas (CERTH)
Dissemination Public
level
Dragan Radolovic (XLAB) Outline created 12.9.2019
All Partner contributions 30.12.2019
All Add|t|or?al p.artner 9.1.2020
contributions
Reactions to
All comments of first 22.1.2020
review
Corrections made
according to review
All suggestions and 24.1.2020
History of resubmission into
changes internal review
Final version and
Nejc Bat (XLAB) preparation for 29.1.2020
submission
Revised based on the
feedback:
- Literature review
added
All - Architecture section 10.7.2020
restructured
- Components
matched with
background
technologies and the
D4.1 SODALITE IaC Management -Initial version - Public Page 1

© Copyright Beneficiaries of the SODALITE Project



** Project No 825480. ? Sodalite

UCs that they
support

- Motivation for
development of
individual
component added

- Document structure
reordered

- Overall text
adjustments

Prepared for internal

QA 13.7.2020

Nejc Bat (XLAB)

Finalised and passed

through internal QA

check, prepared for
re-submission

Nejc Bat (XLAB) 31.7.2020

Acknowledgement

The work described in this document has been conducted within the Research & Innovation action
SODALITE (project no. 825480), started in February 2019, and co-funded by the European
Commission under the Information and Communication Technologies (ICT) theme of the H2020
framework programme (H2020-1CT-16-2018: Software Technologies)

D4.1 SODALITE laC Management -Initial version - Public Page 2
© Copyright Beneficiaries of the SODALITE Project



o & Project No 825480.

‘¥ Sodalite

Table of Contents

List of figures
Executive Summary
Glossary

1 Introduction
1.1 Structure of the document

2 Description of Technology Stack
2.1 WP4 baseline technology stack
2.1.1 TOSCA
2.1.2 Ansible Actuation
2.2 Overview of SODALITE architecture
2.3 WP4 layer description
2.3.1 Components

2.4 Relationships with other SODALITE layers

2.4.1IDE
2.4.2 APl Interfaces

3 Literature review

3.1 Deployment preparation and Infrastructure management

3.2 Performance optimization

3.3 Semantic decision support
3.3.11aC Smell and Bug Taxonomy
3.3.21aC Verification
3.3.31aC Smell and Bug Prediction

4 Image Builder

4.1 Background and concepts

4.2 Components
4.2.1 Motivation
4.2.1 Runtime Image Builder
4.2.2 Concrete Image Builder
4.2.3 Image Registry

4.3 Development status

4.4 Next steps

5 Deployment Preparation
5.1 Background and concepts
5.2 Components
5.2.1 Motivation
5.2.2 Abstract Model Parser

10
10
10
10
12
12
13
15
15
15

16
16
18
19
19
19
20

21
22
23
23
23
25
25
26
26

27
27
28
28
29

D4.1 SODALITE IaC Management -Initial version - Public
© Copyright Beneficiaries of the SODALITE Project



o & Project No 825480.

‘¥ Sodalite

5.2.3 1aC Blueprint Builder
5.3 Development status
5.4 Next steps

6 Performance Optimisation
6.1 Background and concepts
6.1.1 CRESTA Autotuning framework
6.1.2 Universal Data Junction

6.1.3 Maestro data orchestration middleware
6.1.4 MAMBA - Managed Abstract Memory Arrays

6.2 Components
Motivation
6.2.1 Application Optimiser
6.2.2 laC Model Repository
6.3 Development status
6.4 Next steps

7 1aC Verification, Defect Prediction and Correction

7.1 Background and concepts
7.2 Components
7.2.1 Motivation
7.2.2 Bug Predictor and Fixer
7.2.3 Predictive Model Builder
7.2.41aC Quality Assessor
7.2.5 1aC Verifier
7.2.6 Topology Verifier
7.2.7 Provisioning Workflow Verifier
7.2.8 Verification Model Builder
7.3 Development status
7.4 Next steps

8 Conclusion

References

29
30
30

31
31
32
33
33
33
33
33
33
34
36
36

37
37
38
38
38
39
39
40
41
42
42
43
43

45

46

D4.1 SODALITE IaC Management -Initial version - Public

© Copyright Beneficiaries of the SODALITE Project



Project No 825480. 3 Sodalite

D4.1 SODALITE lIaC Management -Initial version - Public Page 5
© Copyright Beneficiaries of the SODALITE Project



> .
: Project No 825480. ’ SOdallte

Executive Summary

This deliverable presents the status of development of the Infrastructure as Code (l1aC) layer within
the SODALITE platform, as well as the integration with other components and tools in SODALITE
platform at the end of the first year of the project.

The main focus is to cover the background, research and development progress of the SODALITE
project in the field of laC management. The document first describes the underlying technologies
used in the production of the SODALITE system. It then continues to describe the Infrastructure
Management Support that takes care of the building of the application images. Later, the
Deployment Preparation and Optimization procedures are presented. The document concludes
with the presentation of the Analytic and Semantic Decision support system that is responsible for
the bug prediction and refinement of the deployed images. Overall, the report aims at describing
the deployment preparation process and performance optimisation tasks with a preliminary
definition of predictive and corrective analysis of the quality of infrastructure-as-code produced
before deployment.

Three iterations of this deliverable are planned, one at the end of each year of the project. By the
end of Year 1, an initial implementation of the basic components making the SODALITE platform
has been set up. During Year 2 progress in integration of the components are expected, more
advanced features, and initial evaluation of the improvement provided by the SODALITE platform.
In Year 3 the consortium expects to have a framework of tools able to model, provision, optimise
and deploy applications on heterogeneous environments as the final result of the development of
the SODALITE platform.

D4.1 SODALITE lIaC Management -Initial version - Public Page 6
© Copyright Beneficiaries of the SODALITE Project



. x > .
SN Project No 825480. ’ SOdallte

Glossary

Acronym Explanation

Al Artificial Intelligence

AOE Application Ops Expert
The equivalent process from the ISO/IEC/IEEE standard 12207 Systems
and software engineering — Software life cycle processes is Operation
processes and maintenance processes

API Application Program Interface

CPU Central Processing Unit

CRESTA Collaborative Research into Exascale Systemware, Tools & Applications

DSL Domain-Specific Language

EMF Eclipse Modeling Framework

ETL Extract, Transform, Load

GPU Graphical Processing Unit

FPGA Field-Programmable Gate Array

HPC High Performance Computing

laC Infrastructure as Code

laaS Infrastructure as a Service

IDE Integrated Development Environment

JSON JavaScript Object Notation

MAMBA Managed Abstract Memory Arrays

M2T Model-to-Text

OASIS Organization for the Advancement of Structured Information Standards

QE Quality Expert
The equivalent process from ISO/IEC/IEEE standard 12207 Systems and
software engineering — Software life cycle processes: Infrastructure
management and Configuration management processes

QoS Quality of Service

RDF Resource Description Framework

RE Resource Expert
The equivalent process from ISO/IEC/IEEE standard 12207 Systems and
software engineering — Software life cycle processes is Quality
Management and Quality assurance processes

REST Representational State Transfer

SHACL Shapes Constraint Language

D4.1 SODALITE laC Management -Initial version - Public Page 7

© Copyright Beneficiaries of the SODALITE Project



Project No 825480. ? Sodalite

SSH Secure Shell
TOSCA Topology and Orchestration Specification for Cloud Applications
TLS Transport Layer Security
ubJ Universal Data Junction
UML Unified Modeling Language
D4.1 SODALITE laC Management -Initial version - Public Page 8

© Copyright Beneficiaries of the SODALITE Project



SN Project No 825480. ’ Sodalite

1 Introduction

While more and more organizations and institutions embrace the cloud for infrastructure
provisioning and deployment of applications, the need to manage such complex structures
through different services represent a real challenge for developers and IT operations teams.

The idea to manage these services through Infrastructure as Code (laC) approach is effective and
already acknowledged by an ever-growing community of users and contributors. Since the field of
managing infrastructure through IaC is in an early growth phase there are several different
languages usually bound to service implementation. SODALITE implements and uses laC relying on
existing standards and best practices.

The objective of this deliverable is to present the plan of the Consortium regarding the
development of the SODALITE platform with focus on the Infrastructure as Code (laC)
management, that will serve as the foundation for the development and implementation of the
three SODALITE demonstrating use cases. To this end, this document provides a description of the
resources needed to achieve the components’ functionality that will be developed within
SODALITE and of the platform as a whole, as well as a report on the plans and status of each
component coupled with information about their practical implementation.

1.1 Structure of the document

This deliverable is structured as follows:

e The remainder of the Introductory section explains the positioning of laC management in
the SODALITE project and reviews the envisioned components for laC management and
their relations to other parts of SODALITE component models. This material adds a level of
detail in the functional description that highlights parts of laC Management from previous
deliverables D2.1 “Requirements, KPIs, evaluation plan and architecture - First version”.

e Section 2 provides a description of the existing technologies that are used for the
development of the platform’s components regarding the laC management. It also depicts
the relationships with other components from the SODALITE platform which are used or
use laC management components in their workflows. This section also provides a short
introduction to sections 3, 4, 5 and 6 which are concrete descriptions of tasks to be
resolved within Work package 4 - 1aC Management.

e Section 3 presents the laC Management and support, which is basically the cornerstone for
building and assembling application deployment in work package building blocks.

e Section 4 features the methods and tools used to parse the abstract model definition, build
the laC blueprint and the actuation scripts which are going to be deployed through the
orchestrator.

e Section 5 describes and tools used to optimize, test and model the runtime image for
performance assuring that the deployed runtime provides the optimal execution.

e Section 6 introduces the approach and presents the tools for semantic validation of l1aC
elements used to prepare the deployment.

e Finally, Section 7 provides concluding remarks and a wrap-up of the document.

D4.1 SODALITE lIaC Management -Initial version - Public Page 9
© Copyright Beneficiaries of the SODALITE Project



RSN Project No 825480. ’ Sodalite

2 Description of Technology Stack

As explained in the Introduction section, the currently envisaged components that make up the
first iteration of the SODALITE platform are summarized above and described in detail in
deliverable D2.1 under the Architecture section. This section describes the technologies that are
used to implement some of the components. Some of the technologies will be further improved
with the features that might be found necessary for the implementation of the SODALITE platform
and tools. It should be noted that these technologies were selected based on the consortium
partners’ expertise, as well as the potential to further uptake the work in several
tools/technologies that were developed as part of past European projects or initiatives, in which
the consortium partners have been involved.

2.1 WP4 baseline technology stack

WP4 covers the aspects of laC (Infrastructure as Code) within the SODALITE project. Abstracting
models and representing them in a simple and understandable way has been a long pursued task
for different fields of computing and Infrastructure and Application deployment modelling are the
one targeted by the SODALITE project.

2.1.1TOSCA

TOSCA! standard was created with the purpose to support Cloud information models, enabling
extensions of the concepts defined by node types or inheritance and thus providing an extensive
level of abstraction. The sheer variety of Cloud services, their resource definitions and
management are challenging for cloud actors since various and non-standard interfaces are
provided to deal with these components.

Additionally, the provided descriptions for cloud resources and services may be ambiguous, mainly
due to allowing different semantics to address the same concepts. In this context, conflicts and
incompatibilities between cloud services take place, increasing the need for human interactions.
Moreover, the lack of semantics represents a key issue contributing to the emergence of such
challenges. TOSCA resolves these issues by adding common and formal descriptions of cloud
services and resources, thus providing the necessary levels of abstractions and interoperability,
enabling the development of intelligent discovery, matchmaking and composition algorithms to
ease the development of software components, and their testing, deployment and management.
SODALITE uses these extendible TOSCA concepts to describe the infrastructure resources,
application deployment topology definitions as nodes, relationships between those nodes,
policies etc.

Since TOSCA is implementation agnostic, meaning that node lifecycle operation implementation
can be done using one of the low-level or high-level programming languages from bash scripts,
python to infrastructure management tools.

2.1.2 Ansible Actuation

As infrastructure provisioning, application deployment and configuration is usually the
cornerstone of DevOps operations, the selection of a high level infrastructure management tool
already known and adopted by the DevOps community, like Puppet?, Chef ®or Ansible*, seems a
natural choice for having the maximum impact on these communities.

Both Chef and Puppet are open-source, mostly designed to help DevOps configure and manage the
infrastructure. While they both have a large number of already tested and verified code
repositories, both Chef and Puppet have been architectured as an Agent-Master solution and thus
need agents installed on each node for configuration, which complicates the deployment
scenarios. The DSL is Ruby-like which is also usually considered more difficult to learn.

D4.1 SODALITE lIaC Management -Initial version - Public Page 10
© Copyright Beneficiaries of the SODALITE Project



. x > .
RSN Project No 825480. ’ SOdallte

Ansible is a provisioning, configuration and application management tool open-sourced by
RedHat. The highlight points are a vast community support and probably the largest set of cloud
infrastructure libraries support (Ansible Galaxy). A simple and clean, declarative YAML DSL, widely
accepted as easy to learn and adopt. Ansible’s inherently simple agentless approach to remote
infrastructure management is implemented through the standard python paramiko SSH library
enabling the DevOps to manage any infrastructure accessible through SSH. Ansible is sequential in
its execution making it a bit slow on scaling, but SODALITE tries to overcome this with the
implementation of parallelization of TOSCA deployments

Figure 1 shows a comparison of interest and questions posted to the known Stack Overflow
developer open community platform regarding the main contendants in the field of Automation
and configuration laC for cloud.

0.30% Tag
0.28% @® ansible
0.26% - @ terraform
@® chef
0.24% @ puppet
0.22% —
0.20% —
0.18%
0.16%
0.14% —
0.12% —
0.10% —
0.08% —
0.06%
0.04%
0.02% - p—.-
0.00% e

% of Stack Overflow questions that month

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Year

Figure 1 - Source Stack Overflow Trends: Comparison between main cloud management
Automation & Configuration contendants

SODALITE provides initial node modelling through TOSCA and configurable Ansible roles and
playbooks as part of the Infrastructure Management Support, thus creating a repository of
predefined actuation scripts used by the orchestrator to deploy, start and monitor application
artifacts. A decision has to be made about whether Chef is to be used as well. This technology may
be used for creating the deployment artifact images by the SODALITE Deployment Preparation
package and is used by the SODALITE Orchestrator as a deployment actuation tool. SODALITE will
provide Ansible collections to support different platforms and execution environments with
parameterization and optimization in mind.

D4.1 SODALITE lIaC Management -Initial version - Public Page 11
© Copyright Beneficiaries of the SODALITE Project



. x > .
RSN Project No 825480. ’ SOdallte

2.2 Overview of SODALITE architecture

Here we present a short synopsis of the SODALITE architecture. This has already been described in
deliverable D2.1 in the architecture section (Section 3). For full details, check the functional
description, inputs, outputs and dependencies of each component.
SODALITE aims to provide developers and infrastructure operators with tools that abstract their
application and infrastructure requirements to enable simpler and faster development,
deployment, operation and execution of heterogeneous applications (e.g. containers,
microservices and HPC jobs running in conjunction) on heterogeneous, software-defined,
high-performance, cloud infrastructures. To this end, SODALITE aims to produce:
- a pattern-based abstraction library that includes application, infrastructure and
performance abstractions,
- a design and programming model for both full-stack applications and infrastructures
based on the abstraction library,
- a deployment framework that enables the static optimization of abstracted applications
onto specific infrastructure,
- automated run-time optimization and management of applications.

The SODALITE platform is divided into three main layers, each implemented in a separate work
package. These layers are the Modelling layer (WP3), the Infrastructure as Code layer (WP4), and
the Runtime layer (WP5). Figure 2 below shows these layers together with their relationships.

SODALITE General Architecture

_ - SODALITE Modeling Layer

P Seme,(ntic ~- PR — T
e ReaspnerAPI _ -~ D S~ S~
B - J N - -
P | _ < use ,use use ~ _use ~_
P -
d N - ~ N

-

’ /J/ [N / N N ~
- 1
|
\

EN
Torque OpenStack Kubernetes O O
ImageRegistryAPI Deployment
PreparationAPI

Figure 2 - SODALITE overall Architecture

2.3 WP4 layer description

The main task of the laC layer is to take the modelling information provided by the SODALITE IDE
(WP3) and produce a working error free 1aC blueprint. Deployment Preparation involves a number
of operations to build an IaC blueprint. These operations are handled by sub-components depicted
in Figure 3 which were introduced in the deliverable D2.1 and described further in this deliverable.

D4.1 SODALITE lIaC Management -Initial version - Public Page 12
© Copyright Beneficiaries of the SODALITE Project



* X x

* %t %

3  Project No 825480.

‘¥ Sodalite

Deployment
Preparation

Abstract Model
Parser

“REST» -~ -7
&

Deployment
PreparationAPI

WP4 Architecture Overview

|
|
|
|
|
|
|
|
luse
|
|
|
|
|

T SODALITE IDE

Image Builder\ — " * |Defect Prediction and Correction
laC Verification
«REST» (R‘E ST»
Concrete Image laC Blueprint 7 3 Bug Predictor
Builder builder use Q 0 (Sl and Fixer
! laCVerificationAPT N DefectPredicti
i } PN JorrgctionAP! o
’ J \
"use //use “use ! suse luse “use Juse  use
. I
| /) L : / | ! \\
| + |Performance ) | N ! N
| . Optimié‘.atiun ) ’ | N 1/ N
| v ) ’ | N v v
| ! ) . | \‘ v v
«REST: «REST» 1 = X s
Runtime Image o“ ! Verification Topology Provisioning Predictive laC Quality
Builder “ Model Builder Verifier Workflow Verifier Model Builder Assessor
Runtimg Application \
\ ImageAHI OptimiserAPI| \ -
A ’ _ -7
\ ‘\ f -
Tuse \ ‘use ~ - “use
v 3 ’ - T
\ \ ‘ -
’ -
- g «REST» -
Application | | use e
Q Optimiser
registry Image data SemanticReasonerAPI
access

Figure 3 - SODALITE infrastructure as code layer components (WP4)
2.3.1 Components

Infrastructure Management Support components play a key utility role in the SODALITE platform
by connecting the modelling and deployment layers. As SODALITE is about the 1aC, special care is
given to apply the laC development approach when building and deploying the components. This
means using laC as much as possible for deployments of SODALITE components, in the integration
pipeline and even using laC when developing SODALITE components to further parameterize the
usage of a component.

The components developed and deployed are part of different UML use cases defined within
SODALITE such as UC16 (Build Runtime images), UC15 (Statically Optimize Application and
Deployment) and mostly UC3 (Generate IaC code) found in Figure 6.

A big part of this work package is also contributing to the definition of the models used for
modelling the infrastructure and application deployment plans. The following subsections
describe the current status of the components and the layout of the development plan. During the
development process, a part of the architecture for the Infrastructure as a Code layer was
redesigned. It was decided not to have two separate independent repositories for l1aC but rather
build this as a single source of information from the SODALITE Knowledge Base, which is accessible
through the SemanticReasonerAPI. Such a solution provides a more robust implementation and
eliminates the issues of synchronization between different sources.

Additional components are envisioned to verify the correctness of the provided model, to predict
possible bugs in the provided model and to optimise the application for a given target execution
platform.

A simple overview of the functionalities and interaction between the components is presented in
Figure 4. The Runtime image builder, builds the runtime images according to the Target
architecture and artifact definition and build context. The Image registry stores the executable
runtime image of the artifact defined in the application design process and built in the SODALITE
deployment preparation process while the laC Blueprint Builder is the central component for the
preparation of the deployable /aC blueprint and related actuation scripts.

D4.1 SODALITE lIaC Management -Initial version - Public
© Copyright Beneficiaries of the SODALITE Project

Page 13



. x > .
RSN Project No 825480. ’ SOdallte

The laC Blueprint Builder internally produces the IaC blueprint based on the input provided in the
abstract application deployment model (AADM) passed to the Abstract Model Parser. 1aC Blueprint
Builder will pass the data as needed to optimise an application if such a step is required by the
user.

An important part of the laC Layer is Application optimiser (MODAK) which if selected may apply
static optimization to the deployed application. Based on benchmarking MODAK sets optimal
compiler directives when building the executables, select optimal container image for specific ML
training applications or set optimal MPI parameters for typical HPC long running jobs. The
Application optimizer gets called from the laC Blueprint Builder to create an optimized job script
which is inserted in TOSCA and later deployed to target architecture.

Simplified SODALITE
Activity Diagram for AppOps Expert

(Deﬁne Abstract Deployment Model)

v A

(Analyze Performance)

improve model?

(Select and Map to resources

optimize application?

yes

=

(Optimize Application components) \

Build Images

(Generale IaCJ‘PIaybooks)

improve model?

Figure 4 - WP4 pipeline schematic

The laC Model repository is part of the knowledge base and contains data about the infrastructure,
benchmarks, mappings, etc.

Special care is taken with regards to the preparation of a flawless and error prone laC deployment
blueprint. Several components are built to provide an error detection and validation framework
which enables the automation of the deployment pipeline. The Bug Predictor and Fixer detects the
smells in TOSCA and Ansible Artifacts and suggests corrections or fixes for each smell. The
Predictive Model Builder builds the models that can find the smells in TOSCA and Ansible artifacts.

D4.1 SODALITE lIaC Management -Initial version - Public Page 14
© Copyright Beneficiaries of the SODALITE Project



** Project No 825480. /’ Sodalite

The laC Quality Assessor can calculate different software quality metrics for TOSCA and Ansible
artifacts. Similarly the laC Verifier acts as a facade to the Topology Verifier and Provisioning
Workflow Verifier, and coordinates the processes of verification of the application deployment
topology and provisioning workflow.

Provisioning Workflow Verifier verifies the constraints over the deployment (provisioning) workflow
of the application, then the Verification Model Builder builds the models required to verify the
deployment model and its provisioning workflow. The Semantic search and Reuse (which is in fact
part of the Topology Verifier) is responsible for implementing semantic search and reuse
capabilities on top of the SODALITE knowledge graph.

2.4 Relationships with other SODALITE layers

WP3 is concerned with the semantic abstractions and the relevant design and modelling of
applications and cloud infrastructures along with their performance characteristics and
deployments. The main software components to support these are:

e the Semantic Knowledge Base - A semantic repository to accommodate SODALITE’s
knowledge in the domains of applications, infrastructure, performance optimisations,
deployment and lifecycle, and more. This knowledge is generated by multiple stakeholders
(e.g. resource experts) and represented into RDF-based knowledge graphs (ontologies),

e the Semantic Reasoner - A dedicated middleware to interact with the Semantic Knowledge
Base by importing/retrieving data, and applying complex, rule-based semantic reasoning.
Thus, the Semantic Reasoner exposes an APl accessible by other system components,

e the SODALITE IDE - A software component to provide complete support for the authoring of
abstract application deployment models with the use of the SODALITE DSL. It also enables
separate views for the monitoring of each deployment’s lifecycle, applied optimisations,
etc.

The following technologies are used for the WP3 developments.

2.4.1I1DE

An Eclipse®-based framework for specifying DSL (Domain-Specific Language) metamodels and
textual edition of conforming model instances. It includes several components, namely a parser,
linker, typechecker, compiler, as well as a textual editor for Eclipse. It is also compatible with any
editor that supports the Language Server Protocol and your favorite web browser. DSL
metamodels/models are EMF (Eclipse Modeling Framework)/Ecore-based. Therefore, it is
compatible with EMF-based M2T (Model-to-Text) transformations tools, such as Xpand® or Acceleo’
for DSL conversion (to SPARQL queries, for example).

Xtext also provides support for Web DSL edition, leveraging existing Web editors such as Orion®,
Ace’ or CodeMirror'.

Around Xtext there are some related technologies. Concretely, DSLForge' provides an integrated
Web IDE (Integrated Development Environment) Workbench for Xtext DSL editors, with a Project
Explorer view and model persistence. Sirius'?> and Graphiti*®> provide a graphical DSL modeling
framework for Eclipse. SODALITE IDE uses these technologies which enable users to define their
DSL using graphical notation in contrast to the textual notation available in XText.

2.4.2 APl Interfaces

A number of REST APl interfaces serve as entry points for modelling and gathering abstract models
from the Knowledge Based ontologies ( ie. semantic graph database that acts as a SPARQL-served
endpoint for ontologies) and some more entry points are still being developed. SODALITE’s
ontologies, created within Protégé", are hosted by a GraphDB" deployment, which supports the
population of system data and the execution of rule-based semantic reasoning. This GraphDB
deployment acts as SODALITE’s Semantic Knowledge Base - repository. The input/output entry
points are implemented as REST API interfaces to be used and integrated in different parts of the
SODALITE stack.

D4.1 SODALITE laC Management -Initial version - Public Page 15
© Copyright Beneficiaries of the SODALITE Project



RSN Project No 825480. ’ Sodalite

3 Literature review

Virtualization of the infrastructure came to life through the widespread implementation of the
Infrastructure as a Service (laaS) paradigm giving birth to different cloud platforms and a plethora
of cloud service based operators (PaaS Platform as a Service models, SaaS Software as a Service
etc.).
Among others the incentives behind the uprisal of “virtualisation“ are clearly:

e provisioning and usage on a time basis is much more cost effective,

e no need for complicated large scale hardware management and upgrades,

e high availability and disaster recovery defined through quality of service (QoS),

e more flexibility in license management.
The issues that such virtualisation and expansion of service based approach introduces are
scalability, inventory management, complex networking management, security policies etc.
Large scale virtual infrastructure systems are difficult to control and manage and therefore usually
need high level code snippets, scripts or other advanced software artifacts to manage resources,
services, deployments, upgrades, etc. The concepts of handling the code produced to manage and
automate infrastructure provisioning and manage systems can be defined as Infrastructure as
Code management.
The Infrastructure as Code is a relatively novel way of interaction and management of resources on
many different levels. 1aC provides effective usage of resources, enables applying security
concepts, versioning and central management and introduces immutability of the execution.
The usage of 1aC in the DevOps toolchain:

e cost effectiveness as automation efforts reduce simple and repetitive tasks,

e speed and efficiency as DevOps teams have tools for releasing infrastructure updates and
services much faster than in manual configuration scenario,

e immutable infrastructure, which applies changes by rebuilding resources instead of
modifying the existing resources,

e minimizes the risk of possible flaws induced by manual configuration management or user
interface interactions,

e possibility of applying traceability, validation and testing helps reduce the number of
errors which helps in mitigating risks and leads to robust setup for built in security.

3.1 Deployment preparation and Infrastructure management

Nowadays deployment and infrastructure management is centered around the adoption of
Infrastructure as Code (IaC)*®. This is an approach to automation of provisioning, configuration and
deployment of infrastructure resources that is based on machine-readable files. These files are
usually configuration files given as input to some software agent that processes them and executes
specific tasks that aim to provision, configure and deploy the user-defined infrastructure. The
configuration files that drive infrastructure automation can be considered as infrastructural
software in all respects.

Within the context of 1aC, a large number of languages and approaches have been developed. They
support coding and automated execution of the phases highlighted in Figure 5%, where
configuration management is related to the deploying and managing at runtime all required
underlying software stack, service provisioning concerns the acquisition of VMs or containers for
executing application-level components, application deployment concerns the installation of the
application on the provisioned resources, monitoring and self-adaptation have to do with the
execution of the application on top of the provisioned and configured resources. As the figure
suggests, some laC languages are focused on the configuration aspects, among these, the most
prominent ones are Chef, Ansible and Puppet. Others are more focused on the provisioning and

D4.1 SODALITE laC Management -Initial version - Public Page 16
© Copyright Beneficiaries of the SODALITE Project



* Project No 825480. ? Sodalite

orchestration. Terraform and TOSCA (as a standard) are the two most notable representatives of
this category.

While Guerriero et al*® focus on identifying the most used approaches based on a survey answered
by practitioners, in the following of this section we will focus on available research and industrial
approaches that aim at covering all or some of the aspects highlighted in Figure 5. Most of the
papers we have found in the literature focus on TOSCA. Some of them present a case study of the
use of TOSCA. In some others, TOSCA is not the main focus, but only a means to achieve some goal.
Some further papers discuss integrating TOSCA with other concepts to combine their benefits.
Wettinger et al. show the use of TOSCA in the DevOps area® *. A core principle of DevOps is to
automate the deployment process to enable continuous software delivery. The authors address
the challenge of combining different DevOps artifacts. For this purpose, a framework is presented
to search public repositories for such artifacts. These artifacts are converted into TOSCA format to
ensure a uniform representation and to enable their combination. Specifically, the transformation
of Chef cookbooks and Juju charms is described. In another paper, Wettinger et al. integrate
Configuration Management with Model-Driven Cloud Management in the context of DevOps™.
Model-driven cloud management provides an overview of the structure of a complex application
and supports the developer in handling necessary infrastructure changes, abstracting from
lower-level actions (like installation or configuration of components), which in turn are provided by
Configuration Management. The DICER approach follows a similar line, with an emphasis on
modeling and deployment with TOSCA for Data Intensive Applications®.

H Chef

; Configuration . “~—— Ansible,
management g

“_Puppet,

e,

\ Server .f':
\ Self-adaptation provisioning Ji

5

Application
[ TOSCA
deplo nt / !
Eiae Cloudify,
Brooklyn,
Terraform, ...

Figure 5 - Typical Ops activities covered by 1aC

Brogi and Soldani focus on processing topologies and describe an approach that involves
matching between individual Node Types and Service Templates® ** . This matching allows sets
of Node Types to be grouped together in a topology to reduce its complexity. In addition, proven
combinations of Node Types can be reused in new application topologies. Soldani et al. present
TOSCAMart, an approach to reuse proven topologies in new environments®. TOSCAMart is based
on a repository of various existing topologies provided to an application developer for the
development of a new composite application. The developer defines a node in the new topology
that describes the requirements for the fragment being inserted. TOSCAMart then selects a suitable
solution for these requirements from the repository.

D4.1 SODALITE lIaC Management -Initial version - Public Page 17
© Copyright Beneficiaries of the SODALITE Project



RSN Project No 825480. /’ Sodalite

A different domain for using TOSCA is the specification of Internet of Things (IoT) applications. This
area is addressed by various authors. Li et al. show how TOSCA can be used for an loT application,
namely an Air Handling Unit (AHU) that controls the condition and circulation of air in modern
buildings*’. The authors give examples of how to define the components of the application and
describe their experience using TOSCA for this use case. In another paper, Da Silva et al. address
the multitude of sensor data produced in loT scenarios®. The authors describe how Complex Event
Processing Systems can be deployed using TOSCA to process the incoming data and efficiently use
network resources.

Palesandro et.al*® explore an aspect-oriented approach to laC deployment and management. They
propose Mantus, a laC-based multi-cloud builder composed of an aspect oriented Domain-Specific
Language called TML, or TOSCA Manipulation Language, and a corresponding aspect weaver to
inject flexibly non-functional services in TOSCA infrastructure templates. They show the practical
feasibility of our approach, with also good results in terms of performance and scalability.
Chirivella-Perez et. al.*® address the challenge of fast deployment of 5G infrastructures by
designing and prototyping a novel 5G service deployment orchestration architecture that is
capable of automating and coordinating a series of complicated operations across physical
infrastructure, virtual infrastructure, and service layers over a distributed mobile edge computing
paradigm, in an integrated manner.

From the analysis of the available literature, it emerges that there are multiple approaches
focusing on enabling the orchestration of 1aC with the purpose of automating some phases of the
Ops cycle. Compared to the works available in the literature, our goal is to enable the usage, in the
same application, of heterogeneous execution environments ranging from edge devices to
classical clouds and HPC clusters. Moreover, our deployment preparation and infrastructure
management framework, framed within the larger context of the SODALITE project, poses
particular attention to extend the Ops cycle in Figure 5 with novel steps focusing on the
optimization of execution containers and on the verification and improvement of 1aC.

3.2 Performance optimization

Application performance and scalability are important for HPC users. The optimisation process
generally involves manual profiling and tuning of application parameters to suit target hardware.
Furthermore, it is not portable and needs to be repeated when moving to other HPC systems due
to the diversity of hardware in HPC systems.

The automation of application optimisation on both HPC and cloud systems requires models that
can be used for performance prediction and to study how different hardware components affect
performance, a task made more complex by the wide variety of cloud offerings available with a
wide variety of hardware. Application profiling and historical data gathered on HPC and cloud
systems were used by*' to create a performance model. ParaOpt®, a tool that autotunes
application configurations for different instance types based on runtime and cost, was evaluated
for genomics, molecular dynamics, and machine learning applications on multiple public clouds.

A number of works explored the performance of cloud environments. Exabyte compared cloud
targets using the Linpack benchmark®, and developed a software tool for the continuous
evaluation of various cloud environments*. EPCC directly compared the performance of HPC
on-premise systems and the Oracle cloud cluster using the DIRAC application benchmarks®,
discovering issues in the usability and scalability of cloud based clusters.

Many tools are developed to optimise application deployments that are packaged as containers.
ConfAdvisor®*® is a tuning framework for containers on Kubernetes. AWS compute optimiser®’
optimises workloads for both cost and performance based on historical utilization metrics.
Google® similarly offers optimised containers for Al application deployments on the Google Cloud
Platform. HPAI project® studied the feasibility of deploying Al workloads in HPC systems using
Charliecloud®.

D4.1 SODALITE lIaC Management -Initial version - Public Page 18
© Copyright Beneficiaries of the SODALITE Project



SRS Project No 825480. /’ Sodalite

3.3 Semantic decision support

In this section, we review the existing research studies related to the three key use cases or tasks of
the semantic decision support of SODALITE: lac smell and bug taxonomy, laC verification, and IaC
smell and bug prediction and correction.

3.3.11aC Smell and Bug Taxonomy

There are several recent works on bug and smell catalogues for IaC. Sharma et al.* developed a
catalogue of design and implementation smells for Puppet. They defined smells violations of
Puppet best practices, which were identified by analyzing the official documentation of Puppet
and the validation rules of Puppet-Lint. Similarly, Schwarz et al.** compiled a catalogue of smells
for Chef, containing violations against the best practices for Chef, extracted from the official
documentation of Chef. For Puppet, Rahman et al.** * identified seven security smells by analyzing
Puppet scripts in open-source repositories, and eight defect types by analyzing defect-related
commits.

There are several limitations on the existing smell and bug catalogues for 1aC. There is no such
catalog for Ansible, which is the most popular 1aC language, according to our survey with the
practitioners®. Most catalogs focus on a subset of bug types or smell types, for example, security
smells, and coding smells for a subset of constructs. They also lack the details of a bug/smell, such
as consequences, resolutions, and inter-dependencies. Moreover, the smell taxonomies use the
best and bad practices that were extracted from one or a few sources. Finally, there is no unified
taxonomy across different (widely-used) 1aC languages. Thus, in SODALITE, we first develop a
catalog of best and bad practices in three laC industrial languages (Ansible, Puppet, and Chef) and
TOSCA, based on an analysis and synthesis of themulti-vocal literature. Based on this best/bad
practices catalog, we develop an unified smell catalog for IaC. In addition, we create a bug and
resolution catalog and dataset for Ansible, based on a qualitative analysis of bugfix related
commits collected from open source software repositories.

3.3.21aC Verification

The key laC languages used by SODALITE are TOSCA and Ansible. As observed by the recent surveys
on laC and TOSCA* *'| there is a lack of research on verification and testing of laC. There was on
studies related to Ansible. Among the studies on TOSCA verification, Brogi et. al.”® developed a
formal approach to verify the constraints on inter-component relationships in an application
topology, enabling to detect the mismatches or inconsistencies between the requirements and
capabilities of participant nodes. In related works®, they also used a Petri nets base model to verify
the control flow of a TOSCA management plan, for its reachability. Vetter® proposed a monitoring
framework to detect operator errors, including configuration errors, by utilizing complex event
processing and TOSCA management plans. Calcaterra et al.>* proposed a fault aware provisioning
framework based on explicit modeling of the possible types of provisioning errors as well as the
counteractions to recover from them, all in the management plan of the application. The
orchestrator can detect faults while enacting the provisioning workflow, and automatically to
recover from detected faults.

The existing literature lacks a comprehensive taxonomy of infrastructure management errors (such
as provisioning errors, deployment errors, configuration errors). Thus, SODALITE develops such
error and resolution taxonomy for cloud and HPC applications based on a systematic literature
review. In SODALITE, we employ semantic technologies for verifying structural constraints and
semantics of laC, and also support explaining errors and their causes, recommending the
resolutions, (semi) automating the correction of erroneous laC code through model-to-model
transformations. To verify the TOSCA management plans/workflows and imperative laC workflows
(e.g., Ansible roles and plays), we use the workflow verification techniques that can verify both
control flow and data flow of a workflow®. As the deployment of an application uses TOSCA

D4.1 SODALITE lIaC Management -Initial version - Public Page 19
© Copyright Beneficiaries of the SODALITE Project



RSN Project No 825480. /’ Sodalite

management plans and Ansible workflows, the verification of both artifacts needs to be
coordinated and unified.

3.3.31aC Smell and Bug Prediction

In software engineering literature®, data-driven models (e.g., machine learning) and rule-based
models have been used to detect smells and bugs in the source code of different programming
languages. Recently, the software engineering community has paid attention to bug and smell
detection in 1aC* * % *" %8 The rule-based techniques have been also applied to detect defects in
infrastructural code scripts such as Puppet and Chef Scripts, e.g., security smells in Puppet®,
implementation and design smells in Puppet® and implementation and design smells in Chef®.
Most industrial 1aC smell detectors (i.e., so-called Linter tools), for example, Ansible Lint, Puppet
Lint, Foodcritic (Chef), also use a rule-based approach.

Several studies have applied semantic technologies for definition and detection of patterns and
antipatterns® ® ®. Settas et al.®® modeled the antipatterns in software projects with ontologies,
and used a production rule engine to implement detection rules. Inspired by that study, Brabraet
al.*®* employed similar semantic technologies to detect anti patterns in cloud service APIs, and to
recommend resolutions. Rekiket et al.*” developed an ontology to represent cloud service
offerings, and used common patterns and antipatterns to validate the proposed ontology. They
also defined cloud service antipatterns such as invalid VM types and invalid service provider
descriptions. Their antipattern detection algorithms employ SPARQL queries.

Compared with the existing studies, SODALITE proposes a semantic rule-based approach to detect
the smells and antipatterns in l1aC, for example, smells in TOSCA blueprints and Ansible scripts.
Compared to existing approaches, our framework facilitates the generation of knowledge graphs
to capture TOSCA-based deployment models following the conceptual model of DnS. The aim is to
map TOSCA to self-contained, independent and reusable knowledge components, amenable to
analysis and validation using Semantic Web standards, such as SPARQL. We have recently
published the current results of our smell predictor®. To explain detected smells and recommend
fixes, the initial semantic models are being extended to specify smells, their causes, and their fixes.
The rule-base is being refined to and extended to cover all smells in our smell catalogue. We plan
to build a unified framework to detect smells across heterogeneous deployment and infrastructure
code specifications by utilizing model-driven engineering and semantic Web techniques such as
ontology alignment and query rewriting.

There is an emerging trend in software defect prediction for using deep learning and natural
language processing, in particular, code embeddings (code vectors)®. However, there are no
similar studies on laC defect prediction. Thus, SODALITE also develops deep learning and natural
language processing based techniques for detecting linguistic anti-patterns and misconfiguration
errors. Moreover, the software metrics have been used to predict the defect proneness of software
artifacts™. With the collaboration with the RADON H2020 project, we develop a comprehensive set
of software metrics for laC™* "> ™ that can be used to predict the defect proneness of laC artifacts.
Within the SODALITE project, we further extend these laC ametrics with the workflow metrics,
which are relevant for imperative laC languages such as Ansible.

D4.1 SODALITE lIaC Management -Initial version - Public Page 20
© Copyright Beneficiaries of the SODALITE Project



> .
: Project No 825480. ’ SOdallte

4 Image Builder

The laC languages usually adopt a declarative way of defining the expected status of the
infrastructure and processes. In contrast with imperative methods, which give specific commands
on how to implement the process, the declarative one usually gives a definition of the expected
results and state of the resources after the execution.

SODALITE treats TOSCA and corresponding implementation actuation scripts (for example Ansible
playbooks) as an intermediate code language which is exploited in the process of resource
provisioning and management of infrastructural resources and application deployment.

One of the main aspects of the Infrastructure Management Support layer is actually defining the
infrastructure and its nature in a structured way using laC.

Since TOSCA and actuation scripts are needed by the orchestrator to put into life an application
deployment, TOSCA IaC node descriptions are set up and Ansible actuation playbooks are using
them as templates for building and preparation of larger application deployment plans. The results
of this task are saved in the SODALITE Knowledge Base thus creating a unique source of modelling
infrastructural and deployment patterns used through the SemanticReasonerAPI calls. The
components being developed within Infrastructure Management Support usually represent a
utility structure or only a small but crucial part of the SODALITE platform. The developed
components are mostly used and accessed by SODALITE Infrastructure as Code Layer and
SODALITE Runtime Layer components.

D4.1 SODALITE lIaC Management -Initial version - Public Page 21
© Copyright Beneficiaries of the SODALITE Project



** Project No 825480. ? Sodalite

5 £
= =
@Eg 77777777777777777777777777777777777777777777777777777777777777777777777 ? 777777777777777777777 Eg@
(=1 § (=9
(] [
= w 4
3
g g
= I @
Eg = =E Ey
50 bl " A Sep—---- -] -]
Hi = ANei 7| B
g = ol vz £ @
L 2 253 =) Z
E. Io a
= !
= =0 i A
£g 85 3 28
8el|------- Ao dY ez - E’ ----------- 8¢
g2 Meleg] g g8
g5 A7 E|[fRE] = g 20
g 2 ; g £ 2 il
2 = H G G N
g =} H ‘g ! =
5 3 i i} i £
k=) = H 8
® E i 2 g
i o 2
g g < H g g
: £ I H s |8 g g
z3 % 2 E z_| & H 2 £s
-5 (R BN B ) Y L - -1E58 - 4SRN [ SR 22
o] S E E i 8% = X $o
€= R 8 g 25| 2 = - 2
2 s & ] i £2| £ 312 Q
= BE| 3 g 35| & £ |2 =
2.8 H [+4 =) @ =
3% 5 L ool & g |2
g =) =t ss| E &
= a g & I°’H 55| © E ° =
E nk g a2 = E @ §|_|' % &
&5 L E 23 =
5= °° - S g8
Q2 : = Y : %
5] i - : Q
— 2 s} = ]
] ; z 2 ol § i
o : ] = S 5 :
: | - HE
F 3 H
= o i g B £l & :
o} g 2 : ] 8 2 £ H
> 3 2 = & 3 E < =
- =1 B 5l E g g H E:
e ] g 3| &: S g 3 S 5
8 [ = [ 8 [
2 5 | 8 T 5 2 = |4 -l
u D 2 o 2: = le = t = = =
o = 2| = 2|2 < £ @
° el 8 §l5s R 2 i HE
s 2| g sgezg [Elgd B LR
° =} = = ©| £ = 8l © S =] [ ]
2 Z |le £l B g B T tle 5 151 = E: |3
= T |13 6 C B < |5 ° = H
F 8 g% § 24 E = @ @ 23
S 82z E [afg: 3§ g 58
@ 312 8 g = € & s & g 2] =
© o |z & & Q £ 3 212 & = g E:|c
= S & [Sal & B2 & 15 5 2 £ S:|a =
5 B el &gl 31212 3] ¢ g SilE o
g 85 58 58 %88, S8 2 ik .
=8 el L ¥ - X =5
Se|------ }---5¢
£& g £
2 ol | &l E: 4
< = [ 8lle %? <
g U N %‘
Wi
7 i
% a:
! !
g
5 =k
=} 5
T 2 3 i)
= @ X 5
Fuwl--- 4 Fw
218
@ E 0
= 2
1] 1
& B =4
E i
% g
;
= g Eg =
g3 5
E 2
= @ @
[=% [=%
[0 e R T o<
c (=4
2 =
" @
9 k]
g g

Figure 6 - Use case and Sequence diagram coverage

4.1 Background and concepts

As already foreseen at the conception of the project, the main objectives of the development of the
SODALITE solution are the decoupling from monolithic applications, integration of some sort of
container or unikernel enabled system, minimal size, highest flexibility and transparency of the
supporting system. Until the rise of container technology, virtualization was basically bound by the
building of virtual machines and specialized reduced application-centered kernel
implementations known as unikernels. Open sourcing Docker™ container technologies created a
completely new perspective of virtualisation. Several aspects contribute to the widespread usage
of the deployment of containerized applications on private and public cloud infrastructures. The
simplicity of defining and building application environments, reusability and portability and most

D4.1 SODALITE lIaC Management -Initial version - Public Page 22
© Copyright Beneficiaries of the SODALITE Project



RSN Project No 825480. /’ Sodalite

certainly the ease of deployment. The portability of the applications constitutes a key feature
when running in heterogeneous environments.
Most of the technologies and tools built around containers are well documented and open sourced
with a very alive and vast community of developers and supporters, backed by industry leading
laaS (Infrastructure-as-a-Service) giants such as Amazon, Google, Microsoft and others.
Choosing the right container technology and tools for building up the runtime environment is a
critical part of application design and deployment pipeline for bringing orchestration to HPC and
different Cloud environments which are one of the key goals of the SODALITE project. A few HPC
Container technologies were considered:

e Singularity™,

e CharlieCloud™,

e SARUS™.
The decision to use Singularity containers was made by considering several aspects of the
mentioned technologies, but still focusing on two main requirements for the selection of container
technologies to use in the project:

e Popularity of the technology, ease of use, and availability of tools and support and

e Performance on HPC systems (native support of hardware, for example network and GPUs)
Singularity appeared as a specific container design targeting HPC systems that is widely adopted in
several supercomputer centers. It does not need any superuser escalation to run and it is as
integrated with the host’s system as possible to ensure performance. Singularity can leverage
Docker images as a way to easily share container images.
The consortium will, nevertheless, keep an open door for the introduction of possible new
virtualisation technologies throughout the lifetime of the project and evaluate the support based
on the evaluation model. The in depth analysis of comparable technologies and the reasoning
behind the selection of the used technologies is further developed in Section 5.2 of the document
D5.1 - Application deployment and dynamic runtime-initial version.

4.2 Components

4.2.1 Motivation

The preparation of the runtime images can become a difficult task for a DevOps user when building
and deploying an application in a heterogeneous environment. The existence of different tools for
building images on different platforms using their proprietary DSLs poses another difficult task for
the DevOs teams that use such tools.

SODALITE proposes to use an existing set of well known TOSCA standard Cloud topology
application deployment workflows known as TOSCA service templates and a vast library of Ansible
modules for configuration and interaction with standard container technologies to prepare a
reusable and extendible workflow for building runtime images. By encapsulating this TOSCA
service template in the REST APl with the xOpera lightweight orchestrator the image building
becomes an easily configurable and extensible library accessible from any component that needs
to setup a process of image building.

4.2.1 Runtime Image Builder

By setting the parameters of the image building process the user defines a build context for
creation of the new image to be created. The Runtime Image Builder component itself is a
dockerized REST API encapsulation of the xOpera lightweight orchestrator and a TOSCA/Ansible
blueprint that is executed by the orchestrator and can be configured to run different workflows.
The workflows for image building are usually run offline to have the images prepared and pushed
to the registry, before the orchestrator starts with the execution of the blueprint e.g., provisioning
the infrastructure and deployment of the application. This encapsulation enables the image
building functionality to be accessible from any component in SODALITE or be just reused in a
separate blueprint if needed. The extendable nature of TOSCA blueprints provides a high level of

D4.1 SODALITE lIaC Management -Initial version - Public Page 23
© Copyright Beneficiaries of the SODALITE Project



> .
* Project No 825480. ’ SOdallte

reusability of the code for supporting the image building process. Image builder also supports
session handling and authentication/authorization by JWT tokens making it easy to integrate with
Identity and Access Management providers.

Centos VM
JSON
build HTTPS docker host
context 443 .
definintion TCcP nginx-reverse
T 443 proxy
. . =
image-builder-flask (REST g
API) >
X
TCP
« swagger json E image-build-flask
5000
* JWT access & xOpera
« session handling ( 4
¢ SQLite store Tosca Build&Push
HTTPS
443
Centos VM

docker host

Tcp| docker registry

v2
443

docker network

Figure 7 - Image builder architecture

The capabilities of Runtime Image Builder are:
e getimage build definition (dockerfile, docker-compose, similar),
e compilation,
e packetization using templates,
e push to SODALITE docker registry.

Roles that interact with component (i.e. App Expert, ResExpert):
e App Expert.

Software dependencies:
Python,

Ansible,

Docker,
Singularity,

SSH.

Requirements (what it should do):
e requires a dockerfile definition/configuration or a prebuilt image if already existing

Composed of:

e RESTAPI,
e xOpera,
D4.1 SODALITE lIaC Management -Initial version - Public Page 24

© Copyright Beneficiaries of the SODALITE Project



> .
* Project No 825480. ’ SOdallte

e TOSCA/Ansible blueprint with image building building workflows.

Depends on (other components):
e Image Registry,
e Semantic Knowledge Base (API),
e |DE,
e Concrete Image Builder.

Repositories:

httos://eithut g bui

4.2.2 Concrete Image Builder
Concrete image builder
The capabilities of Concrete Image Builder are:

e getimage build definition from Image Builder
e packetization using templates
e push to SODALITE Image Registry (Docker/Singularity).

Roles that interact with component (i.e. App Expert, ResExpert):
e App Expert (indirectly - through the pipeline).

Software dependencies:
Python,

Ansible,

Docker,
Singularity.

Requirements:
e requires a dockerfile definition/configuration.

Composed of:

e Dockerhost engine,
e Singularity engine.

Depends on (other components):

e /mage Builder,
e Image Registry.

Repositories:

httos://eithut o bui

4.2.3 Image Registry

Image Registry stores the executable runtime image of the artifact defined in the application
design process and built in the SODALITE deployment preparation process. This registry and the
images are accessible through a docker-like interface describing the access to a specific image
through filtering, labels, image IDs.

D4.1 SODALITE lIaC Management -Initial version - Public Page 25
© Copyright Beneficiaries of the SODALITE Project


https://github.com/SODALITE-EU/image-builder
https://github.com/SODALITE-EU/image-builder

. x > .
RSN Project No 825480. ’ SOdallte

The capabilities of Image Registry are:

e storing docker images,
e Push/Pullimages.

Roles that interact with component (i.e. App Expert, ResExpert):
e App Expert (indirectly - through the pipeline).

Software dependencies:

e Python,
o Ansible,
e Docker.

Requirements (what it should do):
e requires a dockerfile definition.

Composed of:
e Dockerhost engine.

Depends on (other components):

e Semantic Knowledge Base (API),
e /mage Builder.

Repositories:

4.3 Development status

It is one of the development goals that any deployment should be possible through SODALITE
platform. Therefore a deployment blueprint for deploying the Orchestrator components xOpera
REST API, the database for internal persistence of deployed blueprints and the TLS secure private
docker Image Registry are used for the deployment of the application artifacts deployed on
OpenStack testbed Cloud.

A simple docker Image Builder developed in an laC approach using TOSCA/Ansible playbooks is in
development. The images built are then pushed to the Image Registry and used by the
Orchestrator.

It is also planned to support the building of Singularity images for the artifacts deployed in HPC
environments.

4.4 Next steps

As for further advancements on this part of the work, it is planned to:
1. Improve security management (SSL, public access certificate management through
LetsEncrypt).
2. Improve secret management in TOSCA and Ansible playbooks - possibly using a detached
secret vault service (SSH keys, certificates, passwords and tokens).
3. Improve the definition of TOSCA nodes for docker defined images and containers.
Singularity image builder for the artifacts deployed in HPC environments.

5. Create a Singularity Image registry that will hold the Singularity images built by the
concrete image builder.

6. Usage of standard code patterns and templates for the configuration application
deployments and infrastructure.

D4.1 SODALITE lIaC Management -Initial version - Public Page 26
© Copyright Beneficiaries of the SODALITE Project


https://github.com/SODALITE-EU/iac-management

. x > .
RSN Project No 825480. ’ SOdallte

5 Deployment Preparation

The Generation of laC blueprint builds on the abstract application definition and deployment
model from the WP3 Modelling layer and uses the tuple of matching 1aC node definition and
abstract application artifact definition with functional and nonfunctional requirements for
preparing an optimal laC blueprint and runtime artifacts for subsequent deployment in WP5
Runtime Layer. The Infrastructure as Code Layer orchestrates the parsing, building, verifying the
laC blueprint with topology and application optimisation in focus, while still keeping reference to
the underlying abstract model source at all times. Figure 2 shows the internal architecture of this
layer which is introduced in the deliverable D2.1.

5.1 Background and concepts

Deployment Preparation component is dedicated to the generation of an IaC blueprint from the
abstract model obtained by the SODALITE IDE. The input is a file in JSON format that should be
compatible with a grammar that is transformable to TOSCA language.

The final 1aC blueprint is generated in TOSCA language which is an OASIS standard language to
describe topologies of cloud based web services, their components, relationships, and the
processes that manage them.

The approach taken in SODALITE is extensible to other languages or future standards, because
Deployment Preparation component has two sub-components; one is an interpreter of the abstract
model provided by SODALITE IDE, and the other one is the TOSCA generator which could be
complemented or replaced with other language generators eventually.

The snowUC use case, which was introduced in D6.1, is used as a running example for the
deployment preparation process. An abstract model of snowUC use case has been defined via IDE,
which in turn provides a JSON format replication of the model.

/ VM \ / skyline-extractor \

VM.OpenStack DockerizedComponent

Properties

* Network : 87b57656....

* Flavor: m1.small

+ key_name: draganrX

* Name: snow-vm

* Security_groups: default,snow

Properties

* exposed_ports : 8080

« image_name: snow-skyline-
extractor

* ports: 8080:8080
* Security_groups: default,snow

\[mage: e / e Requirement
» Image: centos7
\ [host = docker_host |

docker-host / skyline-alignment \
DockerHost DockerizedComponent
Properties
* registry_ip: 15... Properties
\ - * exposed_ports : 8080
Requirements * image_name: snow-skyline-
host =vm AligHEAL Requirement

\ °* ports: 8081:8080
| host= docker_host

Figure 8 - The TOSCA file generated from the abstract model of snowUC use case

Once the input is verified as being correct, in the right format, and having all the required
information, a TOSCA file is generated accordingly. Figure 8 shows a snippet of the TOSCA file

D4.1 SODALITE lIaC Management -Initial version - Public Page 27
© Copyright Beneficiaries of the SODALITE Project


https://en.wikipedia.org/wiki/OASIS_(organization)

> .
RSN Project No 825480. ’ SOdallte

generated from the content of snowUC use case model. It depicts a topology definition that uses
four types of nodes and their requirements. The final output, of course, would be a file that
explains the laC requirements in TOSCA, but the figure is only a visual representation for easier
grasp of the content. Figure 9 shows one of the node types defined for snowUC with all of its
defined properties, attributes, requirements and capabilities.

sodalite. nodes. VM. OpenStack

tosca.nodes.Compute
Properties Attributes:
* key_name: « Networks: Interface
5 Standard
* Description : OpenStock SSH .. « Description: The list of..
v SeCurity groups: L I
= Type: String - Type: String Capabilities
* Description: OpenStack names of ... * Description: OpenStack id of the VM
* Image: « private_oddress: Scalable
= Type: String + Type: String
* Description: OpenStack image id + Description: Private ipyd Binding
* Favor: + public_oddress:
= Type: String - Type: String Endpoint
* Description: OpenStack .. * Description: Public ipvd
= Type: String + Type: String
* Description: OpenStack network id + Description: The state of the node instance 05
Nome: * tosca_name: Host
* Type: String * Type: String =
* Description: Name that ... + Description : Reflects the name of the Node .. Host
v entry_schema:
+ Type: tosco.datatypes.network. Networkinfo I
+ Description: ...
. tosca id: Requirement
* Type: String Local_storage
* Description: A unique identifier of the realized
* Borty Dependency
* Type:map

* Description: The list of logicol ports..
» EntrySchemo Type: tosco.datotypes...

Figure 9 - An example of a TOSCA node with assigned properties and attributes, used in snowUC
use case

5.2 Components

Deployment Preparation is realised through two separate components: Abstract Model Parser and
laC Blueprint Builder. They together address the UML use case UC3, Generate laC code. More in
detail, the first component parses the AADM provided by the SODALITE modeling layer, and the
second one generates the 1aC blueprint (expressed in TOSCA language) and returns information
about the laC building process in a user friendly format.

5.2.1 Motivation

The deployment preparation components have the objective to keep the modeling layer separated
from the specific infrastructural languages used for the orchestration of deployment. Thanks to the
laC Builder, DevOps experts can rely on the automation introduced by orchestrators in the
management of the deployment and operation of complex applications. Without the laC Builder,
DevOps experts would need to know how to write laC code to be able to exploit orchestrators. With
the laC Builder they can focus on modeling the main assets they must deploy and on associating
some resources to these. The laC Builder will take care of all the burden associated with the
generation of the corresponding IaC code. Owners of specific complex applications can exploit the
laC Builder to improve their DevOps processes and to reduce the time needed to move from the
conception of the application to its running instance.

The organization of the deployment preparation in two different subcomponents enables the
possibility to keep the SODALITE modeling language decoupled from its target implementation,

D4.1 SODALITE lIaC Management -Initial version - Public Page 28
© Copyright Beneficiaries of the SODALITE Project



RSN Project No 825480. /’ Sodalite

which, in our case, is TOSCA. The Abstract Model Parser creates an abstract syntax tree that the 1aC
Blueprint Builder translates in TOSCA. Changing the target language is possible by replacing the
implementation of the laC Blueprint Builder. Similarly, changing the source modeling language is
possible by changing the implementation of the Abstract Model Parser.

5.2.2 Abstract Model Parser

The Abstract Model Parser is the central component for the preparation of the deployable IaC
blueprint and related Actuation scripts.

Its main function is to abstract the parsing of the abstract deployment model from building the
deployable laC. It feeds the laC Builder component with all the data provided by the App Ops Expert
and needed for the selection,building of IaC Nodes (Blueprint) and preparation of the Actuation
scripts (playbooks).

Input: Takes input from the SODALITE IDE as the reference to the abstract application deployment
model. It is based on the POLIMI extensive knowledge of modelling and parsing UML deployment
diagrams into laC blueprints, e.g., TOSCA deployment blueprint.
The component allows the SODALITE IDE to:

e start the parsing process,

e cancel the parsing process at any given time,

e return resulting build time information to the user in a human readable form.

Output: Produces the output for the user based on the process of parsing abstract application
deployment model.

Programming languages/tools: Python

Depends on: This component interacts with different components enabling the user to parse the
abstract application deployment model and build 1aC code through REST API calls to other
SODALITE components:

e |aC Blueprint Builder,

e |aC Resources Model.

Critical factors: This component should be able to take input from the SODALITE IDE through a
web APl allowing the user to cancel the parsing process at any given time.

Repositories:

5.2.3 1aC Blueprint Builder
This component internally produces the laC blueprint based on the input provided in the abstract
application deployment model passed to the Abstract Model Parser. It flattens the application
model topology in a node list and for any given node:

e returns the best matching laC node definition from the laC Resources Model repository,

e sets provided parameters,

e internally builds relations to other nodes.
For any selected node it then checks the artefacts to be deployed on that node.
In case the abstract model holds information about the artefact source and the source is available,
it triggers the call to the Application Optimiser component in order to try to start the compilation
and optimisation, defined in the model.

D4.1 SODALITE lIaC Management -Initial version - Public Page 29
© Copyright Beneficiaries of the SODALITE Project


https://github.com/SODALITE-EU/iac-blueprint-builder

< x o .
SN Project No 825480. ’ SOdallte

After all the artefacts are built as runtime binaries and configured, this component calls the Image
Builder component to build and pack the artefact images ready for deployment.

At the end of the process of creation of the 1aC and the building of Artefact images, it saves the
resulting 1aC in the laC Repository and returns the build time information in a human readable
form.

Input: Abstract application deployment model, laC Resources Model

Output: 1aC blueprint (TOSCA) with actuation scripts (Ansible playbooks). Returns information
about the laC building process in human readable form to be shown to the user.

Programming languages/tools: Python

Depends on:

e SODALITE IDE,
Abstract Model Parser,
laC Resources Model,
Application Optimiser,
laC Repository.

Critical factors: This component should be able to take input from the SODALITE IDE through a
web APl allowing the user to cancel the laC building process at any given time.

Repositories:

5.3 Development status

The definition of a formal grammar to be used for automatic parsing of the input provided from
SODALITE IDE and verifying the correctness of the inputs is being worked on. This grammar should
provide a deterministic and well-defined mapping between the structure of the input and the
notation of TOSCA. At the moment this mapping is partially defined, however the work needs to be
extended so that no exception would happen during runtime.

5.4 Next steps

As for further advancements on this part of the work, it is planned to:
1. Provide a consolidated prototype of the laC Blueprint Builder that produces verified and
correct TOSCA topology definitions.
2. Incorporate the Ansible standard into the laC Blueprint Builder, so that it will be able to
generate Ansible correct definitions of 1aC building process as well as TOSCA.

D4.1 SODALITE lIaC Management -Initial version - Public Page 30
© Copyright Beneficiaries of the SODALITE Project


https://github.com/SODALITE-EU/iac-blueprint-builder

SN Project No 825480. /’ Sodalite

6 Performance Optimisation

Performance of an application that is deployed using 1aC on heterogeneous infrastructure target is
paramount. In SODALITE, performance optimisation maps the optimal application parameters to
the infrastructure target. The application parameters can also be autotuned during run time. The
performance of an application can be determined using the performance model of the application
and infrastructure. The application modelling extracts the application parameters that influence
the performance of an application and the infrastructure modelling will help to extract the
performance characteristics of the infrastructure target like peak performance and memory
bandwidth. In SODALITE, performance optimisation is achieved by two main components:
Application optimiser and IlaC Model repository. Application optimiser applies and validates
optimisations to an application for a specific infrastructure target and then builds an optimised
container or executable. The /aC Model repository stores the application and infrastructure
performance model along with details about the optimisations selected by the AoE for a specific
deployment.

6.1 Background and concepts

HPC places utmost importance on application performance, and the optimisation generally
involves manual profiling and tuning of application to suit target hardware. Additionally, the
optimisation process is not portable and needs to be repeated when moving to other HPC systems.
The wide variety of cloud targets with hundreds of different server configuration provides flexibility
but lacks the control and performance of HPC systems. In a software defined infrastructure,
automating the optimisation of application deployments for heterogeneous targets remains an
unsolved problem. Container virtualization has fastened the convergence of HPC and cloud due to
its ease of use, portability, scalability, and the advancement of user-friendly runtimes.
Figure 10 shows the application optimisation requirements in a heterogeneous target. The target
infrastructure can have multiple combinations of CPU, GPU or FPGA with different memory
hierarchy. Target’s File System and Network are also diverse and are usually shared by multiple
nodes. With different schedulers for HPC and Cloud, optimal workflow orchestration becomes
complex. Optimising all applications for diverse targets is out of scope for this project and instead
it will focus on three different application types: Al Training & Inference, Big Data Analytics and
Traditional HPC applications like Solver. This broad spectrum represents the majority of HPC
applications and the demonstrating use cases in SODALITE. The list below shows the mapping of
actual applications to application types:

1. Al Training and Inference - Pixelwise Mountain Skyline detection CNN™ training and

PolimiDL™ inference,
2. BigData Analytics - HiBench Suite® from Intel,
3. Traditional HPC - Code Aster® based Solver for in-silico clinical trials.

D4.1 SODALITE lIaC Management -Initial version - Public Page 31
© Copyright Beneficiaries of the SODALITE Project



Project No 825480. ? Sodalite

=

Al
Training/Inference
» Graph Compiler

« ETL - Extract,
Transform, Load

Optimisa
tions

Aqtotun

ing
(DSL)

Big Data

Analytics Performance

» DataFrame Model

+ Storage

Heterogenous Infrastructure (HPC/Cloud)

COMPUTE STORAGE NETWORK SCHEDULER

CPU LUSTRE Ethernet Torque/Slurm
GPU SSD InfiniBand Kubernetes
FPGA Object Store PCle OpenStack

Figure 10 - Performance Optimisation for applications deployed in a Heterogeneous infrastructure

For these applications, the following optimisations will be enabled:

1. Autotuning - Application parameters can be autotuned for performance improvement. The
DSL based autotuner developed as part of the CRESTA EU project will be used.

2. Multi Architecture support will enable applications to efficiently use diverse execution
platforms like CPUs, GPUs or FPGAs. The application will be built for a particular target
architecture or use specific target libraries.

3. Specific optimisations for application groups such as Al training/inference, HPC data
analytics and traditional HPC application (Solver)

1. Altraining will be optimised with target specific libraries and Graph compilers®.
The Extract, Transform, Load (ETL) pipeline will be optimised by improving data
movement by prefetching, caching and reuse of data.

2. Big Data Analytics applications like Apache Spark®, DASK*, NVIDIA’s
cuDataFrame® based on DataFrame API will be optimised for target hardware and
storage.

3. Solver (MPI) applications will be optimised by using efficient solver libraries like
PETSC® and MUMPs®" for different targets. HPC Standards MPI, OpenMP and
OpenACC will be enabled to support performance scaling and portability.

4. Applications will be delivered in an optimised container like Docker or Singularity to ensure
portability across different targets.

The following tools or libraries developed as part of different EU projects will be used to build the
application optimiser.

6.1.1 CRESTA Autotuning framework

As part of the CRESTA® European project, a DSL-based autotuning framework was developed
(initial implementation) by CRAY. This focuses on addressing the inherent complexity of the latest

D4.1 SODALITE laC Management -Initial version - Public Page 32
© Copyright Beneficiaries of the SODALITE Project



SN Project No 825480. ’ Sodalite

and future computer architectures. Autotuning is the process by which an application may be
optimised for a target platform by making automated optimal choices of how the application is
built and deployed. DSL that was developed exposes choices within an application for
optimisation. This framework will form the basis for autotuning in the Application Optimiser
component.

6.1.2 Universal Data Junction

Universal Data Junction (UDJ) is a library-based transport that provides efficient communication of
data between applications. It provides a capability to describe data that may be distributed and to
communicate that data using put/get semantics. Distributed data (to multiple processes within an
application) may be redistributed during transport. Various underlying (backend) transports are
provided and may be selected at runtime.

6.1.3 Maestro data orchestration middleware

Maestro data orchestration middleware® addresses ubiquitous problems of data movement in
complex memory hierarchies and at many levels of the HPC (High Performance Computing)
software stack. This middleware framework provides object-like data abstractions for
management and reasoning about user data in applications and across workflows, with the
ultimate goal of optimising data-movement across the memory-storage hierarchy.

6.1.4 MAMBA - Managed Abstract Memory Arrays

A library-based programming model for C, C++ and Fortran based on Managed Abstract Memory
Arrays, aiming to deliver simplified and efficient usage of diverse memory systems to application
developers in a performance-portable way. MAMBA® arrays exploit a unified memory interface to
abstract memory from both traditional memory devices, accelerators and storage. This library
aims to achieve good performance portability with an easy-to-use approach that requires minimal
code intrusion.

Application optimiser will explore enabling UDJ, Maestro and MAMBA libraries for optimising
applications.

6.2 Components

Performance Optimisation will be enabled in SODALITE by the Static Application optimiser and the
laC Model Repository components.

The components developed and deployed are part of different UML use cases defined within
SODALITE UC12: Map Resources and Optimisations (WP3) and UC15 (Statically Optimize
Application and Deployment) and UC3 (Generate laC code).

The following subsections describe the current status of the components and the layout of the
development plan.

Motivation

For deploying commercial applications for Climate modelling, Material Science, there is a wealth of
expertise on how these applications perform, how they can be optimised by adding resources and
how they can scale across infrastructures. For HPC applications, it can be very difficult to
determine this without deep application knowledge and profiling expertise is often required. We
are attempting a minimal and novel approach that can be used by an expert without having to
undertake exhaustive study of applications. This can be expanded further to cater for additional
knowledge, profiling data or autotuning.

D4.1 SODALITE laC Management -Initial version - Public Page 33
© Copyright Beneficiaries of the SODALITE Project



> .
RSN Project No 825480. ’ SOdallte

6.2.1 Application Optimiser

Static Application Optimiser aims to improve performance of an application for a given target
platform based on the optimisation options selected. Figure 11 shows the architecture of the
Application Optimiser and its dependencies. The application optimiser acts on the Optimisation
Recipe which contains the mapping of optimisations to Application tasks and Infrastructure
targets. This recipe is retrieved from the /laC Model repository which also hosts the application and
infrastructure Performance Model. Based on the optimisations in the recipe, the optimisations are
configured and validated. For this, Application Optimiser requires the application code written in a
standard High level APl along with the application inputs and configuration. This enables
Optimiser to make performance decisions based on the available target. Optimiser uses the
prebuilt optimised containers from the Image Registry and modifies them to build an optimised
container for the application deployment. Any changes to runtime/deployment and job scripts for
submission to HPC resources are also made at the same time.

Roles that interact with component (i.e. App Expert, ResExpert):
e N/A.

Software dependencies:

e Python,
e Docker,
e Singularity.

Requirements (what it should do):

Application Optimiser will build an optimizer container or executable based on the Application
requirements, artifacts and user selected optimisations. Optimiser will use the Application and
Infrastructure performance model stored in the [aC Model repository to make performance
decisions.

Composed of:
e Python,
e Container scripts.

Depends on (other components):
e |aC Model repository,
o Image Registry.

D4.1 SODALITE lIaC Management -Initial version - Public Page 34
© Copyright Beneficiaries of the SODALITE Project



Project No 825480. a SOdalite

Application
Performance
Model

Optimisation — ]

Rﬂdm Model e

Repository
Application

Infrastructure |
Performance L
| Optimiser

Job scripts

Al Training
& Inference

v

Figure 11 - Architecture of Static Application Optimiser
6.2.2 1aC Model Repository

laC Model repository is a part of the Knowledge Base and it contains:
1. Performance Model of an infrastructure based on benchmarks.
2. Performance Model of an Application based on scaling runs done in the past.
3. Mapping of Optimisations and applications and their suitability for a particular
infrastructure.
4. Optimisation recipe for a particular deployment. This contains selected optimisations by
the user for an application and infrastructure target.

Optimisation DSL Optimisation Application
. Recipe Optimiser
Autotuning (DSL) For each Opt in recipe

Multi Architecture

w

Support Selects
Application Al Training/Inference Optimisation
tasks » Al Framework
+ Graph Compiler o
+ Extract, Transform
Load (ETL)
Big data Analytics e
+ Analytics
Framework
+ Storage e
HPC (Solver)
+ Libraries

*= MPI, OpenMP,
OpenACC

Infrastructure Target
T

Model
Repository

Figure 12 - Architecture of Optimisation DSL and Optimisation Recipe

Figure 12 shows how the Optimisation recipe is built from the Optimisation DSL. Optimisation DSL
contains all optimisation options for a particular application type along with autotuning and multi

D4.1 SODALITE IaC Management -Initial version - Public Page 35
© Copyright Beneficiaries of the SODALITE Project



: Project No 825480. /’ Sodalite

architecture support choices. For example, for Al training workloads, the Application expert can
select the Al framework to use along with optimisations like Graph compiler and ETL options.
Some of the optimisation options require code change in applications or for applications to use a
high level standard API. The mapping of selected optimisations along with the Infrastructure
targets and the Application tasks will be stored as an Optimisation recipe in the laC Model
Repository. The Static application optimiser component will retrieve the recipe from the repository
and will decode, configure, build and validate the optimisations.

The performance model of application and infrastructure will be obtained based on an offline run
of application and benchmarks on different targets. This will also be stored in the [aC Model
Repository. This information will be used by the Application Optimiser to map optimisations to
targets.

Roles that interact with component (i.e. App Expert, ResExpert):
o N/A.

Software dependencies:
e Python.

Requirements (what it should do):

laC Model Repository will store the Application and Infrastructure performance model based on
benchmarking and also the optimisation recipes for a particular application deployment.

Composed of:
e Python,
e Knowledge Base.

Depends on (other components):
e Application and Infrastructure Performance Model.

6.3 Development status

The initial version of Application optimiser will be delivered only in M18. The following Application
optimisation components are currently in development and as part of the work:

1. Studied the performance and portability of container technologies like Docker, Singularity,
Sarus, CharlieCloud, uDocker and Shifter.

2. Baseline Performance of Skyline Extraction training (Al training) was measured and
profiled. This showed the performance bottlenecks in the Al training workflow and was
helpful for identifying the parameters that influence performance.

3. Baseline Performance of Density mapping and Solver component of Clinical Trials use case
was measured. This component was deployed as a container.

4. Prototype of Application and Infrastructure performance model is developed. This includes
running benchmarks and applications on the HPC testbed.

5. Containers for different Al frameworks (TensorFlow, PyTorch) for deploying Al training
workloads in HPC and Cloud are developed.

6.4 Next steps

The initial version of Application optimiser will be delivered in M18.
As part of this work, we intended to:

D4.1 SODALITE lIaC Management -Initial version - Public Page 36
© Copyright Beneficiaries of the SODALITE Project



. x > .
RSN Project No 825480. ’ SOdallte

1. Study performance of Al training and inference workloads using MLPerf benchmarks and
identify features that influence performance Al training in general. Enable Graph compiler
and Extract Load Transform (ETL) based optimisations for Al training.

2. Study performance of different solver methods and libraries for Solvers (like PETSc and
MUMPS) and identify features that influence performance. Enable MPI, OpenMP and
OpenAcc based optimisations for Solvers

3. Study performance of Big data frameworks and identify features that influence
performance. This will be enabled using common Dataframe API and storage based
optimisations for Big data Frameworks. Intel’s HiBench benchmark will be used as a driving
use case for this study.

4. Develop Application optimiser to enable optimisations for applications based on the
Performance Model developed in WP3. Application optimiser will map the features that
influence optimization to the available infrastructure to build an optimised container that
can be deployed.

5. Build optimised containers for deploying applications like Al Training/Inference, Big Data
Analytics and HPC Solver.

D4.1 SODALITE lIaC Management -Initial version - Public Page 37
© Copyright Beneficiaries of the SODALITE Project



. x > .
SRS Project No 825480. ’ SOdallte

7 1aC Verification, Defect Prediction and Correction

Analytics and Semantic Decision Support is mainly responsible for two SODALITE UML use cases:
UC11 (Define 1aC Bugs Taxonomy) and UC5 (Predict and Correct Bugs). In addition, the use case
UC4 (Verify 1aC) is also supported in collaboration with WP3. Infrastructure as code (laC) simplifies
the provision and configuration of the IT infrastructure at scale. As the size and complexity of laC
projects increase, it is critical to maintain the code and design quality of IaC Scripts. To this end,
the detection and correction of defective and erroneous laC scripts is of paramount importance.

7.1 Background and concepts

Within the scope of SODALITE, a bug is a software smell or an antipattern. A software smellis any
characteristic in the artifacts of the software that possibly indicates a deeper problem or quality
issue *. There are different types of software smells such as architectural smells, design smells,
implementation/code smells and linguistic smells. The software smells can negatively impact
software quality attributes such as maintainability, effort/cost, reliability, change proneness,
testability and performance.

» Security Smells
) . .‘
Multivocal Literature .| Implementation Informal and
Review " Smells »| Semantic Rules
Bug Taxonomy for e ’—’ Metric-Based
Qualitative Analysis TOSCA and laC 8 He uristics
of Commits, Bug

Reports, and laC and

TOSCA Scripts # Linguistic Smells —» Machine Learning
- B - - — — i

Methodology

Bug Detection

for Creating Types of Bugs Technology

the Taxonomy

Figure 13 - An Overview of the Analytics and Semantics Decision Support

Figure 13 provides an overview of our Analytics and Semantic Decision Support. First a multivocal
literature review was conducted, including both academic literature and gray literature on laC best
and bad practices and smells. The use of the bad practices as well as the deviations from the best
practices are defined as anti-patterns/smells (as in the research literature®). This initial catalog of
anti-patterns and smells (the 1aC bugs taxonomy) are further revised and extended by the bugs
found from a qualitative analysis of bug commits, bug reports/tickets and laC code scripts.

Four key types of smells and antipatterns as laC Bugs are considered: implementation smells,
design smells, security smells, and linguistic smells. Implementation smells are quality issues such
as naming convention, style, and formatting, and Design smells are quality issues in the structure
of the TOSCA blueprints and laC scripts *. Security smells are recurring coding patterns that
indicate security weaknesses®. Linguistics smells are recurring poor practices related to
inconsistencies among the naming, documentation, and implementation of an entity *.

The defect prediction can be implemented using different techniques such as rule-based
reasoning, metric-based heuristics, and machine learning (data-driven reasoning). The most
appropriate technique for detecting each smell will be selected based on the nature of a smell and
its fix, the SODALITE technology stack, and the size and quality of the dataset for the smell.

D4.1 SODALITE lIaC Management -Initial version - Public Page 38
© Copyright Beneficiaries of the SODALITE Project



SN Project No 825480. /’ Sodalite

The use case UC4 (Verify 1aC) focuses on checking the constraints over the structures of the TOSCA
blueprints and Ansible scripts as well as the constraints over the provisioning workflows/plans. As
the SODALITE approach is grounded on semantic modeling (ontologies) and reasoning, the
verification of the structural constraints uses the ontological reasoning. The standards such as
SHACL(Shapes Constraint Language) and SPARQL Query Language are used. To verify the
provisioning workflows, Petri net is used, a widely used formal model for verifying workflows and
business processes.

7.2 Components

The components in the Analytics and Semantic Decision Support can be broadly divided into two
categories: bug prediction and correction, and verification. Bug Predictor and Fixer, Predictive
Model Builder, and laC Quality Assessor supports bug prediction and correction for IaC. laC Verifier,
Topology Verifier, and Provisioning Workflow Verifier implement the verification of 1aC.

7.2.1 Motivation

The main objective of our analytics and semantic decision support for laC is to enable laC
developers to create valid and defect-free IaC artifacts with ease. They should be able to find and
fix the syntactical/structural and semantic errors in laC artifacts, find and fix code smells, design
smells, security smells, anti-patterns in laC artifacts prior to deploying and executing them. To this
end, we include the components for verifying the syntax and semantics of 1aC codes as well as the
corresponding provisioning workflows, for assessing the quality of the laC artifacts with metrics,
and for detecting and fixing different types of smells and bugs in laC codes.

7.2.2 Bug Predictor and Fixer

Bug Predictor and Fixer detects the smells in TOSCA and Ansible artifacts and suggests corrections
or fixes for each smell. Application Ops Expert (AOE) can select the desired fixes from the
suggestions, and apply the selected fixes to repair the defective artifacts. Bug Predictor and Fixer
uses a model or a set of heuristics to predict the smells. This model (built by Predictive Model
Builder) could be a rule based or machine learning based model.

The capabilities of Bug Predictor and Fixer are:
e detect smells,
e suggest fixes for smells,
e apply fixes to repair the defective laC artifacts.

Roles that interact with component (i.e. App Expert, ResExpert):
e App Expert.

Software dependencies:

Python,

Java,

Ansible-Lint,

JAX-RS 2.0 Supported Web Server.

Requirements (what it should do):

Detect bugs in TOSCA and Ansible artifacts and suggest/apply the corrections for the identified
bugs

D4.1 SODALITE lIaC Management -Initial version - Public Page 39
© Copyright Beneficiaries of the SODALITE Project



> .
: Project No 825480. ’ SOdallte

Composed of:

e REST API: expose bug prediction and correction capabilities as RESTFul service operations,
e backend.

Depends on (other components):
e Predictive Model Builder,
e |aC Quality Assessor,
e Semantic Knowledge Base.

Repositories:

httos://eithul C FU/defect-predicti

7.2.3 Predictive Model Builder

This component builds the models that can find the smells in TOSCA and Ansible artifacts. A
rule-based model for detecting implementation and security smells in Ansible and TOSCA is used.
In particular, the semantic reasoning over the SODALITE ontologies developed in WP3 is
performed. The machine learning based models will be used for detecting linguistic smells in
Ansible such as named-based bugs, variable misuses, and task name and logic inconsistencies.

The capabilities of Predictive Model Builder are:
e build a suitable model for predicting bugs,
e update the model as necessary to improve the prediction performance.

Roles that interact with component (i.e. App Expert, ResExpert):
e N/A

Software dependencies:
e Python,
e Java.

Requirements (what it should do):

Build a rule-based or machine learning based model that can predict bugs in TOSCA and Ansible
artifacts

Composed of:
e backend.

Depends on (other components):

e |aC Quality Assessor,
e Semantic Knowledge Base,
e Bug Predictor and Fixer.

Repositories:

https://eithul C FU/defect-predicti

7.2.41aC Quality Assessor

This component can calculate different software quality metrics for TOSCA and Ansible artifacts.
These metrics are used by the heuristics that predict the design smells in TOSCA and Ansible. The

D4.1 SODALITE lIaC Management -Initial version - Public Page 40
© Copyright Beneficiaries of the SODALITE Project


https://github.com/SODALITE-EU/defect-prediction
https://github.com/SODALITE-EU/defect-prediction

> .
: Project No 825480. ’ SOdallte

metrics include general metrics such as Lines of Code, Lines of Comments, and Number of Blank
Lines, as well as specific metrics such as cohesion and coupling metrics for Ansible tasks, roles, and
playbooks.

The capabilities of /aC Quality Assessor are:

e calculate quality metrics for TOSCA,
e calculate quality metrics for Ansible.

Roles that interact with component (i.e. App Expert, ResExpert):
e N/A.

Software dependencies:
e Python,
e Java.

Requirements (what it should do):
Calculate the software quality metrics for TOSCA and Ansible artifacts.

Composed of:
e backend.

Depends on (other components):
e Bug Predictor and Fixer.

Repositories:

7.2.5 laC Verifier

This component acts as a facade to the Topology Verifier and Provisioning Workflow Verifier, and
coordinates the processes of verification of the application deployment topology and provisioning
workflow. It provides a uniformed REST API for all types of verifications.

The capabilities of laC Verifier are:

e expose a uniformed REST API for all types of verifications,
e Coordinate topology verification and provisioning workflow verification.

Roles that interact with component (i.e. App Expert, ResExpert):
e N/A.

Software dependencies:
e Python,
e Java.

Requirements (what it should do):
Enable the RESTFul consumption of the verification service capabilities.

D4.1 SODALITE lIaC Management -Initial version - Public Page 41
© Copyright Beneficiaries of the SODALITE Project


https://github.com/SODALITE-EU/iac-quality-framework

> .
: Project No 825480. ’ SOdallte

Composed of:

e REST API: expose laC verification capabilities as RESTFul service operations,
e backend.

Depends on (other components):
e \Verification Model Builder,
e Topology Verifier,
e Provisioning Workflow Verifier.

Repositories:

httos://eithul C ) fficati

7.2.6 Topology Verifier

This component verifies the constraints over the structures of the TOSCA blueprints and Ansible
scripts. This will consider the verification of the requirements of the nodes, the node-relationships,
the capabilities of the nodes, and node substitutability. The topology verifier uses ontological
reasoning rules over SODALITE ontologies for implementing verification logics. It also implements
semantic search and reuse capabilities on top of the SODALITE knowledge graph (WP3), providing
the REST API (supported by the Semantic Reasoner in WP3) for searching the Knowledge Base (KB),
e.g. to get all nodes from the KB or to get the properties of a specific node type.

The capabilities of Topology Verifier are:
e verify the constraints over TOSCA blueprint structure,
e verify the constraints over Ansible script structure,
e support searching and reuse of TOSCA entities.

Roles that interact with component (i.e. App Expert, ResExpert):
There is no direct interaction of AppOps and Resource Experts with the topology verifier.

Software dependencies:
e Python,
e Java,
e RDF4JV3.0.0 (for SPARQL execution, RDF API, etc.).

Requirements (what it should do):

e verify that TOSCA application topologies are semantically valid (e.g. there are no missing
required properties, validation conditions for sources of relationships, etc.),
e verify the constraints over Ansible script structure,
e generate a validation report to be sent to the IDE with suggestions on how to address the
validation errors,
e implement the backend services of the REST API developed in WP3. This involves
context-aware services for:
o returning information about certains nodes (e.g. properties, attributes,
capabilities, etc.)
o extracting and returning saved AADMs in the KB (in JSON).

Depends on (other components):

e \Verification Model Builder,
e [aC Verifier,

D4.1 SODALITE lIaC Management -Initial version - Public Page 42
© Copyright Beneficiaries of the SODALITE Project


https://github.com/SODALITE-EU/verification

> .
: Project No 825480. ’ SOdallte

e Semantic Knowledge Base,
e Semantic Reasoner.

Repositories:

7.2.7 Provisioning Workflow Verifier

This component verifies the constraints over the deployment (provisioning) workflow of the
application using one of the widely used techniques for verifying workflows such as Petri Net. The
workflow is described in the Ansible scripts in terms of tasks, roles, plays, and variables.

The capabilities of Provisioning Workflow Verifier are:

e map and transform Ansible scripts into a formal model (Petri Net),
e verify the constraints over the provisioning workflow.

Roles that interact with component (i.e. App Expert, ResExpert):
e N/A.

Software dependencies:
e Python,
e Java,
e Petri Nettools.

Requirements (what it should do):
Verify the constraints over the provisioning workflow described in the 1aC (Ansible) artifacts.

Depends on (other components):

e \Verification Model Builder,
o [aC Verifier.

Repositories:
I //githul SODALITE-EU ificati
7.2.8 Verification Model Builder

This component builds the models required to verify the deployment model and its provisioning
workflow, for example, a knowledge base instance for ontological (semantic) reasoning on the
topology, and a petri net representation for the provisioning (deployment) workflow.

The capabilities of Verification Model Builder are:
e build a model that can verify the deployment model and its provisioning workflow.

Roles that interact with component (i.e. App Expert, ResExpert):
e N/A

Software dependencies:

e Python,
e Ansible,
e Java.
D4.1 SODALITE lIaC Management -Initial version - Public Page 43

© Copyright Beneficiaries of the SODALITE Project


https://github.com/SODALITE-EU/verification
https://github.com/SODALITE-EU/verification

** Project No 825480. /’ Sodalite

Requirements (what it should do):

Build a formal model that can verify the topology and the provisioning workflow of a deployment
model described in the laC artifacts.

Depends on (other components):

e Semantic Knowledge Base,
e |aC Verifier.

Repositories:

httos://eithut ) ficati

7.3 Development status

The laC bug taxonomy for Ansible is being developed based on a literature review on laC smells
and Ansible best and bad practices. The taxonomy also has been extended by adding security
smells for both Ansible and TOSCA.

To detect the implementation smells and security smells in Ansible, the Ansible-Lint tool is being
extended by adding informal rules for detecting each smell. With collaboration with another
H2020 project RADON?, the tool support for calculating several laC metrics for Ansible is being
developed. Also a metric-based heuristics for detecting design smells is being developed in the bug
catalog. To detect the security smells in TOSCA, semantic reasoning rules are under development
using the SODALITE ontologies from WP3. Moreover, investigation is underway into data-driven
defect prediction for Ansible: deep learning based approach for named-based bugs and
variable-misuses, and NLP and machine learning based approach for task name, logic, module
documentation inconsistencies.

As regards to the verification of 1aC, WP3 has developed the basic support for verifying the
deployment topology modelled in the TOSCA blueprint. More specifically, the semantics of the
Topology Verifier are built on top of the reasoning infrastructure provided by the Semantic
Reasoner (WP3), implementing the verification logic on top of the SODALITE RDF graphs.
Capitalising on the format Ontology Design Pattern (ODP) of SODALITE (see D3.1), the module is
able to detect inconsistencies in TOSCA topologies and provide suggestions on how to address
these errors. In the first version of the semantic verification of TOSCA topologies, the module
supports the detection of missing required properties, basic form of data value mismatches and
validation of TOSCA requirements (source of relationships).

Additionally the logic for context-aware discovery and reuse of information from the KB has been
developed. These services are consumed by the SODALITE IDE, assisting users in defining the
TOSCA topologies. The first version of the module supports basic discovery of resources and node
templates (see D3.1, Section 2.3.1 API Interfaces).

Also, RESTFul APIs for both verification and defect prediction have been developed. The mappings
from Ansible to Petri net have been defined to support the verification of the workflow described in
the Ansible playbooks and roles.

7.4 Next steps

The following are the next steps for the bug prediction and corrections.

e Improve the bug taxonomy by adding the bugs found from a qualitative analysis of bug fix
commits and issue tickets. We need to identify possible types of bugs in l1aC code in
addition to types of smells and anti-patterns that have so far identified.

e Complete the ongoing works on data-driven approaches to defect prediction. Our current
support only considers the smells and anti-patterns that can be detected using informal

D4.1 SODALITE lIaC Management -Initial version - Public Page 44
© Copyright Beneficiaries of the SODALITE Project


https://github.com/SODALITE-EU/verification

Project No 825480. ’ SOda].ite

rules and ontological reasoning. There are types of bugs/smells whose presence can be
better predicted using machine learning, and NPL based (data-driven) techniques.

Further develop semantic approach defect prediction as SODALITE ontologies evolve, for
example, ontological models for Ansible scripts and ontological models for infrastructure and
application design patterns. The semantic web technologies is a key pillar of the SODALITE
approach. Currently, SODALITE only has an ontology for TOSCA. However, the relevant
tasks (WP3) improve the current TOSCA ontology with semantic modeling of TOSCA
policies, and add an Ansible ontology. Consequently, our current semantic approach to
defect prediction should also be extended to detect the more smells in TOSCA and Ansible.
Furthermore, we can utilize the existing semantic web techniques such as ontology
mapping and alignment, and pattern detection and recommendation to build a uniformed
approach predicting defects across different IaC languages, as well as to recommend fixes.

The following are the next steps for the laC verification.

Complete the verification of the deployment topology described in the TOSCA blueprint. As
the TOSCA ontology evolves with the support for more TOSCA features including policies
(WP3), our verification supports will also be extended.

Add the verification of the structural aspects of Ansible scripts. SODALITE (WP3) will also
develop an ontology for Ansible, which enables us to verify the structural semantics of
Ansible scripts via ontological reasoning.

Complete the verification of the provisioning workflow of a given deployment model. The
imperative workflow of Ansible plays and the provisioning workflows of TOSCA should be
verified for common types of control and data flow errors. Our current Petri net based tool
should be extended using the results from the existing research studies on Petri net based
verification of data and control flow errors in general workflows.

The following are the next steps for the semantic search and reuse capabilities.

Extend the context-aware discovery services with additional searching functionality (e.g.
searching by keywords, support additional filtering criteria). To this end, the following
updates are foreseen:

a) To enrich the SODALITE conceptual meta-model (developed in WP3) by
incorporating external semantic networks and lexicon databases (e.g. BabelNet and
WordNet), so as to support advanced searching functionalities capitalizing on templates
and keyword-based searching,

b) implement a combination of native Description Logics reasoning and rule-based

reasoning to take into account the semantics of the generated Knowledge Graphs.
Enrich the validation report, both in terms of the content and quality of suggestions. This
involves the extension of the validation logic to take into account additional semantics of
the TOSCA specification, as well as domain knowledge that will exploit the specifics of the
defined models. Part of this activity will be the enrichment of the IDE capabilities (WP3) to
provide support to the end users, trying not only generate and report validation errors, but
also to enrich the submitted models in cases where the validation errors can be
automatically resolved, e.g. to insert default values or to automatically resolve nodes’
requirements based on resource specifications.

D4.1 SODALITE lIaC Management -Initial version - Public Page 45
© Copyright Beneficiaries of the SODALITE Project



* Project No 825480. ? Sodalite

8 Conclusion

This document has set out to report on the status of the laC management layer at the end of the
first year of the SODALITE project. It provides a report on the state of the development of the
individual components and the issues encountered during the development stages.

The development of the individual components and tools will of course advance and intensify in
the following period of the project. The challenges that WP4 will be facing in the next period will be
represented in the form of integration for all the tools and techniques, with the utmost
consideration for security related affairs. It is expected to achieve considerable steps forward in the
definition of the TOSCA models and Ansible playbooks, these advancements will then of course
reverberate also through the remaining WPs and of course also in the developments of the Use
Cases. This report will be followed-up by D4.2 in M24 that will present the progress in the
development in the following year.

D4.1 SODALITE lIaC Management -Initial version - Public Page 46
© Copyright Beneficiaries of the SODALITE Project



> .
: Project No 825480. ’ SOdallte

References

1.
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.2/csd01/TOSCA-Simple-Profile-YAML-v1.2-
csd01.html

. https://puppet.com/

. https://www.chef.io/ansible

. https://www.ansible.com/

. https://www.eclipse.org/

. https://wiki.eclipse.org/Xpand

. https://www.eclipse.org/acceleo/
. https://wiki.eclipse.org/Orion

. https://ace.c9.io/

. https://codemirror.net/

. https://dslforge.org/

. https://www.eclipse.org/sirius/

. https://www.eclipse.org/graphiti/
. https://protege.stanford.edu/

. http://graphdb.ontotext.com/

. https://martinfowler.com/bliki/InfrastructureAsCode.html

17. M. Artac, T. Borovsak, E. Di Nitto, M. Guerriero, D. Perez-Palacin and D. A. Tamburri,
"Infrastructure-as-Code for Data-Intensive Architectures: A Model-Driven Development Approach," 2018 IEEE
International Conference on Software Architecture (ICSA), Seattle, WA, 2018, pp. 156-15609, doi:
10.1109/ICSA.2018.00025.

18. M. Guerriero, M. Garriga, D. A. Tamburri and F. Palomba, "Adoption, Support, and Challenges of
Infrastructure-as-Code: Insights from Industry,” 2019 IEEE International Conference on Software
Maintenance and Evolution (ICSME), Cleveland, OH, USA, 2019, pp. 580-589, doi: 10.1109/ICSME.2019.00092.

19. Wettinger, J., Breitenb“ucher, U., Kopp, 0., Leymann, F.: Streamlining DevOps automation for Cloud
applications using TOSCA as standardized metamodel. Future Generation Computer Systems 56, 317-332
(2016)

20. Wettinger, J., Breitenb“ucher, U., Leymann, F.: Standards-based DevOps automation and integration
using TOSCA. In: Proc. UCC 2014. pp. 59-68 (2014)

21. Wettinger, J., Behrendt, M., Binz, T., Breitenb“ucher, U., Breiter, G., Leymann, F., Moser, S., Schwertle, I.,
Spatzier, T.: Integrating configuration management with model-driven cloud management based on TOSCA.
In: Proc. CLOSER 2013. pp. 437-446 (2013)

22. M. Artac, T. Borovsak, E. Di Nitto, M. Guerriero, D. Perez-Palacin and D. A. Tamburri,
"Infrastructure-as-Code for Data-Intensive Architectures: A Model-Driven Development Approach," 2018 IEEE
International Conference on Software Architecture (ICSA), Seattle, WA, 2018, pp. 156-15609, doi:
10.1109/ICSA.2018.00025.

23. Brogi, A., Soldani, J.: Matching cloud services with TOSCA. In: Proc. ESOCC 2013. pp. 218-232 (2013)

24. Brogi, A., Soldani, J.: Reusing cloud-based services with TOSCA. In: Proc. Informatik 2014. pp. 235-246
(2014)

25. Brogi, A., Soldani, J.: Finding available services in TOSCA-compliant clouds. Science of Computer
Programming 115-116, 177-198 (2016)

26. Soldani, J., Binz, T., Breitenb“ucher, U., Leymann, F., Brogi, A.: ToscaMart: A method for adapting and
reusing cloud applications. Journal of Systems and Software 113, 395-406 (2016)

27. Li, F., V'ogler, M., ClaelRens, M., Dustdar, S.: Towards automated loT application deployment by a
cloud-based approach. In: Proc. SOCA 2013. pp. 61-68 (2013)

28. Franco da Silva, A., Hirmer, P.; Breitenb“ucher, U., Kopp, O., Mitschang, B.: Customization and
provisioning of complex event processing using TOSCA. Computer Science - Research and Development pp.
1-11 (2017)

O o N o U b W N

[ e S =S S S
o 00~ W N BEHE O

D4.1 SODALITE lIaC Management -Initial version - Public Page 47
© Copyright Beneficiaries of the SODALITE Project



SN Project No 825480. ’ Sodalite

29. A. Palesandro, M. Lacoste, N. Bennani, C. Ghedira-Guegan and D. Bourge, "Mantus: Putting Aspects to
Work for Flexible Multi-Cloud Deployment," 2017 IEEE 10th International Conference on Cloud Computing
(CLOUD), Honolulu, CA, 2017, pp. 656-663, doi: 10.1109/CLOUD.2017.88.

30. Chirivella Pérez, Enrique & Alcaraz Calero, Jose & Wang, Qi & Gutiérrez-Aguado, Juan. (2018).
Orchestration Architecture for Automatic Deployment of 5G Services from Bare Metal in Mobile Edge
Computing Infrastructure. Wireless Communications and Mobile Computing. 2018. 1-18.
10.1155/2018/5786936.

31. M. Baughman, R. Chard, L. T. Ward, J. Pitt, K. Chard, and I. T. Foster,“Profiling and predicting application
performance on the cloud.” in UCC,2018, pp. 21-30.

32. C. Wu, T. Summer, Z. Li, A. Woodard, R. Chard, M. Baughman,Y. Babuji, K. Chard, J. Pitt, and I. Foster,
“Paraopt: Automated application parameterization and optimization for the cloud,” in 2019 IEEE
International Conference on Cloud Computing Technology and Science(CloudCom). IEEE, 2019, pp. 255-262.
33. M. Mohammadi and T. Bazhirov, “Comparative benchmarking of cloud computing vendors with high
performance linpack,” inProceedings of the 2nd International Conference on High Performance
Compilation,Computing and Communications, 2018, pp. 1-5.

34. Continuous evaluation of the performance of cloud infrastructure for scientific applications,”arXiv
preprint arXiv:1812.05257,2018..

35. 2020. [Online]. Available:
https://www.epcc.ed.ac.uk/blog/2020/06/benchmarking-oracle-bare-metal-cloud-dirac-hpc-workloads

36. T. Chiba, R. Nakazawa, H. Horii, S. Suneja, and S. Seelam, “Con-fadvisor: A performance-centric
configuration tuning framework for containers on kubernetes,” in2019 IEEE International Conference on
Cloud Engineering (IC2E). IEEE, 2019, pp. 168-178.

37. Aws compute optimizer. https://aws.amazon.com/compute-optimizer/,last accessed 12. June 2020.

38. S. Krishnan and J. L. U. Gonzalez, “Google compute engine,” inBuilding your next big thing with Google
cloud platform.Springer,2015, pp. 53-81.

39. D.Brayford, S. Vallecorsa, A. Atanasov, F. Baruffa, and W. Riviera,“Deploying ai frameworks on secure hpc
systems with containers.” in2019 IEEE High Performance Extreme Computing Conference (HPEC).IEEE, 2019,
pp. 1-6.

40. R.Priedhorsky and T. Randles, “Charliecloud: Unprivileged containers for user-defined software stacks in
hpc,” inProceedings of the In-ternational Conference for High Performance Computing, Networking,Storage
and Analysis, 2017, pp. 1-10.

41. Tushar Sharma, Marios Fragkoulis, and Diomidis Spinellis. 2016. Does your configuration code smell?. In
Proceedings of the 13th International Conference on Mining Software Repositories (MSR '16). ACM, New York,
NY, USA, 189-200

42. Julian Schwarz, Andreas Steffens, and Horst Lichter. 2018. Code Smells in Infrastructure as Code. In 2018
11th International Conference on the Quality of Information and Communications Technology. 220-228.

43. Rahman, Akond, Chris Parnin, and Laurie Williams. "The seven sins: security smells in infrastructure as
code scripts." Proceedings of the 41st International Conference on Software Engineering. IEEE Press, 2019

44, Rahman, Akond, et al. "Gang of eight: A defect taxonomy for infrastructure as code scripts." Proceedings
of the 42nd International Conference on Software Engineering, ICSE. Vol. 20. 2020.

45. Guerriero, Michele, et al. "Adoption, Support, and Challenges of Infrastructure-as-Code: Insights from
Industry." 2019 IEEE International Conference on Software Maintenance and Evolution (ICSME). IEEE.

46. Rahman, Akond, Rezvan Mahdavi-Hezaveh, and Laurie Williams. "A systematic mapping study of
infrastructure as code research." Information and Software Technology 108 (2019): 65-77.

47. Bellendorf, Julian, and Zoltan Addm Mann. "Specification of cloud topologies and orchestration using
TOSCA: a survey." Computing (2019): 1-23.

48. Brogi, Antonio, Antonio Di Tommaso, and Jacopo Soldani. "Sommelier: a tool for validating TOSCA
application topologies." International Conference on Model-Driven Engineering and Software Development.
Springer, Cham, 2017.

49. Brogi, Antonio, et al. "A Petri net-based approach to model and analyze the management of cloud
applications." Transactions on Petri Nets and Other Models of Concurrency XI. Springer, Berlin, Heidelberg,
2016. 28-48.

50. Vetter, Arthur. "Detecting operator errors in cloud maintenance operations." 2016 IEEE International
Conference on Cloud Computing Technology and Science (CloudCom). IEEE, 2016.

D4.1 SODALITE lIaC Management -Initial version - Public Page 48
© Copyright Beneficiaries of the SODALITE Project



SN Project No 825480. ’ Sodalite

51. Di Modica, Giuseppe, et al. "Implementation of a fault aware cloud service provisioning framework." 2018
IEEE 6th International Conference on Future Internet of Things and Cloud (FiCloud). IEEE, 2018.

52. Miille, Jutta, Christine Tex, and Klemens Bohm. "A practical data-flow verification scheme for business
processes." Information Systems 81 (2019): 136-151.

53. Sharma, Tushar, and Diomidis Spinellis. "A survey on software smells." Journal of Systems and Software
138 (2018): 158-173

54. Tushar Sharma, Marios Fragkoulis, and Diomidis Spinellis. 2016. Does your configuration code smell?. In
Proceedings of the 13th International Conference on Mining Software Repositories (MSR '16). ACM, New York,
NY, USA, 189-200

55. ulian Schwarz, Andreas Steffens, and Horst Lichter. 2018. Code Smells in Infrastructure as Code. In 2018
11th International Conference on the Quality of Information and Communications Technology. 220-228.

56. Rahman, Akond, Chris Parnin, and Laurie Williams. "The seven sins: security smells in infrastructure as
code scripts." Proceedings of the 41st International Conference on Software Engineering. IEEE Press, 2019
57. Rahman, Akond, et al. "Gang of eight: A defect taxonomy for infrastructure as code scripts." Proceedings
of the 42nd International Conference on Software Engineering, ICSE. Vol. 20. 2020.

58. Rahman, Akond, and Laurie Williams. "Characterizing defective configuration scripts used for continuous
deployment." 2018 IEEE 11th International Conference on Software Testing, Verification and Validation
(ICST). IEEE, 2018.

59. Rahman, Akond, Chris Parnin, and Laurie Williams. "The seven sins: security smells in infrastructure as
code scripts." Proceedings of the 41st International Conference on Software Engineering. IEEE Press, 2019
60. Tushar Sharma, Marios Fragkoulis, and Diomidis Spinellis. 2016. Does your configuration code smell?. In
Proceedings of the 13th International Conference on Mining Software Repositories (MSR '16). ACM, New York,
NY, USA, 189-200

61. Julian Schwarz, Andreas Steffens, and Horst Lichter. 2018. Code Smells in Infrastructure as Code. In 2018
11th International Conference on the Quality of Information and Communications Technology. 220-228.

62. Brabra, Hayet, et al. "On semantic detection of cloud API (anti) patterns." Information and Software
Technology 107 (2019): 65-82

63. Dimitrios L Settas, Georgios Meditskos, loannis G Stamelos, and Nick Bassiliades. 2011. SPARSE: A
symptom-based antipattern retrieval knowledge-based system using Semantic Web technologies. Expert
Systems with Applications 38, 6 (2011), 7633-7646

64. Molka Rekik, Khoulou Boukadi, Walid Gaaloul, and Hanéne BenAbdallah. 2017. Anti-pattern specification
and correction recommendations for semantic cloud services. In 50th Hawaii International Conference on
System Sciences.

65. Dimitrios L Settas, Georgios Meditskos, loannis G Stamelos, and Nick Bassiliades. 2011. SPARSE: A
symptom-based antipattern retrieval knowledge-based system using Semantic Web technologies. Expert
Systems with Applications 38, 6 (2011), 7633-7646

66. Brabra, Hayet, et al. "On semantic detection of cloud API (anti) patterns." Information and Software
Technology 107 (2019): 65-82

67. Molka Rekik, Khoulou Boukadi, Walid Gaaloul, and Hanéne BenAbdallah. 2017. Anti-pattern specification
and correction recommendations for semantic cloud services. In 50th Hawaii International Conference on
System Sciences.

68. Kumara, Indika, et al. "Towards Semantic Detection of Smells in Cloud Infrastructure Code" The 10th
International Conference on Web Intelligence, Mining and Semantics (WIMS 2020). ACM, 2020

69. Kumara, Indika, et al. "Towards Semantic Detection of Smells in Cloud Infrastructure Code" The 10th
International Conference on Web Intelligence, Mining and Semantics (WIMS 2020). ACM, 2020

70. Sharma, Tushar, and Diomidis Spinellis. "A survey on software smells." Journal of Systems and Software
138(2018): 158-173

71. Miille, Jutta, Christine Tex, and Klemens Bohm. "A practical data-flow verification scheme for business
processes." Information Systems 81 (2019): 136-151.

72. Xiang, Dongming, et al. "A guard-driven analysis approach of workflow net with data." IEEE Transactions
on Services Computing (2019).

73. Liu, Cong, et al. "Petri net based data-flow error detection and correction strategy for business
processes." IEEE Access 8 (2020): 43265-43276.

D4.1 SODALITE lIaC Management -Initial version - Public Page 49
© Copyright Beneficiaries of the SODALITE Project



* Project No 825480. ? Sodalite

74. https://www.docker.com/

75. https://sylabs.io/singularity/

76. https://hpc.github.io/charliecloud/index.html
77. https://github.com/eth-cscs/sarus

78. Frajberg D., Fraternali P., Torres R.N. (2017) Convolutional Neural Network for Pixel-Wise Skyline
Detection. In: Lintas A., Rovetta S., Verschure P., Villa A. (eds) Artificial Neural Networks and Machine
Learning - ICANN 2017. ICANN 2017. Lecture Notes in Computer Science, vol 10614. Springer, Cham

79. D. Frajberg, C. Bernaschina, C. Marone, and P. Fraternali, “Accelerating deep learning inference on
mobile systems,” in International Conference on Al and Mobile Services. Springer, 2019, pp. 118-134.

80. https://github.com/intel-hadoop/HiBench

81. www.code-aster.org

82. Graph compilers for Al training and inference - blog

83. Apache Spark - Unified Analytics Engine for Big Data https://spark.apache.org/
84. DASK- Scalable Analytics in Python https://dask.org/

85. Open GPU Data Science | RAPIDS (https://github.com/rapidsai/cudf)

86. PETSC - Portable Extensible Toolkit for Scientific computation https://www.mcs.anl.gov/petsc/
87. MUMPS : a parallel sparse direct solver http://mumps.enseeiht.fr

88. https://www.cresta-project.eu/

89. https://www.maestro-data.eu/

90. https://homes.esat.kuleuven.be/~nsmart/SCALE/Documentation.pdf

91. http://radon-h2020.eu/

D4.1 SODALITE lIaC Management -Initial version - Public Page 50
© Copyright Beneficiaries of the SODALITE Project



