C’ Sodalite

SOftware Defined AppLication Infrastructures managemenT and Engineering

l]aC Management -
Intermediate version

D4.2

POLIMI
31/01/2021

* X %

E This project has received funding from the European Union’s Horizon 2020 research and innovation

* *

Fak programme under grant agreement No 825480.

SN Project No 825480.

¥ Sodalite

Deliverable data
Deliverable D4.2 - laC Management - intermediate version
Elisabetta Di Nitto (POLIMI), Emilio Imperiali (POLIMI), Saloni Kyal (POLIMI),
Authors Dragan Radolovi¢ (XLAB), Alexander Maslennikov (XLAB), Kalman Meth (IBM),
Yosu Gorrofiogoitia (ATOS), Kamil Tokmakov (USTUTT), Indika Kumara
(JADS), Alfio Lazzaro (HPE), Paul Mundt (ADPT)
Reviewers Yosu Gorrofiogoitia (ATOS), Zoe Vasileiou (CERTH)
Dissemination Public
level
Name Change Date
Elisabetta Di Nitto Structure 01/10/2020
definition
All Structure 15/10/2020
refinement
Preliminary
Al contributions 30/11/2020
All Refinements 20/12/2020
History of
changes All Restructuring of 04/01/2021
material
Finalization of
Al contributions 15/01/2021
Finalization of
Elisabetta Di Nitto draft for internal 18/01/2021
review
. - Finalization of
El|sabetfca DiNitto, document for final 29/01/2021
Nejc Bat .
submission
Acknowledgement

The work described in this document has been conducted within the Research & Innovation action
SODALITE (project no. 825480), started in February 2019, and co-funded by the European
Commission under the Information and Communication Technologies (ICT) theme of the H2020

framework programme (H2020-1CT-16-2018: Software Technologies)

D4.2 - laC Management - Intermediate Version
© Copyright Beneficiaries of the SODALITE Project

Page 1

4 .
{ } Project No 825480. ’SOdallte

Table of Contents

List of figures
Executive Summary
Glossary

1 Introduction
1.1 Deliverable goal
1.2 Structure of the document

2 Changes to the IaC Management Layer Architecture

31aC Layer development toolset and artifacts
3.1 GitHub Repositories
3.2 Continuous Integration and Continuous Delivery CI/CD
3.3 Software QA
3.41aC Management Layer artifacts

4 New features developed in the second project year
4.1 Automated discovery and TOSCA description of infrastructure
4.1.1 State Of The Art and Innovation
4.1.2 Architecture
4.1.3 Features
4.1.4 Status
4.1.5 Next steps
4.2 Support to the creation of Ansible scripts integrated with the Resource Models
4.2.1 State of the art and innovation
4.2.2 Features
4.2.3 Architecture
4.2.4 Status
4.2.5 Next steps
4.3 Optimization - MODAK
4.3.1 Innovation
4.3.2 Architecture
4.3.3 Features
4.3.4 Status
4.3.5 Next steps
4.4 Analytics and Semantic Support
4.4.11aC Taxonomies
4.4.1.1 Innovation
4.4.1.2 Methodology
4.4.1.3 Features
4.4.1.4 Status

10
11
11

11

12
13
13
13
14

15
15
16
18
19
23
24
24
25
25
27
28
28
29
29
30
30
31
32
32
32
32
33
35
35

D4.2 - laC Management - Intermediate Version
© Copyright Beneficiaries of the SODALITE Project

Page 2

94 .
{ } Project No 825480. ’SOdallte

4.4.1.5 Next steps

4.4.2 |aC Defect Prediction and Correction

4.4.2.1 Innovation

4.4.2.2 Architecture

4.4.2.3 Features

detecting security and implementation smells in TOSCA and Ansible scripts
4.4.2 .4 Status

4.4.2.5 Next steps

5 Extension of the existing components
5.1 Image builder
5.1.1 Improvements
5.1.2 Code Quality
5.1.3 Next steps
5.2 laC-Blueprint-Builder
5.2.1 Improvements
5.2.2 Code Quality
5.2.3 Next steps
5.3 Prediction service
5.3.1 Improvements
5.3.2 Code Quality
5.3.3 Next steps
Integration of Ansible smell detection with SODALITE IDE
5.4 1aC Quality Assessor
5.4.1 Improvements
5.4.2 Code Quality
5.4.3 Next steps
5.5 Topology Verifier
5.5.1 Improvements
5.5.2 Code Quality
5.5.3 Next steps
5.6 Provisioning Workflow Verifier
5.6.1 Improvements
5.6.2 Code Quality
5.6.3 Next steps
5.7 1aC Verifier
5.7.1 Improvements
5.7.2 Code Quality
5.7.3 Next steps

6 Updated IaC Management Layer Development Plan

7 Conclusion

35
36
36
37
40
40
40
40

40
40
41
41
42
42
42
42
42
43
43
43
44
44
44
44
44
44
44
44
44
44
45
45
45
45
45
45
45
45

46

47

D4.2 - laC Management - Intermediate Version
© Copyright Beneficiaries of the SODALITE Project

Page 3

SN Project No 825480.

‘? Sodalite

References

Appendix - Ansible Implementation Metamodel
Notes about the notation
The metamodel

48

51
51
51

D4.2 - laC Management - Intermediate Version
© Copyright Beneficiaries of the SODALITE Project

Page 4

{*”} Project No 825480. ? SOdalite

List of figures

D4.2 - laC Management - Intermediate Version Page 5
© Copyright Beneficiaries of the SODALITE Project

{'**} Project No 825480. /’ SOdalite

Executive Summary

The purpose of this deliverable is to present the status of the laC Management Layer at the
end of the second year of the SODALITE project.

The SODALITE Infrastructure as Code (laC) Management Layer acts as an intermediary
between the modeling environment, which aims at supporting the development of Abstract
Application Deployment Models (AADMs), and the runtime environment, where the
applications are actually executed. To accomplish its intermediation function, this layer
offers several support services concerning the following activities:

e Discovery of resources and automatic generation of Resource Models.

® Generation of the l1aC code from the AADM.

e Creation of the container images to support the performance-optimized execution of
application components on specific target environments.

e |dentification of smells/bugs in the IaC scripts and their prediction and fixing.

e Configuration of the containerized application to achieve an optimized execution in
the HPC environment.

In the current deliverable we provide an overview of the current evolution of the laC
Management Layer with respect to the points described above. In particular, this deliverable
focuses on the progress of the work with respect to what was reported in Deliverable D4.1
[D4.1] at the end of the first project year. The deliverable has been developed in parallel and
coherently to WP2, WP5 and WP6 deliverables [D2.2, D5.2, D6.3, D6.6] and to the work
developed in WP3 as part of the second year.

The main innovations accomplished during this year are the following:

e Automated platform discovery: this new mechanism allows the identification of
specific resources and the creation of the corresponding Resource Models and
TOSCA node types. The approach works by querying the status of the available
infrastructures at a certain point in time. This is particularly important as it relieves
the Resource Expert (RE) from the need to manually model and define resource
types, thus saving significant modeling time.

e Support for the creation of Ansible scripts integrated with the Resource Models: this
is an add-on that offers users content assistance mechanisms that guide developers
in the creation of scripts that are coherent with the definition of the resource models
in which context they are used.

e The MODAK package, a software-defined optimisation framework for containerised
HPC and Al applications: this is responsible for enabling the static optimisation of
applications before deployment. MODAK aims to optimise the performance of
applications deployed to HPC infrastructures in a software-defined way. Automation
in application optimisation is enabled by using performance modelling and container
technology.

e Semantic and Analysis Support including: bug taxonomy; unified best and bad
practices catalog; unified smell catalog; linguistic anti-pattern detection via NLP and
deep learning; improved support for detecting smells via a semantic approach.

During this year, the consortium has also consolidated the pre-existing components of the
laC Management Layer, namely, the Image Builder, the 1aC Blueprint Builder, the Prediction
Services, the IaC Quality Assessors, the Topology Verifier and the Provisioning Workflow
Verifier.

D4.2 - laC Management - Intermediate Version Page 6
© Copyright Beneficiaries of the SODALITE Project

{***} Project No 825480. ? SOdalite

A special attention has been posed not only to the development of new features and
integration mechanisms for these components, but also to the improvement of their quality
and robustness.

All components of the laC Management Layer, together with the other SODALITE
components, have been incorporated into an overall ClI/CD process with quality gates both in
terms of code analysis (through SonarCloud) and in terms of testing.

In the third project year all laC Management Layer components will be enriched with
additional features.

D4.2 - laC Management - Intermediate Version Page 7
© Copyright Beneficiaries of the SODALITE Project

{***} Project No 825480. /’ SOdalite

Glossary

Acronym Explanation

AADM Abstract Application Deployment Model used in SODALITE to abstract the
application deployment.

Al Artificial Intelligence

AOE Application Ops Expert
The equivalent process from the ISO/IEC/IEEE standard 12207 Systems
and software engineering — Software life cycle processes is Operation
processes and maintenance processes

API Application Program Interface

CPU Central Processing Unit

CRESTA Collaborative Research into Exascale Systemware, Tools & Applications

DSL Domain-Specific Language

EMF Eclipse Modeling Framework

ETL Extract, Transform, Load

GPU Graphical Processing Unit

FPGA Field-Programmable Gate Array

HPC High Performance Computing

laC Infrastructure as Code

laaS Infrastructure as a Service

IAM Identity and Access Management

IDE Integrated Development Environment

JSON JavaScript Object Notation

k8s Kubernetes

MAMBA Managed Abstract Memory Arrays

M2T Model-to-Text

OASIS Organization for the Advancement of Structured Information Standards

QE Quality Expert
The equivalent process from ISO/IEC/IEEE standard 12207 Systems and
software engineering — Software life cycle processes: Infrastructure
management and Configuration management processes

QoS Quality of Service

RDF Resource Description Framework

RE Resource Expert
The equivalent process from ISO/IEC/IEEE standard 12207 Systems and

D4.2 - laC Management - Intermediate Version Page 8

© Copyright Beneficiaries of the SODALITE Project

{***} Project No 825480. ? SOdalite

software engineering — Software life cycle processes is Quality
Management and Quality assurance processes
REST Representational State Transfer
SHACL Shapes Constraint Language
SSH Secure Shell
TOSCA Topology and Orchestration Specification for Cloud Applications
TLS Transport Layer Security
ubDJ Universal Data Junction
UML Unified Modeling Language
D4.2 - laC Management - Intermediate Version Page 9

© Copyright Beneficiaries of the SODALITE Project

Project No 825480. /’ SOda].ite

1 Introduction

The SODALITE Infrastructure as Code (laC) Management Layer acts as an intermediary between the
modeling environment, which aims at supporting the development of Abstract Application
Deployment Models (AADMs), and the runtime environment, where the applications are actually
executed. To accomplish its intermediation function, this layer offers several support services
concerning the following activities:

Discovery of resources and automatic generation of Resource Models: one of the main
problems Application Ops Experts (AOE) face when they want to deploy their applications
concerns understanding which kinds of resources they could use and analyzing their
characteristics. To accomplish this task, they typically rely on informal descriptions of
resources that are provided by the corresponding providers. Such descriptions can be
expressed in different formats and can be difficult to compare them. The TOSCA standard
[Rutkowski20] is addressing this problem by offering the notion of Node Type and by
suggesting resource providers or intermediaries to use it to define models of resources. In
SODALITE, the 1aC Management Layer moves one step forward and offers a service, the
Platform Discovery Service, to automate the definition of Resource Models and
corresponding TOSCA Node Types given the resources discovered in a certain
infrastructure.

Generation of the laC code from the AADM: to enable interoperability with other initiatives
and projects, SODALITE runtime is centered around the standard language for deployment
orchestration, that is, TOSCA. The laC Management Layer then transforms abstract models
defined by the Application Ops Experts into TOSCA executable blueprints. Moreover, it also
supports the operationalization of these blueprints by offering support to the creation of
Ansible scripts that implement all operations required in a TOSCA blueprint.

Creation of the container images to support the performance-optimized execution of
application components on specific target environments: In order to enable the execution of
application components on different resources, we encapsulate them in proper containers
that create the needed abstraction level between the application code and the actual
executing environment. In this context, the laC Management Layer offers the Image Builder
service that addresses the problem of automating the creation of component images so
that they can be properly executed within the context of Docker' and Singularity’
containers, as at the moment, these two technologies are the most used application
packaging approaches for Cloud and HPC environments, respectively.

Identification of smells/bugs in the laC scripts and prediction and fixing of smells/bugs: As
any other piece of software, 1aC can contain smells and bugs. This occurs even when the
code is automatically generated, as it happens in SODALITE. Typical problems may
concern, for instance, an incorrect definition of the workflow steps in the Ansible
components. To address this problem, the 1aC Management Layer offers a suite of
components constituted by the Predictor Services, the laC Quality Assessors, the Topology
Verifier and the Provisioning Workflow Verifier, as well as a taxonomy of laC and the
corresponding catalogues of smells and bugs.

Configuration of the containerized application to achieve an optimized execution in the HPC
environment: Al training frameworks require target-specific libraries and drivers to be
configured. In the context of HPC infrastructures, with diverse hardware and software
dependencies and libraries, building or selecting an optimised container for deploying

! https://www.docker.com/ Package Software into Standardized Units for Development, Shipment and
Deployment

2 https://sylabs.io/singularity/ Users of singularity can build applications on their desktops and run hundreds
or thousands of instances—without change—on any public cloud or out to the computational edge.

D4.2 - laC Management - Intermediate Version Page 10
© Copyright Beneficiaries of the SODALITE Project

https://www.docker.com/
https://sylabs.io/singularity/

{***} Project No 825480. ’ SOdalite

Al-based components is crucial. To address this issue, the [aC Management Layer offers an
application optimizer called MODAK that maps the optimal application parameters to the
infrastructure target by building or selecting an optimised container and then encoding
optimisations in a job script.

1.1 Deliverable goal

The goal of this deliverable is to provide an overview of the current evolution of the laC
Management Layer with respect to the points described above. In particular, this deliverable
focuses on the progress of the work with respect to what was reported in Deliverable D4.1 [D4.1] at
the end of the first project year.

Therefore, the deliverable provides updates concerning the services developed in the first project
year, that are the Image Builder, the 1aC Blueprint Builder, the Prediction Services, the laC Quality
Assessors, the Topology Verifier and the Provisioning Workflow Verifier. Moreover, it offers a
detailed overview of the newly added services focusing on the innovations they offer, their main
features and architecture.

This deliverable has been developed in parallel and coherently to WP2, WP5 and WP6 deliverables
[D2.2,D5.2, D6.3, D6.6] and to the work developed in WP3 as part of the second year.

1.2 Structure of the document

Consistently with its goals, the rest of this deliverable is structured in the following main sections:

e Section 2 presents the evolution of the laC Management Layer architecture. This evolution
is described in further details in the requirements and architecture deliverable [D2.2].

e Section 3 briefly presents the development and integration tools exploited in WP4, in
agreement with the general rules defined for the SODALITE project, as described in [D2.4].

e Section 4 presents the new features developed in the second project year. As mentioned,
we highlight their innovation with respect to the state of the art, the offered features, the
architecture of the corresponding components and provide an overview of the current
status of development and of the plan for the last project year.

e Section 5 provides a brief update of the status of the components already available in the
first year in terms of their evolution in the second project year.

e Section 6 presents the laC Management Layer development plan for the third year. This
plan is an excerpt of the general plan presented in Appendix A of the Deliverable D6.6 [D6.6]
and is presented also here for the sake of completeness.

® Section 7 presents the conclusions.

e Finally, the Appendix provides some details concerning the Ansible metamodel (see
Section 4.2).

2 Changes to the laC Management Layer Architecture

During the second year of the project, several changes have been made to the laC management
layer architecture. During the intensive phase of component development, integration issues have
been identified and therefore addressed reflecting the implementation of the components and
their integration into the SODALITE framework. From the perspective of the laC management
layer, the Platform Discovery Service has been added to the framework to enable partial
automation for the Resource Expert (RE) and easier, streamlined and less error prone modelling of
the infrastructures available. Security was also in the focus of the project endeavours to make the
framework more solid and more appealing to the end users. Figure 1 shows the updated high-level
SODALITE General Architecture by layers.

D4.2 - laC Management - Intermediate Version Page 11
© Copyright Beneficiaries of the SODALITE Project

Project No 825480. ? SOdalite

SODALITE General Architecture

ImageBuilderAP| Platfo) iscoveryAP| laC¥erifactionAP| D

CtPrediction
orrectionAP|

PreparationAPI

=]
SODALITE
Infrastructure as Cede Layer

Figure 1 - Updated SODALITE layers general architecture

WP4 - Infrastructure As Code Layer
Architecture Overview

Image Builder\
a

Concrete
Image
Builder

use

a
(=] [=] Runtime
Ansible Support SODALITE IDE [—(Q—— Image —Q

Runtime Builder Image
ImageAPI data access
use
Defect Prediction Deployment atform
laC Verification\ and Correction Preparation Distovery
a
Provisioning
Workflow ®
Verifier DefectPrediction IAMIntr6specti Platform
CorrectionAPI DiscovieryAP|
= o
i
Bug Predictor lac Absiiact Platform
Blueprint Model
and Fixer A Discovery
builder Parser
use |use
erformance
Optimisation
[=]
Verification Topolo = Rredlotive laC Qualit . A Iif:atiuﬁCJ
pMods! \/eeinegy L6l Assessor y O——— Op?lmlser
Builder Builder Application P
OptimiserAPI

—@Z /

SemanticReasonerAPI

Figure 2 - Updated Infrastructure as Code Layer Architecture.

While there were limited changes in the SODALITE General Architecture, the laC Management Layer
shows some significant evolutions (see FEigure 2). First of all, it has been integrated with the
Security APIs introduced in the second year of the project and offering Identity and Access
Management (IAM) for authentication and authorization of the requests and Secret Management
API (Vault Service) for securely handling secret storage. Such APIs are now used by the Platform
Discover and laC Blueprint Builder component.

Second, the 1aC Management Layer architecture shows two new components. These are the newly
introduced Platform Discovery Service and the Ansible Support (Editor and Code Generator) that is
developed within the SODALITE IDE.

31aC Layer development toolset and artifacts

In this section, we recall the rules adopted within SODALITE to produce and deliver code. Details
on these aspects are available in [D2.4] and [D6.3]. Moreover, we provide an overview of the
specific artifacts that are produced and made available to the users as part of the laC Management
Layer.

D4.2 - laC Management - Intermediate Version Page 12
© Copyright Beneficiaries of the SODALITE Project

{***} Project No 825480. ’ SOdalite

3.1 GitHub Repositories

SODALITE chose GitHub as its primary publicly available development version control system.
GitHub is excellently managed for supporting the open source community, not only as a version
control system, but also as a developers collaboration platform, by offering many available tools
and further introducing concepts for this collaboration.

All the available open-sourced code produced in SODALITE can be reached through SODALITE’s
GitHub organization: https://github.com/SODALITE-EU.

SODALITE utilizes different project development collaboration features provided by GitHub such
as: project boards, teams, issue tracker, pull requests, and peer reviews of code.

3.2 Continuous Integration and Continuous Delivery CI/CD

SODALITE uses the Jenkins® tool to support automated building, testing, versioning and publishing
process for SODALITE components. To improve the quality and the automation of the CI/CD
process a convention for the developed components has been set up with specific examples of
usage described in detail deliverable D6.3 [D6.3].

3.3 Software QA

SODALITE is bound to produce mostly open source code on a publicly available version control
system. The SODALITE consortium recognizes the high impact of developing excellent quality of
code of its software components. For this reason the free and open online SonarCloud* utility is
used to assess the quality of the code. To enable developers to deliver better code, SonarCloud
shows various dashboards and enables a streamlined integration with GitHub, providing the
developers with a good estimate of code quality even before merging the code into the
master/main branch. This feature, among many others, is extensively used in the SODALITE CI/CD
pipeline, providing both the developer and the reviewer of the code with significant and important
insights about the quality of developed code, as well as providing useful suggestions on how to
improve the code.

All of the repositories of the SODALITE components were integrated with SonarCloud during the
second year of the project. The main metrics collected concern the following aspects:

e the number of bugs: bugs in SonarCloud are identified by exploiting various static analysis
tools specific to the supported languages. [ref] and [ref] provide an overview of the types of
bugs discovered by the tools used for Java and Python code, respectively,

e the number of security vulnerabilities and hotspots. As highlighted in the SonarCloud
manual’, “with a Hotspot, a security-sensitive piece of code is highlighted, but the overall
application security may not be impacted. It's up to the developer to review the code to
determine whether or not a fix is needed to secure the code. With a vulnerability, a problem
that impacts the application's security has been discovered that needs to be fixed
immediately”,

e the number of code smells,

e the code coverage defined in terms of lines of code that are exercised by automated test
cases,

e the amount of replicated code.

The general goal of SODALITE with respect to these metrics is to continuously keep them under
control and improve them from release to release. As for the components belonging to the laC

® https://www.jenkins.io/ The leading open source automation server, Jenkins provides hundreds of plugins
to support building, deploying and automating any project.

* https://sonarcloud.io/ Code Quality assessment online tool Enhance - Your Workflow with Continuous Code
Quality

® https://docs.sonarqube.org/latest/user-guide/security-hotspots/

D4.2 - laC Management - Intermediate Version Page 13
© Copyright Beneficiaries of the SODALITE Project

https://github.com/SODALITE-EU

{***} Project No 825480. ? SOdalite

Management Layer, we expect the metrics to show relatively high values considering that these
components are used by most of the others in the platform.

In the following sections of this deliverable, for each stable component, we provide an overview of
its current status in terms of the SonarCloud metrics.

3.4 1aC Management Layer artifacts

The following table provides links to the GitHub repositories, SonarCloud analysis reports and
Dockerized images of each of the laC Management Layer as it is shown in the architecture of Figure
2,

Component | Github SonarCloud Dockerized image on
repository dashboard Docker Hub
Image Builder | https://github.com | https://sonarcloud.i | 1. https://hub.docker.com/r/sod
/SODALITE-EU/ima 2id= aliteh2020/image-builder-cli
3. https://hub.docker.com/r/sod
X
4. https://hub.docker.com/r/sod
Deployment https://github.com | https://sonarcloud.i | https://hub.docker.com/r/sodalite
Preparation /SODALITE-EU/iac- ?id= h2020/iac-blueprint-builder
(akalaC blueprint-builder | DALITE-EU_iac-blue
Blueprint print-builder
Builder)
laC https://github.com | 1. https://sonarcl 1. https://hub.docker.com/r/
Verification /SODALITE-EU/veri oud.io/dashbo sodaliteh2020/iacverifiera
fication 2id= pi
TE-EU_verifica 2. https://hub.docker.com/r/
tion-unifiedapi sodaliteh2020/workflowve
2. https://sonarcl rifier
oud.io/dashbo 3. https://hub.docker.com/r/
2id= sodaliteh2020/toscasynver
tion-workflow
3. https://sonarcl
oud.io/dashbo
2id=
IE- i
tion-workflow
Application https://github.com | https://sonarcloud.i | https://hub.docker.com/r/modako
Optimization | /SODALITE-EU/app 2id= pt/modak
(aka MODAK) | lication-optimisati | DALITE-EU_applicat

D4.2 - laC Management - Intermediate Version Page 14
© Copyright Beneficiaries of the SODALITE Project

https://github.com/SODALITE-EU/image-builder
https://github.com/SODALITE-EU/image-builder
https://github.com/SODALITE-EU/image-builder
https://sonarcloud.io/dashboard?id=SODALITE-EU_image-builder
https://sonarcloud.io/dashboard?id=SODALITE-EU_image-builder
https://sonarcloud.io/dashboard?id=SODALITE-EU_image-builder
https://sonarcloud.io/dashboard?id=SODALITE-EU_image-builder
https://hub.docker.com/r/sodaliteh2020/image-builder-cli
https://hub.docker.com/r/sodaliteh2020/image-builder-cli
https://hub.docker.com/r/sodaliteh2020/image-builder-api
https://hub.docker.com/r/sodaliteh2020/image-builder-api
https://hub.docker.com/r/sodaliteh2020/image-builder-nginx
https://hub.docker.com/r/sodaliteh2020/image-builder-nginx
https://hub.docker.com/r/sodaliteh2020/image-builder-nginx
https://hub.docker.com/r/sodaliteh2020/image-builder-flask
https://hub.docker.com/r/sodaliteh2020/image-builder-flask
https://github.com/SODALITE-EU/iac-blueprint-builder
https://github.com/SODALITE-EU/iac-blueprint-builder
https://github.com/SODALITE-EU/iac-blueprint-builder
https://sonarcloud.io/dashboard?id=SODALITE-EU_iac-blueprint-builder
https://sonarcloud.io/dashboard?id=SODALITE-EU_iac-blueprint-builder
https://sonarcloud.io/dashboard?id=SODALITE-EU_iac-blueprint-builder
https://sonarcloud.io/dashboard?id=SODALITE-EU_iac-blueprint-builder
https://hub.docker.com/r/sodaliteh2020/iac-blueprint-builder
https://hub.docker.com/r/sodaliteh2020/iac-blueprint-builder
https://github.com/SODALITE-EU/verification
https://github.com/SODALITE-EU/verification
https://github.com/SODALITE-EU/verification
https://sonarcloud.io/dashboard?id=SODALITE-EU_verification-unifiedapi
https://sonarcloud.io/dashboard?id=SODALITE-EU_verification-unifiedapi
https://sonarcloud.io/dashboard?id=SODALITE-EU_verification-unifiedapi
https://sonarcloud.io/dashboard?id=SODALITE-EU_verification-unifiedapi
https://sonarcloud.io/dashboard?id=SODALITE-EU_verification-unifiedapi
https://sonarcloud.io/dashboard?id=SODALITE-EU_verification-workflow
https://sonarcloud.io/dashboard?id=SODALITE-EU_verification-workflow
https://sonarcloud.io/dashboard?id=SODALITE-EU_verification-workflow
https://sonarcloud.io/dashboard?id=SODALITE-EU_verification-workflow
https://sonarcloud.io/dashboard?id=SODALITE-EU_verification-workflow
https://sonarcloud.io/dashboard?id=SODALITE-EU_verification-workflow
https://sonarcloud.io/dashboard?id=SODALITE-EU_verification-workflow
https://sonarcloud.io/dashboard?id=SODALITE-EU_verification-workflow
https://sonarcloud.io/dashboard?id=SODALITE-EU_verification-workflow
https://sonarcloud.io/dashboard?id=SODALITE-EU_verification-workflow
https://hub.docker.com/r/sodaliteh2020/iacverifierapi
https://hub.docker.com/r/sodaliteh2020/iacverifierapi
https://hub.docker.com/r/sodaliteh2020/iacverifierapi
https://hub.docker.com/r/sodaliteh2020/workflowverifier
https://hub.docker.com/r/sodaliteh2020/workflowverifier
https://hub.docker.com/r/sodaliteh2020/workflowverifier
https://hub.docker.com/r/sodaliteh2020/toscasynverifier
https://hub.docker.com/r/sodaliteh2020/toscasynverifier
https://hub.docker.com/r/sodaliteh2020/toscasynverifier
https://github.com/SODALITE-EU/application-optimisation/
https://github.com/SODALITE-EU/application-optimisation/
https://github.com/SODALITE-EU/application-optimisation/
https://sonarcloud.io/dashboard?id=SODALITE-EU_application-optimisation
https://sonarcloud.io/dashboard?id=SODALITE-EU_application-optimisation
https://sonarcloud.io/dashboard?id=SODALITE-EU_application-optimisation
https://hub.docker.com/r/modakopt/modak
https://hub.docker.com/r/modakopt/modak

‘¥ Sodalite

Project No 825480.

Platform https://github.com | https://sonarcloud.i
Discovery /SODALITE-EU/plat 2id= - -
Service form-discovery-ser | DALITE-EU_platfor
Defect https://github.com | 1. https://sonarcl | 1. https://hub.docker.com/r/sod
Prediction and | /SODALITE-EU/def oud.io/dashboa aliteh2020/ansiblesmells
Correction ect-prediction 2id= 2. bttps://hub.docker.com/r/sod
ell
2. https://sonarcl
oud.io/dashboa
2id=
efects
3.
laC Quality https://github.com | https://sonarcloud.i | https://hub.docker.com/r/sodalite
Framework /SODALITE-EU/iac- 2id= h2020/iacmetrics
ity-framework
Ansible Thisis an IDE https://sonarcloud.i | https://hub.docker.com/r/sodalite
Abstract subcomponent 2id= h2020/sodalite-ide
Playbooks https://github.com | DALITE-EU_ide
Support /SODALITE-EU/ide

4 New features developed in the second project year

4.1 Automated discovery and TOSCA description of infrastructure

Modelling different kinds of infrastructures into specific Resource Models (RM), that can then be
referenced by the AADM, can be a tedious task for an IT Operation manager or a Resource Expert
(RE). The knowledge needed to define a complex infrastructure spans over different areas and
implies having comprehensive knowledge about the resource classification, capabilities, and
dependencies and other platform specific aspects. This task usually requires extensive manual and
iterative work for the transformation of the platform knowledge into the model definition, making
it a hardly reachable goal for most of the RE. There are several objective reasons for this, with the
most common ones being the specifics of the platform infrastructure topology and capabilities,
which depend on an ever changing processes on most platforms, and the iterative manual work for
abstraction of the resources defined in TOSCA. Consider a RE that wants to enable DevOps users
(AQOEs) to use resource models for different instances of Openstack (meaning many definitions of
networks, storage types, flavors, image types etc.). Declaring all the resources through their node
type definitions for an infrastructure can take days, and depending on the volatility of the
Openstack instance, it should be regularly redefined, producing a consistent model of the resource

D4.2 - laC Management - Intermediate Version
© Copyright Beneficiaries of the SODALITE Project

Page 15

https://github.com/SODALITE-EU/application-optimisation/
https://sonarcloud.io/dashboard?id=SODALITE-EU_application-optimisation
https://github.com/SODALITE-EU/platform-discovery-service
https://github.com/SODALITE-EU/platform-discovery-service
https://github.com/SODALITE-EU/platform-discovery-service
https://github.com/SODALITE-EU/platform-discovery-service
https://sonarcloud.io/dashboard?id=SODALITE-EU_platform-discovery-service
https://sonarcloud.io/dashboard?id=SODALITE-EU_platform-discovery-service
https://sonarcloud.io/dashboard?id=SODALITE-EU_platform-discovery-service
https://sonarcloud.io/dashboard?id=SODALITE-EU_platform-discovery-service
https://hub.docker.com/r/sodaliteh2020/platform-discovery-service
https://hub.docker.com/r/sodaliteh2020/platform-discovery-service
https://github.com/SODALITE-EU/defect-prediction
https://github.com/SODALITE-EU/defect-prediction
https://github.com/SODALITE-EU/defect-prediction
https://sonarcloud.io/dashboard?id=SODALITE-EU_tosca-smell
https://sonarcloud.io/dashboard?id=SODALITE-EU_tosca-smell
https://sonarcloud.io/dashboard?id=SODALITE-EU_tosca-smell
https://sonarcloud.io/dashboard?id=SODALITE-EU_tosca-smell
https://sonarcloud.io/dashboard?id=SODALITE-EU_tosca-smell
https://sonarcloud.io/dashboard?id=SODALITE-EU_ansible-defects
https://sonarcloud.io/dashboard?id=SODALITE-EU_ansible-defects
https://sonarcloud.io/dashboard?id=SODALITE-EU_ansible-defects
https://sonarcloud.io/dashboard?id=SODALITE-EU_ansible-defects
https://sonarcloud.io/dashboard?id=SODALITE-EU_ansible-defects
https://hub.docker.com/r/sodaliteh2020/ansiblesmells
https://hub.docker.com/r/sodaliteh2020/ansiblesmells
https://hub.docker.com/r/sodaliteh2020/toscasmells
https://hub.docker.com/r/sodaliteh2020/toscasmells
https://github.com/SODALITE-EU/iac-quality-framework
https://github.com/SODALITE-EU/iac-quality-framework
https://github.com/SODALITE-EU/iac-quality-framework
https://sonarcloud.io/dashboard?id=SODALITE-EU_iac-quality-framework
https://sonarcloud.io/dashboard?id=SODALITE-EU_iac-quality-framework
https://sonarcloud.io/dashboard?id=SODALITE-EU_iac-quality-framework
https://sonarcloud.io/dashboard?id=SODALITE-EU_iac-quality-framework
https://hub.docker.com/r/sodaliteh2020/iacmetrics
https://hub.docker.com/r/sodaliteh2020/iacmetrics
https://github.com/SODALITE-EU/ide
https://github.com/SODALITE-EU/ide
https://sonarcloud.io/dashboard?id=SODALITE-EU_ide
https://sonarcloud.io/dashboard?id=SODALITE-EU_ide
https://sonarcloud.io/dashboard?id=SODALITE-EU_ide
https://hub.docker.com/r/sodaliteh2020/sodalite-ide
https://hub.docker.com/r/sodaliteh2020/sodalite-ide

{'**} Project No 825480. /’ SOdalite

types available on the instance. Automating such a task provides an invaluable and tangible result
for the RE, leaving him to define only specific aspects not handled by the automatic Platform
Discovery Service and verify the correctness of the resource model.

SODALITE helps the Resource Expert (RE) to identify and create the platform RM definitions for
typical HPC environments (managed by TORQUE®/SLURM’ schedulers and accessible through
SSH), Openstack private cloud environments and partial discovery of the AWS resources. The
Platform Discovery Service creates standard TOSCA node type definitions that can be edited,
verified and later injected in the SODALITE Knowledge Graph as part of the platform instance
Resource Model (RM). These RMs are then used by the AOE within an AADM to support the
modelling of a complex application deployment. The information supplied in the RMs describes the
type of the resource, its workload capabilities (number of nodes, CPUs, GPUs or special hardware
that might be used in the optimization process such as SSD drives attached etc.) or image
types/flavors, volumes, networks, security rules for the VM management on Cloud infrastructure.

4.1.1 State Of The Art and Innovation

There are several papers considering approaches to use TOSCA, specifically to improve automated
infrastructure model matchmaking including some work done in the field of automatic discovery of
application services, but only one showing possible partial automatic discovery of infrastructure
resources for specific infrastructures as described in this section.

[Wett 2016] presents an integrated modeling and runtime framework to enable the seamless and
interoperable integration of different approaches to model and deploy application topologies. The
framework is implemented by an open-source, end-to-end toolchain. Moreover, they validate and
evaluate the presented approach to show its practical feasibility based on a detailed case study, in
particular considering the performance of the transformation toward TOSCA.

[Tamburri 2019] articulates the foundations of the “intent modelling” approach, incorporating the
most related modelling paradigm, that is, goal-modelling. They elaborate on it with a real, but
simple industrial sample featuring the TOSCA language.

[Noudohouenou 2014] presents the Ubenchface tool, a framework for performance prediction and
knowledge discovery. Inversely to traditional measurement methods and modeling, the proposed
tool considers static metrics to analyze and tune application performance. This framework is more
informative than simple benchmarking, or microbenchmarking. It is useful for performance
investigations in similarity and redundancy study concerning benchmark suites, predicting,
understanding scaling, and tuning.

Perhaps the most relevant paper is presented in [Brogi 2016]. Their work shows how the TOSCA
standard can be exploited to provide a standard-based representation of the virtual machines and
platforms offered by laaS and PaaS cloud providers. DrACO is an open-source prototype tool that
permits to look-up for cloud offerings and to retrieve them in a TOSCA format. The tool uses
meta-indexes to gather information about accessibility, scalability and cost of VM offerings.
Nevertheless, using discovery for automatic platform TOSCA modelling is novel not only for Cloud
platforms but especially for the HPC domains. SODALITE’s Platform Discovery Service uses cloud
provider defined APIs and standard HPC cluster management tools to gather data about the

6 https://adaptivecomputing.com/cherry-services/torque-resource-manager/ TORQUE is an

industry-standard resource manager solution with higher adoption than any other resource management
offering

" https://slurm.schedmd.com/overview.html Slurm is an open source, fault-tolerant, and highly scalable
cluster management and job scheduling system for large and small Linux clusters.

D4.2 - laC Management - Intermediate Version Page 16
© Copyright Beneficiaries of the SODALITE Project

https://slurm.schedmd.com/overview.html

{***} Project No 825480. ’ SOdalite

current state of the infrastructure and create a TOSCA model capturing the specifics of the
platform resources.

The SODALITE approach
Platform Discovery Service will be able to output the description of the discovered platform in
three different variants:
e TOSCA blueprint definition of the platform (can be reused in by any TOSCA orchestration
supported framework) - supported in the released initial version,
e IDE DSL describing the discovered platform as a RM definition understandable by the
SODALITE IDE (planned for M30)
e RMin the internal interchange turtle® format understandable by the semantic-reasoner and
stored in the Knowledge base (planned for M30).

Having an automatically generated and consistent Resource Model definition introduces
significant benefits for the Resource Expert:
e a much faster, more secure and less error prone way to create the Resource Model
definitions,
e improves insights about the infrastructure resources usable through code intellisense,
scoping and performance execution suggestions at design time,
e creates a platform for enabling the ad-hoc and runtime reconfiguration of the used
resources based on the availability and capabilities of the resource.

Besides being innovative in its core by providing specific TOSCA platform definitions, Platform
Discovery Service was designed to enable and provide a streamlined and multifunctional reuse of
its key features and practices. Developed to adhere to code development design and best
practices, it is still bound to the following three basic aspects.

Open standards
Tools used for platform descriptions support APl design best practices and standards, namely
OpenAPl and TOSCA.

Flexibility
Tools used for platform descriptions use template defined outputs and specific Ansible modules
and collections. Each of the following points can be extended to provide maximum flexibility of the
approach through:
e direct usage of SODALITE TOSCA blueprint and RMs generated (without any additional
changes),
e extending existing Ansible collections for platforms (like in the case of Openstack security
groups discovery),
e configuration and definition of different sets of templates for TOSCA or RM generation
using standard jinja templating®.

8 https://en.wikipedia.org/wiki/Turtle_(syntax)

® https://jinja.palletsprojects.com/en/2.11.x/ Jinja is a modern and designer-friendly templating language
for Python, modelled after Django’s templates. It is fast, widely used and secure with the optional sandboxed
template execution environment and extensively used in Ansible

D4.2 - laC Management - Intermediate Version Page 17
© Copyright Beneficiaries of the SODALITE Project

{'**} Project No 825480. /’ SOdalite

Reusability

Using TOSCA Discovery Blueprints and Discovery Ansible collections separately or in a more
integrated TOSCA definition provides the ability for platform discovery even without running
Platform Discovery Service REST API.

4.1.2 Architecture
Platform Discovery Service consists of several modules, submodules and artifacts. At its core it

uses xOpera', a lightweight orchestrator, as a library to execute TOSCA discovery blueprints for a
predefined set of platforms. For each platform specialized Ansible collections or modules are used
to implement specific resource discovery and gather resource description data in JSON format.
The gathered data are then converted into TOSCA resource template definitions through the jinja™
templating used in Ansible.

The TOSCA discovery blueprints used in the Platform Discovery Service represent another level of
code reusability as they can be used separately with TOSCA orchestrators, such as xOpera, to
create a TOSCA representation of the infrastructure even outside the Platform Discovery Service.

Platform Discovery Service (PDS) is implemented as a REST API with an API first - design driven
methodology in place. The interface design is based on the OpenAPI 3.0 specification'?, a de-facto
standard for developing REST API interfaces. OpenAPI Generator® toolset is used to create stubs
for a Python REST APl implementation, leading to a solid and design driven interface
implementation.

Further the connexion™ Python library is used to handle authentication described in the REST APIs
and create a swagger Ul for describing the APl and adding the possibility to test and execute the
REST API calls from a browser.

The APl design driven process means easier maintainability and extensibility of the
implementation with regards to changes in the underlying libraries used for business logic
implementation. Any change in the underlying library is done through regeneration of the stubs
and executing the tests again to ensure successful execution of regression tests.

Platform Discovery Service uses external services for IAM [Keycloak]™ to perform user
authentication and authorization, as well as Secret Manager [Hashicorp Vault]™ for securely
accessing and handling user secrets. This is needed in order to support authorization of the REST

0 https://github.com/xlab-si/xopera-opera opera aims to be a lightweight orchestrator compliant with OASIS
TOSCA. The current compliance is with the TOSCA Simple Profile in YAML v1.3

1 https://jinja.palletsprojects.com/ Jinja is a modern and designer-friendly templating language for Python.
2 https://www.openapis.org/ - The OpenAPI Initiative (OAI) was created by a consortium of forward-looking
industry experts who recognize the immense value of standardizing on how APIs are described. As an open
governance structure under the Linux Foundation.

1 https://github.com/openapitools/openapi-generator/ OpenAP| Generator allows generation of API client
libraries (SDK generation), server stubs, documentation and configuration automatically given an OpenAPI
Spec (both 2.0 and 3.0 are supported).

1 https://github.com/zalando/connexion connexion allows you to write an OpenAPI specification, then maps
the endpoints to your Python functions; this makes it unique, as many tools generate the specification based
on your Python code. You can describe your REST API in as much detail as you want; then Connexion
guarantees that it will work as you specified.

1> https://www.keycloak.org/ Open Source Identity and Access Management For Modern Applications and
Services

18 https://www.vaultproject.io/ Secure, store and tightly control access to tokens, passwords, certificates,
encryption keys for protecting secrets and other sensitive data using a Ul, CLI, or HTTP API.

D4.2 - laC Management - Intermediate Version Page 18
© Copyright Beneficiaries of the SODALITE Project

9% .
{***} Project No 825480. ’ SOdallte

API call on behalf of the authorized user and to get access to the platform access tokens/keys or
other credentials from the Secret Manager.

TOSCA platform definition
Platform discovery data template
L
PlatformDefintionID: ID ggdgﬁﬁ)i/t?:ss'
Access: Token toppologyfte:mplate, Access Token
A
4 K N\ ™)
OpenAPI REST API with Ul .%
<3
&
[Security layer (IAM) M s c
<2
¥ "3
Discovery template library- TOSCA discovery blueprints 4
N N N b =
Openstack AWS Slurm Torque
XOpera orchestrator - ~—
library)
TOSCA TOSCA TOSCA TOSCA
template template template template
renderer renderer renderer renderer 5
59
© > S5
=
D ST
Openstack AWS Slurm Torque $ %
Ansible Ansible Ansible Ansible 2
collections collections collections collections
. J _ J
L
Platform JSON PlatformID->
description Keys
EndpointlP
Namespace

Openstack b 6

Figure 3 - Platform Discovery Service Architecture.

The multi-layered architecture of Platform Discovery Service is shown in Eigure 3. Thanks to its

modularity it leads to cleaner code, enhanced separation of concerns, improved maintainability
and reusability.

4.1.3 Features
Following the multilayered architecture, the main features can be separated into three aspects:
e creation of definitions for platforms in using a TOSCA service template.
e creation of definitions for platforms using the semantic reasoner APl to store the
definitions in a common semantic exchange format.
e update of an existing definition of a platform using semantic reasoner API to store the
updated definition in a common semantic exchange format.

D4.2 - laC Management - Intermediate Version Page 19
© Copyright Beneficiaries of the SODALITE Project

{***} Project No 825480. ’ SOdalite

Currently the first feature is implemented to the extent of representing different node capabilities
respecting the non-intrusive resource discovery, meaning that, no additional nonstandard
commands or tools are used to discover and describe the current state of the infrastructure. This is
especially important for infrastructures or platforms that do not allow installation of system-wide
tools usually with administrative (root) privileges like HPC clusters, at the same time keeping a
lightweight process of resource discovery in place.

Steps describing the actual workflow for generating an automated TOSCA platform resource
definition:
e getinput and setup information about platform instance the service is accessing,
e authorize access and gather secrets such as access tokens, keys and discovery scope
needed to access a specific platform instance on behalf of the user,
generate a JSON description of a specific platform resource,
generate a TOSCA node definition with regards to capabilities discovered for a specific
platform resource,
e enable the Resource Expert (IT Ops) to apply specific changes to TOSCA node definitions
before saving the resource models into the Knowledge base,
e enable Runtime integration with the Semantic reasoner and the Knowledge base to to
supply AOE with fresh data and definitions also useful for runtime reconfiguration.

In the following short subsections the TOSCA Blueprint outputs produced by the Platform
Discovery Service are presented, showing sample results of discovery for HPC Slurm, Openstack
and AWS. Additionally tools and Ansible collections/modules used for the discovery are
introduced.

TORQUE

For the discovery of the capabilities of a TORQUE managed cluster, the pbsnodes and gstat
commands with its respective variants are used to describe the state of the cluster at a certain
point in time. For this purpose a specialized Ansible collection has been designed and
implemented covering the discovery of both TORQUE and SLURM managed HPC clusters.

SLURM

Discovering the capabilities of a SLURM managed cluster is enabled by the usage of standard
SLURM scontrol show node and scontrol show partition commands with its respective variants to
describe the state of the cluster at a certain point in time. A Platform Discovery Service generated
TOSCA blueprint capturing this state is shown in Eigure 5.

D4.2 - laC Management - Intermediate Version Page 20
© Copyright Beneficiaries of the SODALITE Project

SN Project No 825480.

‘¥ Sodalite

tosca_definitions_version: tosca_simple yaml 1 3

capability_ types:

sodalite.capabilities

sodalite.capabilities.

derived_from: tosca

sodalite.capabilities.

derived_from: tosca
properties:
gpus:
type: integer
required: true
cpus:
type: integer
required: true
memory :
type: integer
required: false

Openstack

.TestSlurm.Queue:
derived_from: tosca.

capabilities.Compute

TestSlurm.WMm:

.capabilities.Compute

TestSlurm.JobResources:
.capabilities.Compute

queue-hpc-TestSlurm-gpu:
type: sodalite.nodes.hpc.TestSlurm.SlurmQueue
properties:
name: gpu
capabilities:
resources:
gpus:
cpus:
memory :
requirements:
- wm: hpc-wm-slurm-TestSlurm-wm

hpc-wm-slurm-TestSlurm-wm:
type: sodalite.nodes.hpc.TestSlurm.SlurmiM
attributes:
public_address: rmaister.hpc-rivr.um.si
username: { get_input: user }
ssh-key: { get_input: key-location }
capabilities:
resources:
gpus:
cpus:
memory :

Figure 4 - HPC SLURM TOSCA sample definition output.

Openstack instance discovery is enabled by standard Openstack Ansible collections for getting
information about the infrastructure through OpenstackAPI like:

e openstack.cloud.os_image_info'" - for gathering information about Openstack images info
for Operating Systems used created VM,

e openstack.cloud.os_flavor_info'® - retrieves information about the flavors defined on the
Openstack instance for creating a VM (VCPUs, Memory, Disk, etc),

e openstack.cloud.os_networks_info'- retrieves information about OpenStack networks.
Additional openstack simple collections were developed to discover security groups and keypairs
registered with the Openstack instance:

e sodalite.discovery.os_security_group_info - retrieves Openstack security groups defined,

e sodalite.discovery.os_key_pair_info - retrieves list of SSH keys registered on Openstack

accessible through the users account.
A part of the TOSCA blueprint covering the definition of an Openstack instance produced by the
Platform Discovery Service is shown in Eigure 4.

" https://docs.ansible.com/ansible/2.10/collections/openstack/cloud/os_image_info_module.html
18 https://docs.ansible.com/ansible/2.10/collections/openstack/cloud/os_flavor_info_module.html
9 https://docs.ansible.com/ansible/2.10/collections/openstack/cloud/os_networks_info_module.html

D4.2 - laC Management - Intermediate Version Page 21
© Copyright Beneficiaries of the SODALITE Project

SN Project No 825480.

‘¥ Sodalite

tosca_definitions_version: tosca_simple_yaml_1_3

data_types:

sodalite.datatypes.OpenStack.TestOpenstack.SecurityRule:

derived_from: tosca.datatypes.Root
properties:
protocol:
required: True
type: string
default: tcp
constraints:
- valid_values: ['tcp', ‘udp’, 'icmp’']
port_range_min:
required: True
type: tosca.datatypes.network.PortDef
port_range_max:
type: tosca.datatypes.network.PortDef
required: True
remote_ip_prefix:
default: 0.0.0.0/0
required: True
type: string

security-rules-node-exporter:
type: sodalite.nodes.OpenStack.SecurityRules
properties:
ports:
ports-tcp-9100-9100:
port_range_max:
remote_ip_prefix: ©.0.0.0/0
port_range_min:
protocol: tcp
group_name: node-exporter
group_description: node-exporter

network-xlab:
type: sodalite.nodes.OpenStack.Network
properties:
name: xlab
mtu: 1

key-pair-alexander_maslennikov:
type: sodalite.nodes.Openstack.KeyPair
properties:
name: alexander_maslennikov

Figure 5 - Openstack TOSCA sample definition output created by Platform Discovery Service.

AWS

In the process of AWS platform discovery the standard boto3® Python library was used through
standard AWS and community supported Ansible collections and modules:

e aws_region_info* - for getting information about the AWS supported regions,

e ec2_vpc_net_info* - for getting information about VPC (Virtual Private Cloud) - a logically

isolated virtual network in the AWS cloud,

e ec2_vpc_subnet_info® - for getting information about VPC subnets defined,
e ec2_ami_info* - for getting information about available Amazon Machine Images (AMI)
used to create a Virtual Machine (VM) in the Amazon Elastic Compute Cloud (EC2).
The sample Platform Discovery Service results in the form of a TOSCA blueprint for AWS after the

executed TOSCA transformation, shown in Eigure 6.

% https://github.com/boto/boto3 Boto3 is the Amazon Web Services (AWS) Software Development Kit (SDK)
for Python used in practically all Ansible collections and modules

https://docs.ansible.com/ansible/latest/collections/community/aws/aws_region_facts_module.html

2 https://docs.ansible.com/ansible/latest/collections/amazon/aws/ec2_vpc_net_info_module.html

B https://docs.ansible.com/ansible/latest/collections/amazon/aws/ec2_vpc_subnet_info_module.html

https://docs.ansible.com/ansible/latest/collections/amazon/aws/ec2_ami_info_module.html

D4.2 - laC Management - Intermediate Version
© Copyright Beneficiaries of the SODALITE Project

Page 22

{***} Project No 825480. /’ SOdalite

* e Kk
tosca_definitions_version: tosca_simple_yaml_1_3 topology_template:
capability_types: node_templates:
sodalite.capabilities.AWS.TestAWS.InstanceType: #REGIONS
derived_from: tosca.capabilities.Root sodalite-node-aws-region-TestAWS-eu-north-1:
properties: type: sodalite.nodes.AWS.TestAWS.Region
name : properties:
type: string region_name: eu-north-1
required: true endpoint: ec2.eu-north-1.amazonaws.com
VCPUs :
type: integer sodalite-node-aws-region-TestAns-ap-south-1:
required: true type: sodalite.nodes.AWS.TestAWS.Region
memory : properties:
type: integer region_name: ap-south-1
required: true endpoint: ec2.ap-south-1.amazonaws.com
storage:

type: integer

required: true
price:

type: float

required: true

#SUBNET
sodalite-node-aws-subnet-TestAWS-subnet-61ad1aes:
type: sodalite.nodes.AWS.TestAwS.VvirtualPrivateCloud
properties:
subnet_id: subnet-6ladlaes8
availability_zone: eu-north-1la
cidr_block: 172.31.16.0/20
available_ip_address_count:

requirements:
- region: sodalite-node-aws-region-TestAWS-eu-north-1
- vpc: sodalite-node-aws-region-TestAWS-vpc-3257el15b

#AMI
sodalite-node-hpc-TestAWS-ami-72c34dec:
type: sodalite.nodes.AWS.TestAWS.AmazonMachineImage
description: Linux/UNIX \\
Canonical, Ubuntu, 18.10 Minimal, UNSUPPORTED daily amdé4 cosmic minimal image built on 2018-16-16
properties:
image_id: ami-72c34dec
name: ubuntu-minimal/images-testing/hvm-ssd/ubuntu-cosmic-daily-amdé4-minimal-20181016
platform_details: Linux/UNIX
requirements:
- region: sodalite-node-aws-region-TestAWS-eu-north-1

Figure 6 - AWS TOSCA sample definition produced by Platform DIscovery Service.

The implementation of the Platform Discovery Service functionalities are left as open as possible
enabling possible extensions on many levels:
e through the extension of the tools used for a specific platform discovery
e through the creation of additional Ansible collections targeting another aspect of the
platform, by creating a JSON representation of the specific resource
e through TOSCA transformations of the JSON resource representation - e.g. using jinja
templating for producing different TOSCA node definition output

Any user interested in reusing or extending the code can do so in various ways, such as:
e contributing directly to SODALITE Platform Discovery Service repository on GitHub,
e forking the repository and implementing its own changes,
e reusing the TOSCA discovery blueprints and Ansible collections for discovery in completely
integrated way with a TOSCA orchestrator

4.1.4 Status

The current implementation is handling platform discovery and TOSCA definition creation for
resources on OpenStack, HPC (TORQUE/SLURM) and partially AWS. For the discovery of HPC
TORQUE and SLURM managed clusters a specialized Ansible collection has been developed. This
collection will be further developed to ensure maximum usability. For other platforms, such as
Openstack and AWS, specialized Python client API libraries were used in conjunction with
respective Ansible collections. For Openstack additional modules for discovery of the security
group definitions were developed, enabling upstream effort possible.

The Platform Discovery Service is analyzed by SonarCloud as shown in Eigure 7. The results can be
considered an excellent baseline for a component that is being released in its first version as a

D4.2 - laC Management - Intermediate Version Page 23
© Copyright Beneficiaries of the SODALITE Project

9% .
{ } Project No 825480. ’SOdallte

research prototype. The quality can be further improved by removing two low priority hotspots
and 19 codesmels in the next releases.

platform-discovery-service
Last analysis: January 27, 2021, 6:25 PM

f A 00 0.0% @ 9@ Os805% Qo0.0% 830 @

¥¥ Bugs & vunerabilities @ Hotspots Reviewed @ Code Smells Coverage Duplications Python

Figure 7 - PlatformDiscovery Service SonarCloud analysis
The code and the description of the component, its submodules and artifacts can be found in

SODALITE github repository under https://github.com/SODALITE-EU/platform-discovery-service.

4.1.5 Next steps

At this point of development Platform Discovery Service still offers a number of possible
improvements and extensions. Having defined the main features, upgrades will be implemented in
the year 3 of the project to extend and enhance the integration into the SODALITE framework
through automatic node definition updates using SODALITE semantic-reasoner API. One of the
possible foreseen extensions is the Kubernetes [Kubernetes 2021] cluster node discovery.

The Platform Discovery Service can be further extended and improved by extending the discovery
to other public clouds such as Google Cloud Platform and Azure.

4.2 Support to the creation of Ansible scripts integrated with the Resource Models

TOSCA blueprints alone are not enough to support the complete automation of deployment tasks.
It allows to model what are the lifecycle operations of the components of a cloud application and
their relationships, but it does not allow to model how these operations are implemented. This
task is delegated to external scripting languages, one of the most prominent today being Ansible®.

According to its documentation®, "Ansible is an IT automation tool. It can configure systems, deploy
software, and orchestrate more advanced IT tasks such as continuous deployments or zero downtime
rolling updates."

Among the configuration management tools, one of the biggest points in favour of Ansible is the
ease of set up, due to its agentless architecture. Thanks to it, Ansible allows to have only one
master running on a server machine and able to configure nodes through SSH connections without
the intervention of local agents.

The SODALITE main orchestrator, xOpera, complements TOSCA with Ansible scripts that are
specific to the resource types used in the TOSCA code. As such, the TOSCA blueprint generated by
the IDE starting from an AADM is not sufficient to accomplish the orchestration tasks and proper
Ansible scripts must be defined and logically connected to the corresponding AADM and associated
TOSCA blueprint.

The goal of this part of work is to extend the SODALITE approach to incorporate the generation of
Ansible scripts as part of the resource modeling process. This, on the one side, makes the modeling
process smoother and uniform as it does not force AOEs to edit Ansible files outside the SODALITE
supporting tools and the IDE in particular. On the other side, it introduces, in the state of the art, a
new and simple tool to support the development of a TOSCA-connected Ansible code which
otherwise would have to be developed through a basic YAML editor.

The reader should note that the Ansible playbooks supporting the usage of the resources that are
already supported by SODALITE have been already developed and are part of the SODALITE

% https://www.ansible.com/
% https://docs.ansible.com/ansible/latest/index.html

D4.2 - laC Management - Intermediate Version Page 24
© Copyright Beneficiaries of the SODALITE Project

https://github.com/SODALITE-EU/platform-discovery-service

{'**} Project No 825480. /’ SOdalite

framework. This part of work aims at increasing the ability of Resource Experts to integrate new
resources within SODALITE.

4.2.1 State of the art and innovation

The literature does offer some support to the development of Ansible playbooks. Visual Studio
Code extension for Ansible’” and Atom package® are two extensions for well-known software
development editors that support the development of Ansible scripts. They offer auto completion
support and syntax highlighting. With the Visual Studio Code extension, the user is also helped in
choosing the module to use, as the content assistant shows the list of all the available modules. A
list of the parameters that can be passed to each module is also provided. They, however, do not
support the writing of a playbook in the context of a TOSCA operation, which passes some inputs
to it and uses it for the implementation of the operation itself. As such, their usage in the context of
the development of a TOSCA-based orchestration would require the developer to manually create
such correspondence and check the coherency of naming conventions and parameters.

An interesting approach that, like SODALITE, adopts a model-driven approach is CloudCAMP
[Bhattacharjee 2016, Bhattacharjee 2017]. It focuses on transforming a provided business model
into deployable artifacts and on providing to the user a DSML for abstracting the design
requirements. It also generates Ansible scripts based on the requirements provided by the user and
by gathering predefined templates from a database. A similar approach for what concerns the
generation of Ansible playbooks is offered by UPSARA, which otherwise is focused on modelling
performance analysis experiments [Barve 2018].

Both approaches do not really offer the possibility to the user to model directly the Ansible
playbook through a DSL, which is instead a feature that SODALITE aims at providing, in order to
give to users (Resource Experts in this case) a significant degree of freedom in terms of the actions
that can be encoded in an Ansible playbook.

In our approach we have extended the SODALITE IDE to include support for the creation of abstract
Playbooks explicitly associated with the resource types defined in a Resource Model. Such abstract
playbooks are then translated into concrete Ansible scripts that can be executed by xOpera.

The main characteristics that make our approach novel with respect to the state of the art are the
following:

e Guided creation of the abstract playbooks following the general IDE approach. As
discussed before, to the best of our knowledge, our IDE extension is the first one that offers
TOSCA-specific guidance in the creation of Ansible scripts.

e First complete metamodel for Ansible and systematization of all its concepts.

e Coherent organization of attributes within an Ansible entity.

e Coherent integration of the abstract playbooks with the corresponding resource types
defined in the resource models.

In the following section these features are described in further details.

4.2.2 Features
Guided creation of the abstract playbooks
The SODALITE IDE has been extended to support guided editing of Ansible abstract playbooks. The

syntax offered by the IDE, which we call Ansible DSL, generalizes the concepts defined by the
Ansible language and integrates them with resource models.

Thanks to the checks introduced by the editor, the abstract playbooks are, by construction,
coherent with the resource types to which they are associated. They are then translated into

" https://marketplace.visualstudio.com/items?itemName=vscoss.vscode-ansible
2 https://atom.io/packages/autocomplete-ansible

D4.2 - laC Management - Intermediate Version Page 25
© Copyright Beneficiaries of the SODALITE Project

{***} Project No 825480. /’ SOdalite

Ansible playbooks that can be executed by the Ansible executor and used by the xOpera
orchestrator.

=Wl

* This is an example model
%/

playbook_name: "name of the file"
- used_by:
node_type: "my.nodes.hpc.job.torque”
operation: "create”

plays:
= play:
play_name: "helloc world play”
hosts: "all"
"String" - STRING 5 This is used for defining the settings of the connection.
connection_info: The attributes that can be set are:

error_handling:
- connection - string
- port_attribute ("port” in classic Ansible] -> int
- remote_user -> string

external_file_inclusion:
facts_settings:
play_exe_settings:
privilege_escalation:
validation_mode:

1= collections:

'= debugger:

= environment:

'=force_handlers: ha

Figure 8 - Ansible DSL editor.

Figure 8 shows a portion of the editor Ul highlighting the content assistance mechanism. In the
example, the content assistance suggests the user the possibility to add to the playbook three
possible attributes concerning connection-specific information, “connection” and “remote_user”
of type string and “port_attribute” of type integer. In the DSL, Ansible attributes are grouped in
categories depending on their usage. Figure 8 highlights the categories we have defined and shows
that the three attributes mentioned above are part of the connection_info category. We expect that
the organization of the attributes will simplify their usage as part of the coding activity.

First complete metamodel for Ansible and systematization of all its concepts

The integration of Ansible in SODALITE has started from the creation of a metamodel that
describes the main elements of the language and defines the integration points with the other
elements of an AADM. The main source used for understanding Ansible in order to build the
metamodel was its documentation® together with the TOSCA standard [Rutkowski 2020].

The metamodel is available in two versions, a conceptual version which is useful to convey the
main Ansible elements and the way it relates to TOSCA node types and an implementation version
which completely describes the Ansible DSL we have defined. In this section we present the
conceptual metamodel. The implementation metamodel is available as an appendix to this
deliverable.

Figure 9 presents the main concepts of Ansible. A playbook, which implements a TOSCA interface
parameter, can have multiple roles and is composed of one or more plays. These include
executions and variables that can be of three different types. One of these is input which is
correlated to the pieces of information that are received through a TOSCA interface parameter.
nodeType, nodeTypeDescription and interface derive directly from the TOSCA metamodel.

% https://docs.ansible.com/ansible/latest/index.html.

D4.2 - laC Management - Intermediate Version Page 26
© Copyright Beneficiaries of the SODALITE Project

https://docs.ansible.com/ansible/latest/index.html

{***} Project No 825480. ? SOdalite

[0.*]

]hasRoIe

composedBy

¥]
containsExecutions _["execution |

Jru B

implements

interfaceParameter |

hasParameter [Tnterface | specification [nodeTypeDescription | hasContext [m}
1.#] [11 JT1.#] [11 | |

Figure 9 - Ansible metamodel - general view.

(0.1]

loop iteratesOm] [task I. [block |
L]

U l 1) appliedon [yien_expression |
teratesOver J T H V] E—
ftr - |

il 2
| L2, o \V ik i - 1o.#1}
', Feratastuge value [execution l-aiwaysExecGEtm . uses 'contaunr
[,.—-'" [u}n * | [0 *]
v
[IIL I.» 4 'SHESCUEJBY [rescue t always vanahle !
hasvalue /uses H)._Em Iq.11]
5 (1. o L | 1 iy
LII”‘E‘ contains [m_ QantalnsTasks | /xcantalns'laycantams'lasks
0.4 (0.4 | e [*{]
A [loop) _iteratess {mr’um;
fro.1 WL Foo+] |
[1.% Ly
1
| input | settableVanabla . | fact [notifies |
l] | [0, *3 /
= Chandler
classifies _
[11

interfaceParameter I

Figure 10 - Ansible metamodel - focus on variable and execution.

Figure 10 highlights the specialization of execution in task and block, the possibility to define, as
part of a block, loops that iterate on the values of a variable, as well as the possibility to contain
other tasks. Variables can contain “when expressions” that, when verified, determine the execution
of a block or a task. Tasks can call modules made available on the Ansible repository. Each of these
focuses on the execution of specific actions.

4.2.3 Architecture

As mentioned in the previous section, the support to the creation of Ansible scripts is developed as
part of the IDE. More specifically, a new Eclipse plugin has been created that relies on the Resource

D4.2 - laC Management - Intermediate Version Page 27
© Copyright Beneficiaries of the SODALITE Project

{***} Project No 825480. /’ SOdalite

Model plugin. The new plugin is implemented using Xtext®*. Thanks to this last framework, the
implementation consisted in the following steps:

e The creation of the abstract playbooks grammar based on the implementation metamodel
presented in the Appendix.

e The execution of the process automated by xtext that leads to the creation of the software
structure and to the generation of the data structures needed to represent the abstract
syntax tree derived from the grammar.

e The customization of the wizard to support the users in the creation of an Ansible project

e The development of the content assistance.

e The development of the Ansible YAML generation logic.

4.2.4 Status

The first version of the editor and generation mechanism is available as part of the IDE in its same
repository.

More specifically, the github folders that include the Ansible-specific parts are all positioned under
the following folder: https://github.com/SODALITE-EU/ide/tree/ansible/dsl/org.sodalite.IDE.parent
and include the following elements:

e “org.sodalite.dsl.ansible”": this folder includes the core of the system, namely, the defined
grammar, the data structures automatically generated by xtext based on the grammar, the
Ansible generator, and the scoping mechanism.

e “org.sodalite.dsl.ansible.ui”*: this folder includes the part concerning the integration with
the Eclipse UL In particular,the content assistant and the Eclipse wizard for creating an
Ansible DSL project with a starting template.

e “org.sodalite.dsl.ansible.ui.tests™: this folder is dedicated to testing the components in the
“org.sodalite.dsl.ansible.ui” folder.

e “org.sodalite.dsl.ansible.tests™*: this folder is dedicated to testing the components in the
“org.sodalite.dsl.ansible” folder.

e “org.sodalite.dsl.ansible.ide”: this folder is dedicated to functionalities of the IDE that are
platform-independent.

Being part of the IDE, it is not possible to provide information about code quality that is

independent from what is available for the whole component. Such information is available here
. e SR

4.2.5 Next steps

To complete the support to the creation of Ansible playbook, we intend to integrate as part of the
IDE also the possibility to search through the Ansible Modules available online and to select the
right one to be used within an abstract playbook.

Another possible task that might be considered, if possible, given the project resource constraints
and other commitments concerns, is the possibility to develop a backward transformation from
Ansible playbooks to the corresponding abstract playbooks handled by the Ansible editing
support. This feature could be useful to simplify the modification of preexisting playbooks within
the context of the SODALITE framework.

%0 https://www.eclipse.org/Xtext/

3 https://github.com/SODALITE-EU/ide/tree/ansible/dsl/org.sodalite.IDE.parent/org.sodalite.dsl.ansible

* https://github.com/SODALITE-EU/ide/tree/ansible/dsl/org.sodalite.IDE.parent/org.sodalite.dsl.ansible.ui

* https://github.com/SODALITE-EU/ide/tree/ansible/dsl/org.sodalite.IDE.parent/org.sodalite.dsl.ansible.ui.tests
3 https://github.com/SODALITE-EU/ide/tree/ansible/dsl/org.sodalite.IDE.parent/org.sodalite.dsl.ansible.tests

* https://github.com/SODALITE-EU/ide/tree/ansible/dsl/org.sodalite.IDE.parent/org.sodalite.dsl.ansible.ide

D4.2 - laC Management - Intermediate Version Page 28
© Copyright Beneficiaries of the SODALITE Project

https://github.com/SODALITE-EU/ide/tree/ansible/dsl/org.sodalite.IDE.parent
https://sonarcloud.io/dashboard?id=SODALITE-EU_ide

{'**} Project No 825480. /’ SOdalite

4.3 Optimization - MODAK

Software application developers and users are now targeting a wide range of diverse computing
platforms, such as on-premise supercomputers and clouds with heterogeneous node
architectures. Compute intensive applications like High Performance Computing (HPC) or Artificial
Intelligence (Al) training also have requirements of specialised execution environments, including
computing accelerators, high speed interconnects, faster memory, and storage. Even if
software-defined environments provide both flexibility and portability, we still need applications
to optimally use and benefit from these diverse resources.

The MODAK package, a software-defined optimisation framework for containerised HPC and Al
applications, is the SODALITE component responsible for enabling the static optimisation of
applications before deployment. MODAK aims to optimise the performance of application
deployment to infrastructure in a software-defined way. Automation in application optimisation is
enabled using performance modelling and container technology. Containers provide an optimised
runtime for application deployment based on the target hardware and along with any software
dependencies and libraries.

4.3.1 Innovation

The convergence of the cloud and HPC has made the deployment and management of applications
on these heterogeneous infrastructures paramount. Container virtualization has grown in
popularity as a bridge between these heterogeneous environments due to the ease of use,
portability, scalability, and the advancement of user-friendly runtimes. It poses a simple way to
share scientific applications and reproduce research on either cloud or HPC systems. This has
driven the deployment of scientific HPC and Al applications on cloud infrastructure that offers
alternative cost models, as well as the convergence of cloud methodologies with traditional HPC
systems used to improve the user experience. A number of tools use containers to optimise
application deployments. ConfAdvisor [Chiba 2019] is a tuning framework for containers on
Kubernetes. AWS compute optimiser optimises workloads for both cost and performance based on
historical utilization metrics [AWS 2020]. Other works have proven that MPI containers can be
deployed on HPC using Docker [de Bayser 2017]. In this respect, MODAK will provide a common
way to run on both cloud and HPC system:s.

While most Al applications can be deployed in containers, this is not the default option for HPC
applications. With diverse hardware and software dependencies and libraries, building or selecting
an optimised container for application deployment is crucial. For example, MPI libraries on the
host machine and in the container must match when deploying HPC applications in order for the
container to use the hardware-optimised version of MPI available on the host. Al training
frameworks require target-specific libraries and drivers to be configured. Even though Docker and
Singularity support labelling of containers, they are seldom used when developing them.

To overcome this issue, MODAK maps the optimal application parameters to the infrastructure
target by building or selecting an optimised container and then encoding optimisations in a job
script. This is accomplished by abstracting performance requirements in an optimisation Domain
Specific Language (DSL) and enabling performance prediction through application and
infrastructure performance models. MODAK can also auto-tune and auto-scale applications based
on user-created optimisation models. MODAK additionally supports batch schedulers like SLURM
and TORQUE to provide ease of use in running HPC jobs in supercomputers and cloud.

Other tools provide similar MODAK features. The HPC Container Maker framework [McMillan 2018]
provides functions to configure applications and dependencies for building container images in
Docker and Singularity formats. However, it does not provide a way to deploy on batch systems.
EASEY [Hob 2020] enables not only building application containers for target clusters and MPI

D4.2 - laC Management - Intermediate Version Page 29
© Copyright Beneficiaries of the SODALITE Project

{***} Project No 825480. ? SOdalite

libraries, but also manages the deployment, job management, and data staging. While this
approach is similar to that of MODAK, it does not model the performance optimisations.

4.3.2 Architecture
Figure 11 gives an overview of the MODAK components. We start with a high-level application API
for the three types of applications supported: Al training and inference, traditional HPC (MPI and
OpenMP parallelised), and big data analytics. We pass this information to MODAK, which matches it
with the performance model outputs to produce a job script for the execution submission and an
optimised container. MODAK can also auto-tune and auto-scale applications based on user input.
In summary, MODAK requires the following inputs:

e Job submission options for batch schedulers such as SLURM and TORQUE

e Application configuration such as application name, run and build commands

e Optimisation DSL with the specification of the target hardware, software libraries, and

optimisations to encode. Also contains inputs for auto-tuning and auto-scaling.

Then, MODAK produces a job script (for batch submission) and an optimised container that can be
used for application deployment. An image registry contains MODAK optimised containers while
performance models, optimisation rules and constraints are stored and retrieved from the Model
repository. Singularity container technology was chosen to provide a portable and reproducible
runtime for the application deployment, due to better performance and native support for HPC.

— Optimised
mage P
- mooak) cominr
Optimisation
Inference constraints
—

Mode Application
Repository Performance

Model

Infrastructure
- EE TN

Figure 11 - MODAK architecture.

4.3.3 Features
MODAK automates optimisation using four main components, as described below:
e Mapper

The Mapper maps application deployment to an optimised container based on the user
specified input (DSL) and labels for containers. Containers provide an optimised runtime
for application deployment based on the target hardware and along with any software
dependencies and libraries. MODAK labels the containers based on optimisation support
for diverse hardware and software, and then uses these labels to map the optimised
containers to application deployments. Figure 12 shows a DSL example that labels the
MPICH container (i.e. a container that includes the MPICH distribution) with the application
name, version, and support for hardware like x86, NVIDIA GPUs, and software such as
specific compilation commands for MPI applications.

D4.2 - laC Management - Intermediate Version Page 30
© Copyright Beneficiaries of the SODALITE Project

{'**} Project No 825480. ’ SOdalite

"name": "mpich_container", 1
"app_name": "mpich", 2
"version": "2.2", 3
"hardware_support": { 4
"enable_opt_build": true, 5
"cpu_type": "x86", 6
"acc_type": "nvidia"}, 7
"software_support": { 8
"mpic++": "true", 9
"mpicc"y “true”, 10
"mpifort": "true"} 11

Figure 12 - Container mapping DSL.

e Enforcer

The optimisation process depends not only on application and infrastructure but also on
the configuration and data. MODAK allows users to define optimisation rules that are
enforced for deployment. The Enforcer component returns the optimisation script to be
used based on the rules and user-selected optimisations in the input DSL. For example,
enabling graph compiler-based optimisations in an Al framework requires environment
settings to be modified. For MPI-based applications, there are many environment settings
that change the way message passing is optimised based on message size and
communication pattern. Data-related optimisations may involve the possibility to
automatically copy the data to fast disks, if available, to improve 1/0 bound applications.
MODAK can embed the chosen optimisations in the job script submitted to a batch
scheduler.

e Tuner
Autotuning enables users to automatically search possible application deployments for the
desired result. MODAK's Tuner supports the CRESTA autotuning framework [Schliephake
2012.] The framework defines a DSL to expose the tuning choices as parameters, constrain
and inject them into the application source, then build and run the application. The
framework supports an exhaustive search of the parameter space and can tune for any
metric output, not just runtime.

e Scaler

In MODAK, we can predict the efficiency and speedup of an application on N nodes based
on the performance prediction model. We used a combination of benchmarking to model
infrastructure and then analytical modelling to model application runtime (see [D3.3]). This
allows MODAK to automatically scale applications to certain numbers of nodes based on
the model prediction. Using the parallel efficiency metric specified by the user in the
optimisation DSL, the Scaler aims to predict the scale at which parallel efficiency is
achieved and automatically increase the number of nodes of the deployment (Autoscale).
The Scaler can also enable or disable accelerator, memory, and storage devices based on
the model and availability in the target.

4.3.4 Status

After an initial preparation phase of the package during the first year of the project (see [D3.3]), in
the second year we have further extended MODAK to support HPC systems cases. In particular, we
have prototyped Al training and inference and traditional HPC applications (see [D6.3] and [D6.6]).
Currently, MODAK supports TensorFlow, PyTorch, MXnet, mpich, and openmpi containers for x86
and NVIDIA GPUs. These containers are further labelled with version requirements and support for

D4.2 - laC Management - Intermediate Version Page 31
© Copyright Beneficiaries of the SODALITE Project

{'**} Project No 825480. ’ SOdalite

optimisations like graph compilers or BLAS/LAPACK. A preliminary MODAK integration in the
SODALITE framework has been implemented (see [D6.3]). The Tuner and Scaler features are not yet
implemented. MODAK repository is available here

i - ication-optimisati and is already integrated with
SonarCloud®. The quality values are being continuously improved and indicate at the moment the
presence of some code smells that will be addressed in the next months.

4.3.5 Next steps
MODAK will be extended during the third year of the project as follows:

e Complete integration into the SODALITE framework

e Include data-related optimizations to improve 1/O performance. This includes the
possibility to automatically copy or cache data on I/O fast devices before the application
starts its execution. MODAK will require the knowledge of the available storage resources
(filesystem type and paths) and will use some heuristics to check if the operation is
convenient

e Include the Tuner and Scaler features, and extend the performance model to include GPU
execution

e Add support of cloud systems

e Add support for big data analytics applications.

4.4 Analytics and Semantic Support

Infrastructure as code (laC) simplifies the provision and configuration of the IT infrastructure at
scale. As the size and complexity of 1aC projects increase, it is critical to maintain the code and
design quality of laC Scripts. According to a recent report on Cloud Threat®, nearly 200,000
insecure laC templates were found among laC scripts used by a set of enterprises, and 65% of
cloud incidents are due to misconfigurations. Thus, the detection and correction of defective and
erroneous laC scripts is of paramount importance. To this end, we systematically identify and
classify the common types of smells and bugs in laC (Section 4.4.1). A software smell is any
characteristic in the artifacts of the software that possibly indicates a deeper problem or quality
issue [Sharma 2018]. We also develop the tools that can detect such smells/bugs and potentially
suggest fixes (Section 4.4.2).

4.4.11aC Taxonomies

4.4.1.1 Innovation

We have created three novel taxonomies/catalogs for 1aC, covering best and bad practices, smells,
and bugs. While there exist recent works on bug and smell catalogs for 1aC, they exhibit several
limitations. Most catalogs focus on a subset of bug types or smell types, for example, security
smells, and implementation smells for a subset of 1aC language constructs. Moreover, the smell
taxonomies use the best and bad practices that were extracted from one or a few sources. Finally,
there are no unified taxonomies across different (widely-used) laC languages such as Ansible,
Puppet, and Chef. Thus, in SODALITE, we first develop a taxonomy of best and bad practices in
three laC industrial languages (Ansible, Puppet, and Chef), based on an analysis and synthesis of
the multi-vocal literature. Based on this best/bad practices taxonomy, we develop an unified smell
taxonomy for laC. In addition, we create a bug taxonomy, based on a qualitative analysis of bug fix
related commits collected from open source software repositories. We also adopt these
taxonomies for TOSCA.

% https://sonarcloud.io/dashboard?id=SODALITE-EU_application-optimisation
3" https://start.paloaltonetworks.com/unit-42-cloud-threat-report

D4.2 - laC Management - Intermediate Version Page 32
© Copyright Beneficiaries of the SODALITE Project

https://github.com/SODALITE-EU/application-optimisation

{***} Project No 825480. /’ SOdalite

4.4.1.2 Methodology
e laC Best and Bad Practices Catalog

We investigated infrastructure code language/tools and best/bad practices from a
practitioner perspective by addressing grey literature in the field, stemming from 65
selected sources and systematically applying qualitative data analysis techniques. We
build our research methodology upon the guidelines proposed in systematic literature
reviews in software engineering [Kitchenham 2009]. FEigure 13 shows the steps of our
methodology. We first define the goals of the grey literature review, formulate the research
questions to address those goals, and then using Google search engine, the literature
sources are searched. By applying a set of exclusion and inclusion criteria and quality
assessment criteria, a filtered set of literature sources are selected. The selected sources
are systematically coded using descriptive coding techniques [Saldafia 2015] . The codes
are extracted, analyzed, grouped, and synthesized to identify the key best and bad
practices reported by the l1aC practitioners.

Y

GLR Planningand Design Conducting GLR)
(1dentify GLR Godls) (StdySeecion)
v
(FormulateRQs) (PiIotStu(jy Coding)
v
(Select Data Sources) []me'%?ésﬁ”mmrJ
Y ¥
(De"”eseefhouenaj (Ful Dateset Coding)
- - v
Define Inclusion and
[Exclusion Criteria J [Inter-ratsrﬁsssssmmtfor]
¥ ul +tudy
Define Quality Assessment
[Criteria and Process] (Grouping Codes j [Synlhsizeand ReportJ
f f Results
N L .) J
|

Figure 13 - An overview of the methodology for creating best/bad practices taxonomy.

e laC Smell Catalog

Figure 14 shows the overview of the methodology for creating 1aC smell taxonomy. As in
the existing literature, we define the smells as the violations of IaC best practices and the
use/occurrence of l1aC bad practices. Thus, our best and bad practices taxonomy is a key
input to the laC taxonomy. In the software smell literature, different types of smells have
been reported for different types of programming languages and systems. The smells for
laC languages should be aligned with those smell categories reported in the literature.
Thus, based on a set of recent systematic literature reviews on software smells, we first find
a set of candidate smells types. Next, we map the violation of the laC best practices or
application of 1aC bad practices to a subset of candidate smells types, which results in a
candidate taxonomy for laC smells. In order to validate the compiled taxonomy, we
conduct a survey with the laC developers or practitioners. Based on the feedback from the
developers, we refine and update the taxonomy.

D4.2 - laC Management - Intermediate Version Page 33
© Copyright Beneficiaries of the SODALITE Project

; v .
**”* Project No 825480. SOdallte
laC Best/Bad Practices
Ex;rac;generai Map Violations of Best Validate Smell
£ l,ipes Practices and Adherence to Catalog with a
i Bad Practices to Smell Types DeveloperSurve
Literature e i Y
Generdl Smel e I1aC Smel Catelog<initial= 1aC Smel Catelog=Refined=
Figure 14 - An overview of the methodology for creating the 1aC smell taxonomy.
e laCBug Catalog

Figure 15 shows the overview of the methodology for creating the 1aC Bug taxonomy. A
common approach to create a bug catalog is to analyze bug fix commits. Thus, we first
systematically selected a set of open source 1aC (Ansible) repositories and then mined the
bug fix commit messages. We used the criteria and guidelines used by the existing
research for both selecting repositories and mining bug fix commits. By applying
descriptive coding to the information in the commit messages, the bug categories are
identified and the identified categories are mapped to those in the existing bug
taxonomies. As regards to the existing bug taxonomies, we use a recent taxonomy for laC
(Puppet laC language) [Rahman2 2020]. In addition, Common Weakness Enumeration
(CWE)® is also used. CWE is widely used in bug taxonomy research literature. The created
bug taxonomy is validated through a survey with the l1aC developers. Finally, based on the
feedback from the developers, we refine and update the taxonomy.

BugFix Commits

Select Open Mine Bug Fix
Source TaC Commit Messages|
Project from the Selected

Repositories Repository

Tac Bug Taxonomy (Refined and Validated)

Map Bu:g indicated the alidate the Bug
Commit Message to i

o Taxonomy with a

General Bug Types and Berdime Sarver

CWE Catelog o ¥

Get Common Weakness
Enumeration (CWE)
Catalog

Identify Existing
IaCBug
Taxonomies

e 5 New Iac Bug T v (Initial
Existing Bug [aC Taxonomies CWE Catalog o5 12 Bng Tazollumiy (J

Figure 15 - An overview of the methodology for creating the 1aC bug taxonomy.

* https://cwe.mitre.org/

D4.2 - laC Management - Intermediate Version Page 34
© Copyright Beneficiaries of the SODALITE Project

Project No 825480. /’ SOda].ite

4.4.1.3 Features

The laC taxonomies provide the complete lists of best and bad practices related to the
development of laC scripts, and the common types of smells and bugs that occur in laC scripts.
Smell and bug taxonomies are validated with the surveys with laC developers/practitioners. The
best and bad practices taxonomy is created based on the literature produced by the laC
developers/practitioners.

4.4.1.4 Status

laC Best and Bad Practices Catalog

We identified 224 1aC best practices: 20 language-agnostic, 39 for Ansible, 70 for Chef, and
88 for Puppet. The practices cover each of the key constructs/abstractions of laC
languages. They reflect both implementation issues (e.g., naming convention, style,
formatting, and indentation) and design issues (e.g., design modularity, reusability, and
customizability of the code units of the different languages).

We identified 54 1aC bad practices in total: 13 language-agnostic, 14 for Ansible, 8 for Chef,
and 19 for Puppet. While most of these practices concern design and implementation
issues related to key constructs/abstractions of laC languages, they also reflect the
violations of the essential principles of IaC: idempotence of configuration code, separation
of configuration code from configuration data, and infrastructure/configuration
management as software development.

A journal publication is under review at Information and Software Technology journal (the
second revision).

laC Smell Catalog

The use of the bad practices as well as the deviations from (or violations of) the best
practices are defined as anti-patterns/smells. Based on the identified 224 IaC best practices
and 54 laC bad practices, we have created a IaC smell taxonomy of 45 high-level smell

types.

laC Bug Catalog

We mined 4493 bug fix commits from 26 open source Ansible repositories. Then, we further
filtered those commits and identified 1071 commits as the final dataset. Next, we mapped
those into the existing bug taxonomy for Puppet laC. Among 1071 commits, 471 commits
were not mapped to any of the categories in that taxonomy. Thus, we mapped those 471
commits into the bug categories proposed in CWE (Common Weakness Enumeration),
which resulted in 6 new bug categories.

4.4.1.5 Next steps

e |aC Smell Catalog
We have planned a survey with laC developers for validating the created IaC taxonomy.
Once the results of the developer survey are received, we plan to write a journal paper.
e |aCBugCatalog
First, we will run a survey with the laC developers for validating the bug taxonomy. Then,
when the results of the developer survey are ready, we will write a journal paper.
D4.2 - laC Management - Intermediate Version Page 35

© Copyright Beneficiaries of the SODALITE Project

{'**} Project No 825480. /’ SOdalite

4.4.2 1aC Defect Prediction and Correction

4.4.2.1 Innovation

In software engineering literature, data-driven models (e.g., machine learning) and rule-based
models have been used to detect smells and bugs in the source code of different programming
languages. Recently, the software engineering community has paid attention to bug and smell
detection in laC. The rule-based techniques have been also applied to detect defects in
infrastructural code scripts such as Puppet and Chef Scripts, e.g., security smells in Puppet
[Rahman1 2019], implementation and design smells in Puppet [Sharma 2016] and implementation
and design smells in Chef [Schwarz 2018]. Most industrial laC smell detectors (i.e., so-called Linter
tools), for example, Ansible Lint*® and Puppet Lint*, also use a rule-based approach. However,
none of these works use semantic models of 1aC and semantic rules or aim to unify the smell
detection across different 1aC languages. Moreover, the different types of smells/bugs may
potentially need different techniques for their detection [Sharma 2018].

e Semantic Formal Rule-based Smell Detection.

Compared with the existing studies, SODALITE proposes a semantic rule-based approach
to detect the smells and antipatterns in laC, for example, smells in TOSCA blueprints and
Ansible scripts. Our framework facilitates the generation of knowledge graphs to capture
TOSCA-based deployment models. The aim is to map laC codes to self-contained,
independent and reusable knowledge components, amenable to analysis and validation
using Semantic Web standards, such as SPARQL. To explain detected smells and
recommend fixes, the initial semantic models are extended to specify smells, their causes,
and their fixes. A semantic approach helps us to deal with structure and semantic relations
over resources, their relationships and the properties. The semantic reasoning process is
able to draw new and hidden knowledge from the existing information. It could also enable
us to build a unified framework to detect smells across different laC languages by utilizing
semantic Web techniques such as ontology alignment and query rewriting.

e Deep Learning and NLP for Detecting Linguistic Anti-patterns and Misconfigurations.
There is an emerging trend in software defect prediction for using deep learning and
natural language processing (NLP), in particular, code embeddings (code vectors) [Alon
2019][Liu 2019]. However, there are no similar studies on laC defect prediction. Thus,
SODALITE thus develops deep learning and NLP based techniques for detecting linguistic
anti-patterns and misconfiguration errors. Linguistic anti-patterns are recurring poor
practices concerning inconsistencies among the naming, documentation, and
implementation of an entity, have shown to be a good proxy for defect prediction
[Arnaoudova 2013]. Misconfigurations or configuration errors are the violations of
configuration requirements or constraints [Tianyin Xu 2013]. According to a recent report
on Cloud Threat*, 65% of cloud incidents are due to misconfigurations in provisioning and
configuration scripts.

¥ https://github.com/ansible-community/ansible-lint
0 https://github.com/rodjek/puppet-lint
L https://start.paloaltonetworks.com/unit-42-cloud-threat-report

D4.2 - laC Management - Intermediate Version Page 36
© Copyright Beneficiaries of the SODALITE Project

9% .
{***} Project No 825480. ’ SOdallte

4.4.2.2 Architecture

e Semantic Approach to TOSCA Smell Detection

Figure 16 illustrates some smells in TOSCA files, for instance, insecure coding practices of
using admin users as the default user, and violation of a naming convention. Such smells
deteriorate the quality of deployment model descriptions, and enable the exploitation of
vulnerabilities in the deployed systems.

node_types: node_templates:
sodalite.nodes.DockerHost: vm:
derived_from: tosca.nodes.SoftwareComponent type: sodalite.nodes.VM.OpenStack
properties: f‘V|obnonsofSnake{ase‘T pr?pertles: e %
user_name: i Naming Convention % image-type: centosj _i Insufficient |
type: string e e key_size: 10244 i KeySize

default: roote i A % docker-host:
capabilities: o - type: sodalite.nodes.DockerHost
host: properties: {Unrestr ess }
type: tosca.capabilities.Compute registry ip: : "0.0.0.0/0"4

Figure 16 - Snippets of TOSCA Files Describing a Node Type and an Node Instance, Annotated with
Smells

Platform Discovery Definition of o ‘
4 ia |l
Service Resource Models
Resource Experts
h 4 l
Inf Knowledgebase (WP3 o
ntrastructure nowledgebase i
s (J TOSCA Smell Predictor SODALITE IDE
(Resources) {Ontologies) l4—Apply Rules—
Smells J
AADM ID v
L Application Ops Experts
Semantic Reasoner ——Smelis
AADMs and RMs (Ontology Instances)
(WP?’) ———AADMs and RMs

3

Definition of Smell

Textual Descriptions of
! Smells i

Detection Rules in
SPARQL

Figure 17 - An Overview of our Approach to TOSCA Smell Detection

Figure 17 shows the high-level architecture and workflow of our approach to detect the
occurrences of smells in deployment model descriptions. More specifically:

e Population of the Knowledgebase.
Resource Experts populate the knowledgebase by creating resource models (ontology
instances representing resources/nodes in the infrastructure) using SODALITE IDE (WP3).

Platform Discovery Service may (semi-)automatically update the knowledge base by
creating resources models.

e Definition of Smells Detection Rules.
We use the semantic rules in SPARQL to detect different smells in deployment models.

There exist rules to detect common security and implementation smells. New rules can be
defined to detect new types of smells.

e Detection of Smells.

Application Ops Experts create the AADM instances for representing the deployment
models of the applications. The AADM is automatically translated into the corresponding

D4.2 - laC Management - Intermediate Version Page 37
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

‘¥ Sodalite

ontological representation and is saved in the knowledgebase. The smell detection rules
are applied over the ontologies in the knowledgebase to detect deployment model-level
smells. If a smell is detected, the details of the smell are returned to the Application Ops
Experts. The detected smells are shown in the IDE as warnings. The same flow applies to
Resource Ops Experts, as they also receive warnings for their resource models.

Figure 18 shows the (abstract) rules to detect 10 TOSCA smells. The rules are implemented as
SPARQL queries for specifying detection rules. Figure 19 shows an excerpt from the SPARQL query
for detecting Admin by default smell. Line 4 implements the function isUser using a regex
matching. Lines 5-9 retrieve the default value for a property of a node. Line 14 realizes the function
isAdmin using the IN operator. The SPARQL queries for the other smells are available online in the

SODALITE github repository.

Smell Smell Description Abstract Detection Rule
Admin by default Default users are administrative users. isUser (x.name) AisAdmin(x.name)
Empty password A password as a zero-length string. isPassword(x.name) A(isEmpty(x.value) vV isEmpty(x.defaultValue))

Hard-coded secret Secrets such as usernames and passwords are hardcoded.

(isPassword(x.name) VisUser(x.name) V isSecKey(x.name)) A
((~isEmpty(x.value) A~isVariable(x.value)) V~isEmpty(x.defaultValue))

A comment includes the information indicating

Suspicious comment . .
secrets and buggy implementations.

hasComment(x) AisSuspicious(x.comment)

Unrestricted IP address | Using "0.0.0.0" or "::" as binding IP addresses of servers

isIP(x.name) A(isInvalidBind(x.value) V isInvalidBind(x.de faultV alue))

Insecure Using insecure communication protocols,

communication instead of their secure counterparts

(isURL(x.value) AisInsecure(x.value)) v
(isURL(x.defaultValue) AisInsecure(x.defaultValue))

Weak crypto. algo. Use of weak cryptography algorithms such as MD5 and SHA1

hasWeakAlgo(x.value) VhasWeak Algo(x.defaultValue)

The size of a key used by an eneryption algorithm is less

Insufficlent key Size than the recommended key size, e.g., 2048 bits for RSA.

1sCryptoKeySize(x.name) A(hasInsuf ficientKeySize(x.value)
VhasInsuf ficientKeySize(x.defaultValue))

Inconsistent
naming convention

The conventions used for naming nodes,
properties, attributes, etc,, are inconsistent.

(case=="CamelCase’ — isCamelCase(x.name)) V (case ==" SnakeCase’
— isSnakeCase(x.name)) V (case ==’ DashCase’ — isDashCase(x.name))

Invalid port ranges TCP port values are not within the range from 0 to 65535.

isPort(x.name) A(outO fRange(x.value) vV outOfRange(x.defaultValue))

Figure 18 - Smells, their Descriptions, and the Abstract Detection Rules.

where {

optional { #

node

W00~ U B W R e

select distinct ?property ?propertyDef

?property DUL:classifies PpropertyDef.
FILTER(regex(str(?propertyDef),“user(.+?)|(.+?)?user","i")).
type definitions -
?property DUL:hasParameter ?p .
?p DUL:classifies tosca:default .
?p tosca:hasDataValue ?value.

tierl

tierd

optional { # node template definitions -
?property tosca:hasDataValue ?value.

FILTER (bound(?value)).
FILTER (str(?value) IN ('admin', 'root'))

= e e e
ik wNnmeEead

Figure 19 - Part of AdminByDefault SPARQL Query.

o Deep Learning and NLP Approach to Linguistic Anti-Pattern Detection in laC

Boosted by the emerging trend of deep learning and word embeddings for software code
analysis and defect prediction, we propose a novel approach to detect linguistic
anti-patterns in laC, focusing on name-body inconsistencies in 1aC code units. Figure 20
illustrates the workflow of our approach as a set of steps, which can be categorized into the

following phases:

D4.2 - laC Management - Intermediate Version
© Copyright Beneficiaries of the SODALITE Project

Page 38

{'**} Project No 825480. ’ SOdalite

e Corpus Tokenization. Given a corpus of Ansible tasks, this phase generates token
streams for both task names and bodies. To tokenize a task’s body while
considering its semantic properties, we build and use its abstract syntax tree (AST).

e Data Sets Generation. Since it is challenging to find a sufficient number of real
buggy task examples that suffer from inconsistencies, we apply simple code
transformations to generate buggy examples from likely correct examples. We
perform such transformations on the tokenized data set and assume that most
corpus tasks do not have inconsistencies. Indeed, several previous studies [Pradel
2018] in software defect prediction have successfully applied similar techniques to
generate training and test data.

e From Datasets to Vectors. We employ Word2Vec [Church 2017] to convert the
token sequences into distributed vector representations (code embeddings). We
train a deep learning model for each Ansible module type as our experiments
showed a single model does not perform well, potentially due to low token
granularity. Thus, the tokenized data set is divided into subsets per module, and
the code embeddings for each subset are separately generated.

e Model Training. This phase feeds the code embeddings to a Convolutional Neural
Network (CNN) model and trains the model to distinguish between the tasks having
name-body inconsistencies from correct tasks. The trained model is stored in the
model repository.

e Inconsistency Identification. The trained models (classifiers) from the model
repository are employed to predict whether the name and body of a previously
unseen Ansible task are consistent or not. Each task is transformed into its
corresponding vector representations, which can be consumed by a classifier.

Ansibl . N e
;:ll)(¢ Build ASTs for Task Body Positive Set
Corpus Task Bodies Tokenization Negative (Buggy) Set
Split Task Split Datasets Add Name-Body Merge Task Names Filter
Bodies and into Train/Test/ Inconsistencies and Bodies in one Datasets by
Names Validation Sets via Mutation Token Sequence the Module
Task Name Tokenization
A
Previously Unseen ‘”"4“]
Ansible Task Corpus Query Repository G [For the data set of each unique module]
Model odely
[For the data set of each unique module] i/ . .
Tokenizatl Fil (Likely I) A if | Train Embed Vector Create Vector
o \,mfjalmn Dat ! ltrb Create Vector Select Model and bl t:vy nc;m]s(l;t[enmes “ CNN |« Representations & Representations
an atasets by esentations | Make Predictions clween lask Names \ | Model to CNN Word2Vee /
Preprocessing the Module Representations Make Predictions and Task Bodies _7 () _/,/

Figure 20 - Overview of our approach to detecting linguistic anti-patternsin laC

We evaluated our approach with an Ansible dataset systematically collected from open source
repositories. Figure 21 presents the inconsistency detection results for the top 10 Ansible modules
in our data set. Overall, our approach yielded an accuracy ranging from 0.785 to 0.915, AUC metric
from 0.779 to 0.914, and MCC metric from 0.570 to 0.830. Our approach achieved the highest
performance for detecting inconsistency in the file module, where the accuracy was 0.915, the F1
score for the inconsistent class was 0.92, and the F1 score for the consistent class was 0.91. We also
observed that the ROC curve, the model loss, and the accuracy plots confirm the model’s good
performance.

D4.2 - laC Management - Intermediate Version Page 39
© Copyright Beneficiaries of the SODALITE Project

{***} Project No 825480. ’ SOdalite

Evaluation Metric/Module | shell | command | set_fact | template | file | gather_facts | copy | service | debug | fail
Precision | 0.880 0.790 0.770 0.820 0.900 0.900 0.860 0.870 0.870 | 0.820

Inconsistent Recall | 0.810 0.840 0.900 0.940 0.940 0.830 0.810 0.760 0.770 | 0.690
F1 score | 0.843 0.814 0.830 0.876 0.920 0.864 0.834 0.811 0.817 | 0.749

Precision | 0.810 0.820 0.890 0.930 0.930 0.905 0.82 0.800 0.750 | 0.760

Consistent Recall | 0.890 0.770 0.750 0.800 0.890 0.770 0.870 0.900 0.860 | 0.870
F1 score | 0.848 0.794 0814 0.860 0.910 0.870 0.844 0.847 0.801 | 0.811

Accuracy | 0.847 0.805 0.819 0.868 0.915 0.817 0.838 0.833 0.809 | 0.785

MCC | 0.697 0.610 0.649 0.744 0.830 0.685 0.678 0.669 0.625 | 0.570

AUC | 0.848 0.804 0.822 0.868 0.914 0.848 0.838 0.830 0.814 | 0.779

Figure 21 - Classification results for the top 10 used Ansible modules.
4.4.2.3 Features
The laC defect prediction tools collectively provides the capabilities of:
e detecting security and implementation smells in TOSCA and Ansible scripts
e suggesting fixes for detected TOSCA smells
e detecting linguistic anti-patterns in Ansible/laC scripts
e detecting misconfiguration errorsin Ansible /laC scripts

4.4.2.4 Status
e Overall Architecture and Methodology of Analytics and Semantic Support

o We published the design and workflow of our Analytics and Semantic Support in
ESOCC 2020 [Kumaral 2020].

e Semantic Approach to TOSCA Smell Detection

o We developed the support for key common types of security and implementation
smells reported in the IaC literature. The defection prediction tool was integrated
with SODALITE IDE.

o We published our semantic approach to defect prediction at the 10th International
Conference on Web Intelligence, Mining and Semantics [Kumara2 2020], and are
currently extending the conference paper to a journal paper.

e Deep Learning and NLP Approach to Linguistic Anti-Pattern Detection in IaC

o We developed the support for detecting the inconsistencies between task names
and task bodies in Ansible playbooks/roles.

o We published our approach for linguistic anti-pattern detection at the 4th ACM
SIGSOFT International Workshop on Machine-Learning Techniques for
Software-Quality Evaluation [Borovits 2020]. We have also received a journal
invitation for the paper at Empirical Software Engineering (EMSE) journal, and are
currently extending our initial work for this journal.

4.4.2.5 Next steps

e Develop an NLP and DL based approach to support detecting misconfigurations in laC
scripts (M33)
e Improving the support for recommending fixes for TOSCA smells (M30)

5 Extension of the existing components

5.1 Image builder

SODALITE uses the Image Builder component to prebuild application images for targeting an OS
virtualizer such as Docker or Singularity. The Image Builder component itself is a dockerized REST
API encapsulation of the xOpera lightweight orchestrator and a TOSCA/Ansible blueprint that is
executed by the orchestrator and can be configured to run different image building workflows
enabling the user to build the application from source or tar images and push the created image to
a Docker registry. The image building workflows for building runtime images are running prior to

D4.2 - laC Management - Intermediate Version Page 40
© Copyright Beneficiaries of the SODALITE Project

{***} Project No 825480. ’ SOdalite

deployment of the TOSCA blueprint, before the orchestrator starts with the execution of the
blueprint deployment e.g., provisioning the infrastructure and deployment of the application. The
encapsulation of the xOpera lightweight orchestrator and TOSCA blueprints into the REST API
enables the image building functionality to be accessible from any component in SODALITE
framework or be just reused in a separate blueprint if needed. The extendable nature of these
TOSCA blueprints provides a high level of reusability of the code for supporting the image building
process. Image builder also supports session handling and authentication/authorization by JWT
tokens making it easy to integrate with Identity and Access Management providers.

5.1.1 Improvements

According to our plans, significant improvements were added since the initial image-builder
release at the end of the first year of the project. In this section we focus on most prominent ones
with regards to features, implementation and software quality.

During the second year of the project tests for the developed features were significantly improved
adding quality and ensuring to not break the already developed features. In this year, the TOSCA
standard version was upgraded from 1.2 to 1.3 so the blueprints were also updated to be inline
with the latest TOSCA developments. An important innovative feature was implemented: giving the
user the possibility to create multiple image variants in a single image building workflow run.
Additionally, CI/CD process was aligned with the SODALITE CI/CD streamlined and integrated
development process described in more details in the deliverable D6.3, enabling a simple and
informative management of the testing and deployment to the testbed, pushing images to docker
hub repository guided through simple semantic version tagging and git branch naming
compliance.

Image builder exposes its functionalities through both multifunctional CLI and REST API, and can
be also used in a CI/CD scenario.

Finally the NGINX** image with saved configuration for image-builder dockerized API was replaced
by the simple configuration of Traefik® proxy enabling a more efficient possible transition to k8s
deployment.

The code and extensive information on how to build and use the Image builder is provided in the

github repository: https://github.com/SODALITE-EU/image-builder

5.1.2 Code Quality

Since the first image-builder release automatic code quality checks were introduced using the
online SonarCloud tool. Several corrections of the code were applied after enabling the
SonarCloud code analysis of the image builder component. One of the most important being the
extension of the unit tests for code coverage and reduction of code repetitions.

At the time of this writing the quality of the code in the image-builder github repository was solid
with a code coverage of 73.6%, no bugs and vulnerabilities and a small percentage of code
duplications as shown in Eigure 22. In the next releases we will focus on reducing the code smells
and on reviewing the security hotspots (currently SonarCloud highlights 5 security hotspots):

image-builder

Last analysis: January 12, 2021, 6:14 PM

0Q A 0.0% @ 10 O 736% O 16% 1.8k @

¥¥ Bugs B Vulnerabilities @ Hotspoats Reviewed @ Code Smells Coverage Duplications Python, XML

Figure 22 - Current code quality values for the Image Builder.

2 https://www.nginx.com/
* https://traefik.io/ Cloud-Native Networking Stack That Just Works.

D4.2 - laC Management - Intermediate Version Page 41
© Copyright Beneficiaries of the SODALITE Project

https://github.com/SODALITE-EU/image-builder

94 .
{ } Project No 825480. ’SOdallte

5.1.3 Next steps

Improving security and integration with IDE is one of the most prominent next steps in the
development of the image-builder component. Integration with IDE would enable an AOE to create
the container image for a component directly from the IDE instead of using the image builder REST
APl or CLI interface.

Additionally the support of building multi-architecture images remains a top priority feature for
this component. This feature would enable the user to inject code changes and different
configurations for specific build target platforms.

5.2 laC-Blueprint-Builder

The l1aC Blueprint Builder internally generates the TOSCA blueprint by transforming the AADM
JSON, passed as input by the IDE in the form of REST APl which is passed to the Abstract Model
Parser and eventually the Application Optimiser optimises the application for a given target
platform based on the optimisation options selected.

5.2.1 Improvements

The initial version of lac-Blueprint-Builder was working and providing the TOSCA blueprints as
required but there were few issues related to the output produced like broken blueprints at some
parts or missing required fields. Moreover, the code was not properly organized and structured
which might cause trouble in future maintenance.

During the second year of the project, the code was refactored so that it can be more efficient to
run and maintain, and the documentation improved. The initial issues concerning the generated
output were resolved and few missing functionalities were added to take into account the
evolution of the AADM input received by the component. The integration with MODAK for the
optimization purpose has been implemented.

The code is provided in the repository: https://github.com/SODALITE-EU/iac-blueprint-builder

5.2.2 Code Quality

The lac-blueprint-builder has been implemented in Python. In the last year several corrections
have been made in the code as part of refactoring the parsing file in specific.

Some bugs and vulnerabilities were also fixed from the earlier version. The test coverage has
improved from 54% to 87.5%. The code smells and duplications remain the same, code duplication
being 0% as shown in Eigure 23.

In the next releases we will focus on reducing the code smells and on reviewing the security
hotspots (currently SonarCloud highlights 2 security hotspots).

iac-blueprint-builder

t analysis: January 28, 2021, 8:26 PM

Last analy
0Q 0Q 0.0% @ 14 Q O 87.5% QO 0.0% 676 @

¥E Bugs B Vulnerabilities @ Hotspots Reviewed & Code Smells Coverage Duplications Python

Figure 23 - Current code quality values for the lac Blueprint Builder.
5.2.3 Next steps

Adding authentication/authorization functions to improve the security of the repository should be
added.

D4.2 - laC Management - Intermediate Version Page 42
© Copyright Beneficiaries of the SODALITE Project

https://github.com/SODALITE-EU/iac-blueprint-builder

¢ .
{ } Project No 825480. ’SOdallte

Additionally, proper unit tests should be framed so that it is easier to check in future that all the
functionalities are working well.

5.3 Prediction service

Bug Predictor and Fixer and Predictive Model Builder are the two components of the prediction
service. They share the same github repositories.

Bug Predictor and Fixer detects the smells and bugs in TOSCA and Ansible artifacts and suggests
corrections or fixes for some of the smells/bugs. For smells/bugs detection, Bug Predictor and Fixer
uses a model built by the Predictive Model Builder. This last one uses a rule-based model for
detecting implementation and security smells in Ansible. The semantic reasoning over the
SODALITE ontologies, developed in WP3, is performed.

5.3.1 Improvements

At M12, Bug Predictor and Fixer supported the rule-based approach to detecting smells in Ansible.
The rules are Ansible Lint* rules. In the second year, we added new rules to detect more smell
types. At M12, Bug Predictor and Fixer also had the initial implementation of the semantic
approach to detecting TOSCA smells. In the second year, we significantly improved the initial
support with the capabilities to detect more smells and the integration with SODALITE IDE. The
improved smell detection was also published at a scientific conference. Section 4.4.2 describes this
improved support under the feature Semantic Approach to TOSCA Smell Detection.

Since M12, the Predictive Model Builder has been extended with the NLP and deep learning-based
models for detecting linguistic smells in Ansible (see Section 4.4.2).

5.3.2 Code Quality

The Bug Predictor and Fixer has been implemented in Java and Python, and consequently, have
two separate github repositories. The implementations of the new features mentioned in Section
4.4.2 are also part of Bug Predictor and Fixer and Predictive Model Builder. As shown in Eigure 24
and 25, the Python part of Bug Predictor and Fixer has 34.9% code coverage, 57 code smells and
3.0% code duplications, and the Java part has 52% code coverage, 33 code smells and 2.5% code
duplications. In the next releases we will focus on reducing the code smells, removing duplicate
code by refactoring the code base, and improving code coverage by adding more unit tests.

Last analysis: January 27, 2021, 6:03 P!

00 00 100% @ 57 Q) QO 34.9% 3.0% 22k @
!"'[Bugs

E Vulnerabilities @ Hotspots Reviewed & Code Smells Coverage Duplications Python, XML

Figure 24 - Current code quality values for the Bug Predictor and Fixer - Python part.

TR

Last analysis: January 26, 2021, 11:28 PN

0Q 0D 100% @ 330 O 52.0% QO 25% 971 @
]"'[Bugs

E Vulnerabilities e Hotspots Reviewed & Code Smells Coverage Duplications Java

Figure 25 - Current code quality values for the Bug Predictor and Fixer - Java part.

* https://github.com/ansible-community/ansible-lint

D4.2 - laC Management - Intermediate Version Page 43
© Copyright Beneficiaries of the SODALITE Project

94 .
{ } Project No 825480. ’SOdallte

5.3.3 Next steps
e Integration of Ansible smell detection with SODALITE IDE

5.4 l1aC Quality Assessor

This component can calculate different software quality metrics for laC artifacts. We develop this
component in collaboration with the RADON project (see [Dalla Palma 2020]).

5.4.1 Improvements
Compared with M12, during the second year, new metrics were added, and the component CI/CD
was integrated with Sonarcloud. A REST APl was developed.

5.4.2 Code Quality

The laC Quality Assessor has 51.8% code coverage, and 19 code smells. . In the next releases we will
focus on reducing the code smells and improving code coverage by adding more unit tests.

Last analysis: January 26, 2021, 11:00 P

00 00 100% @ 190 O 51.8% QO 0.0% 843 @

f[Bugs ﬁ Vulnerabilities G Hotspots Reviewed @ Code Smells Coverage Duplications XML, Python

Figure 26 - Current code quality values for the 1aC Quality Assessor.

5.4.3 Next steps
e Add workflow level quality metrics for Ansible playbooks and roles

5.5 Topology Verifier

This component verifies the constraints over the structures of the TOSCA blueprints. Topology
Verifier uses the verification capabilities provided by Openstack Tosca Parser” to detect the
violations of the syntax of blueprints with respect to the TOSCA specification. However, WP3
(Semantic Reasoner) implements the support for verifying the requirements of the nodes, the
node-relationships, the capabilities of the nodes, and node substitutability.

5.5.1 Improvements

During the second year, some bug fixes were done and the component CI/CD was also integrated
with Sonarcloud.

5.5.2 Code Quality
The Topology Assessor has 25.4% code coverage, and 0 code smells. In the next releases we will
focus on improving code coverage by adding more unit tests.

Last analysis: January 27, 2021, 12:31 AM

0Q 00 100% @ 0Q G 25.4% QO 0.0% 139

: Bugs E Vulnerabilities e Hotspots Reviewed @ Code Smells Coverage Duplications Python, XML

Figure 27 - Current code quality values for the Topology Verifier.

5.5.3 Next steps
o Improve and use XOpera Parser, which supports TOSCA 1.3 version

* https://github.com/openstack/tosca-parser

D4.2 - laC Management - Intermediate Version Page 44
© Copyright Beneficiaries of the SODALITE Project

94 .
{ } Project No 825480. ’SOdallte

5.6 Provisioning Workflow Verifier

This component verifies the control flow constraints over the provisioning workflow of the
application using Petri Net, one of the widely used techniques for verifying workflows. The
workflow is described in the Ansible scripts in terms of tasks, roles, plays, and variables. The
implementation uses the Petri Net support provided by PM4Py* process mining library.

5.6.1 Improvements

During the second year, some bug fixes were done, and the component CI/CD was also integrated
with Sonarcloud.

5.6.2 Code Quality

The Topology Assessor has 22.0% code coverage, and 0 code smells. In the next releases we will
improve the code coverage by adding more unit tests.

Last analysis: January 27, 2021, 12:30 AM
00 00 100% @ 00 G 22.0% QO 0.0% 106 @
¥¥ Bugs & Vulnerabilities @ Hotspots Reviewad @ Code Smells Coverage Duplications Python, XML
Figure 28 - Current code quality values for the Provisioning Workflow Verifier.
5.6.3 Next steps
e Improve translation from Ansible playbooks to Petri-Net

5.7 laC Verifier

This component provides an unified REST API (Facade) for the verification capabilities of Topology
Verifier and Provisioning Workflow Verifier.

5.7.1 Improvements

During the second year, the initial Java based implementation was replaced by a Python-based
implementation. Moreover, some bug fixes were done, and the component was also integrated
with Sonarcloud.

5.7.2 Code Quality

The laC Verifier has a Python REST API and does not have unit tests. In the next releases we will
focus on improving code coverage by adding unit tests.

Last analysis: January 27, 2021, 12:31 AM
00 0Q 100% @ 00 QO 0.0% <l s
b 3 Bugs E Vulnerabilities B Hotspots Reviewed @ Code Smells Duplications Python

Figure 29 - Current code quality values for 1aC Verifier
5.7.3 Next steps
e Update the API if the capabilities of Topology Verifier and Provisioning Workflow Verifier

are updated.
e Improved integration with SODALITE IDE

6 https://pm4py.fit.fraunhofer.de/

D4.2 - laC Management - Intermediate Version Page 45
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

¥ Sodalite

6 Updated IaC Management Layer Development Plan

Tables 1 and 2 provide a summary of the features that will be developed as part of the IaC
Management Layer by M30 and M36 respectively. These features have been presented also in the
previous sections of this deliverable.
Besides feature development, in the last part of the project careful attention will be posed to
increasing the quality of the release artifacts in terms of code quality metrics and also in terms of
their usability and flexibility, based on the feedback gathered by case study owners and other

users.

Component

Planned features

Abstract Model Parser
and laC Blueprint Builder

Adding authentication/authorization functions to improve the
security of the repository should be added.

Adding proper unit tests so that it is easier to check in future that all
the functionalities are working well.

Runtime Image Builder
and Concrete Image
Builder

Integration with IDE,
add multi-architecture build variants

Image Registry

N/A

Application Optimiser

Cloud-system support

laC Taxonomies

laC Smell and Bug Taxonomy (Final Versions)

laC Bug Prediction and
Correction,

Verification and Quality
Assurance

Suggesting Fixes for TOSCA Smells (Basic Support),
Misconfiguration Detection for Ansible,

Control Flow Ansible Metrics,

Control Flow Verification of Ansible (Improved Support)

Platform Discovery
Service

Initial integration with semantic reasoner,
Improved integration with IDE,
Initial kubernetes discovery

Ansible support

To complete the support to the creation of Ansible playbook, we
intend to integrate as part of the IDE also the possibility to search
through the Ansible Modules available online and to select the right
one to be used within an abstract playbook.

Table 2 - 1aC Management Layer Release Plan for M30.

Component

Planned features

Abstract Model Parser
and laC Blueprint Builder

Bug fixing

Runtime Image Builder
and Concrete Image
Builder

Improved workflows for the image building process

D4.2 - laC Management - Intermediate Version

Page 46

© Copyright Beneficiaries of the SODALITE Project

{'**} Project No 825480. ’ SOdalite

Image Registry N/A

Application Optimiser Big-data analytics application support

laC Taxonomies Validated Final Taxonomies

laC Bug Prediction and Suggesting for Fixes for TOSCA Smells (Improved Support),

Correction, Improved Integration of Bug/Smell Detection and Verification with

Verification and Quality | IDE

Assurance

Platform Discovery Support for TOSCA changes,

Service Improved versions of TOSCA for Openstack, AWS and kubernetes
discovery

Ansible support If possible, given the project resource constraints and other

commitments, develop a backward transformation from Ansible
playbooks to the corresponding abstract ones. This feature could be
useful to simplify the modification of preexisting playbooks within
the context of the SODALITE framework.

Table 3 - 1aC Management Layer Release Plan for M36.

7 Conclusion

This deliverable has reported on the intermediate release (M24) of the SODALITE laC Management
Layer, emphasizing the main new features that have been incorporated since the initial release
reported in D4.1, but also reporting on the progress achieved on existing components.

The quality of the developed components and their interoperability have been largely improved
and will be subject to further improvement in the last project year.

The main achievements reported for this year concern: i) the addition of the platform discovery
feature that significantly reduces the work of Resource Experts thanks to its ability to automatically
discover new resources and encode them as Resource Models; ii) the support to the creation of
Ansible scripts, which can be optionally used by Resource Experts is case they need to define new
Ansible Playbooks; iii) Modak, the software-defined optimisation framework for containerised
HPC and Al applications; and iv) the improved support for detecting code smells and prevent
bugs.

The main challenges foreseen for the last year of the project concern the consolidation of all
components and improving their integration with the modeling environment. Moreover, the
software-defined optimisation framework will be extended to cope also with cloud-based
systems.

D4.2 - laC Management - Intermediate Version Page 47
© Copyright Beneficiaries of the SODALITE Project

{***} Project No 825480. /’ SOdalite

References

[Rutkowski20] Matt Rutkowski, Chris Lauwers, Claude Noshpitz, Calin Curescu, TOSCA Simple
Profile in YAML Version 1.3, OASIS Standard. February 2020.

[D4.1] Dragan Radolovic¢ (XLAB) Nejc Bat (XLAB) Elisabetta Di Nitto (POLIMI) Mehrnoosh Askarpour
(POLIMI) Karthee Sivalingam (CRAY) Indika Kumara (JADS/UVT) Panagiotis Mhtzias,
Georgios Meditskos (CERTH) Kalman Meth (IBM). D4.1 laC Management initial version.
SODALITE Technical report 2020.

[D2.2] Luciano Baresi (POLIMI), Elisabetta Di Nitto (POLIMI), Dragan Radolovi¢ (XLAB), Alexander
Maslennikov (XLAB), Kalman Meth (IBM), Yosu Gorrofiogoitia (ATOS), Kamil Tokmakov
(USTUTT), Indika Kumara (JADS), Giovanni Quattrocchi (POLIMI), Zoe Vasileiou, Anastasios
Karakostas, Savvas Tzanakis (CERTH). D2.2 Requirements, KPls, evaluation plan and
architecture - Intermediate version. SODALITE Technical report 2021, to be published.

[D2.4] Luciano Baresi (POLIMI), Elisabetta Di Nitto (POLIMI), Kamil Tokmakov (USTUTT), Anastasios
Karakostas (CERTH), Stefanos Vrochidis (CERTH), Dragan Radolovi¢ (XLAB). D2.4 Guidelines
for contrlbutors to the SODALITE framework SODALITE Technical report 2020.

[D5.2] Jesus Gorronogoma (Atos) Jorge Fernandez Fabelro (Atos), Lucas Pelegrin Caparros (Atos),
Indika Kumara (JADS/UVT), Dragan Radolovi¢ (XLAB), Nejc Bat (XLAB), Kamil Tokmakov
(USTUTT), Kalman Meth (IBM), Giovanni Quattrocchi (POLIMI). D5.2 - Application deployment
and dynamic runtime - intermediate version. SODALITE Technical report 2021, to be
published.

[D6.3] Kamil Tokmakov (USTUTT), Ralf Schneider (USTUTT), Dennis Hoppe (USTUTT), Kalman Meth
(IBM), Elisabetta Di Nitto (POLIMI), Paul Mundt (ADPT), Airan Gonzalez Gdmez (ATOS), Yosu
Gorrofiogoitia (ATOS), Dragan Radolovi¢ (XLAB), Mihael Trajbari¢ (XLAB), Piero Fraternali
(POLIMI), Rocio Nahime Torres (POLIMI), Vasileios-Rafahl Xefteris, Savvas Tzanakis(CERTH),
Karthee Sivalingam (CRAY), Indika Kumara (UVT/JADS), Lucas Pelegrin (ATOS), Saloni Kyal
(POLIMI), Giovanni Quattrocchi (POLIMI). D6.3 Intermediate implementation and evaluation
of the SODALITE platform and use cases. SODALITE Technical report 2021, to be published.

[D6.6] Kalman Meth (IBM), Indika Kumara (JADS), Zoe Vasileiou, Vasileios-Rafahl Xefteris, Savvas
Tzanakis, Anastasios Karakostas, Spyridon Symeonidis (CERTH), Yosu Gorrofiogoitia, Lucas
Pelegrin (ATOS), Giovanni Quattrocchi (POLIMI), Dragan Radolovi¢, Nejc Bat (XLAB), Alfio
Lazzaro (HPE), Saloni Kyal (POLIMI) D6.6 SODALITE Framework - Second Version. SODALITE
Technical report 2021, to be published.

[Schliephake 2012] Michael Schliephake and Erwin Laure. 2012. Towards Improving the
Communication Performance of CRESTA’s Co-Design Application NEK5000. In 2012 SC
Companion: High Performance Computing, Networking Storage and Analysis. IEEE, 669-674.

[SonarCloud1] Java static code analysis - Technical manual,
https://rules.sonarsource.com/java/type/Bug

[SonarCloud2] Nicolas Harraudeau, How SonarCloud finds bugs in high-quality Python projects,
blog article

[Sharama 2018] Sharma Tushar and D|om|d|s Splnellls "A survey on software smells Journal of
Systems and Software 138 (2018): 158-173

[Wettinger 2016] J Wettinger, U Breitenbiicher, O Kopp, F Leymann. Streamlining DevOps
automation for Cloud applications using TOSCA as standardized metamodel. Future
Generation Computer Systems 56, 317-332. 2016

D4.2 - laC Management - Intermediate Version Page 48
© Copyright Beneficiaries of the SODALITE Project

https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/os/TOSCA-Simple-Profile-YAML-v1.3-os.pdf
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/os/TOSCA-Simple-Profile-YAML-v1.3-os.pdf
https://sodalite.eu/reports/d41-iac-management-initial-version
https://sodalite.eu/reports/d24-guidelines-contributors-sodalite-framework
https://rules.sonarsource.com/java/type/Bug
https://blog.sonarsource.com/sonarcloud-finds-bugs-in-high-quality-python-projects

{***} Project No 825480. /’ SOdalite

[Tamburri 2019] Tamburri, D.A., Van den Heuvel, WJ., Lauwers, C. et al. TOSCA-based Intent
modelling: goal-modelling for infrastructure-as-code. SICS Software-Intensive
Cyber-Physical Systems. 34, 163-172 (2019).

[Noudohouenou 2014] J. Noudohouenou and W. Jalby, "Using static analysis data for performance
modeling and prediction," 2014 International Conference on High Performance Computing &
Simulation (HPCS), Bologna, 2014, pp. 933-942, doi: 10.1109/HPCSim.2014.6903789.

[Brogi 2016] A. Brogi, P. Cifariello, J. Soldani: DrACO: Discovering Available Cloud Offerings.

Computer Science: Research and Development, Springer, 2016
. . . 0

[Bhattacharjee 2018] A. Bhattacharjee, Y. Barve, A. Gokhale and T. Kuroda, "A Model-Driven
Approach to Automate the Deployment and Management of Cloud Services," 2018 IEEE/ACM
International Conference on Utility and Cloud Computing Companion (UCC Companion),
Zurich, 2018, pp. 109-114, doi: 10.1109/UCC-Companion.2018.00043.

[Bhattacharjee 2017] Bhattacharjee, A., Y. Barve, T. Kuroda, and A. Gokhale. CloudCAMP: A
Model-driven Generative Approach for Automating Cloud Application Deployment and
Management. Report by Institute for Software Integrated Systems, Vanderbilt University.
ISIS-17-105. 2017.

[Barve 2018] Y. Barve et al. UPSARA: A Model-Driven Approach for Performance Analysis of
Cloud-Hosted Applications. In: 2018 IEEE/ACM 11th International Conference on Utility and
Cloud Computing (UCC). 2018, pp. 1{10. doi: 10.1109/UCC.2018.00009.

[Rutkowski 2020] Matt Rutkowski, Chris Lauwers, Claude Noshpitz, Calin Curescu. TOSCA Simple
Profile in YAML Version 1.3. OASIS Standard. February 2020.

[Chiba 2019] Tatsuhiro Chiba, Rina Nakazawa, Hiroshi Horii, Sahil Suneja, and SeetharamiSeelam.
2019. ConfAdvisor: A Performance-centric Configuration Tuning Framework for Containers
on Kubernetes. In 2019 IEEE International Conference onCloud Engineering (IC2E). IEEE,
168-178.

[Kubernetes 2021] Kubernetes, an open-source system for automating deployment, scaling, and
management of containerized applications. https://kubernetes.io/, 2021

[AWS 2020] AWS Compute Optimizer. 2020. https://aws.amazon.com/compute-optimizer/

[de Bayser 2017] Maximilien de Bayser and Renato Cerqueira. 2017. Integrating MPI with Dockerfor
HPC. In2017 IEEE International Conference on Cloud Engineering (IC2E). IEEE, 259-265.
[McMillan 2018] Scott McMillan. 2018. Making Containers easier with HPC container maker. In

Proceedings of the SIGHPC System Professionals Workshop 2018, Dallas, TX, USA.

[Hob 2020] Maximilian Hob and Dieter Kranzlmiiller. 2020. Enabling EASEY deployment of
containerized applications for future HPC systems. arXiv:2004.13373 [cs.DC]

[D3.3] Alfio Lazzaro; Karthee Sivalingam; Nina Mujkanovic; Indika Kumara; Piero Fraternali; Rocio
Nahime Torres; Giovanni Quattrocchi; Kamil Tokmakov; Ralf Schneider; Paul Mundt. D3.3
Prototype of application and infrastructure performance models. SODALITE technical report
2020.

[Arnaoudova 2013] Arnaoudova, Venera, et al. "A new family of software anti-patterns: Linguistic
anti-patterns." 2013 17th European Conference on Software Maintenance and
Reengineering. IEEE, 2013.

[Pradel 2018] Pradel, Michael, and Koushik Sen. "DeepBugs: A learning approach to name-based
bug detection." Proceedings of the ACM on Programming Languages 2.00PSLA (2018): 1-25.

D4.2 - laC Management - Intermediate Version Page 49
© Copyright Beneficiaries of the SODALITE Project

https://link.springer.com/article/10.1007%2Fs00450-016-0332-5
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/os/TOSCA-Simple-Profile-YAML-v1.3-os.pdf
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/os/TOSCA-Simple-Profile-YAML-v1.3-os.pdf
https://kubernetes.io/
https://sodalite.eu/reports/d33-prototype-application-and-infrastructure-performance-models
https://sodalite.eu/reports/d33-prototype-application-and-infrastructure-performance-models

{'**} Project No 825480. ’ SOdalite

[Church 2017] Church, Kenneth Ward. "Word2Vec." Natural Language Engineering 23.1 (2017):
155-162.

[Kumaral 2020] Kumara, Indika, et al. "Quality Assurance of Heterogeneous Applications: The
SODALITE Approach." European Conference on Service-Oriented and Cloud Computing
(ESOCC 2020), Volume 2. Springer, Cham, 2020 (in print).

[Kumara2 2020] Kumara, Indika, et al. "Towards Semantic Detection of Smells in Cloud
Infrastructure Code." Proceedings of the 10th International Conference on Web Intelligence,
Mining and Semantics. 2020.

[Borovits 2020] Borovits, Nemania, et al. "DeeplaC: deep learning-based linguistic anti-pattern
detection in laC." Proceedings of the 4th ACM SIGSOFT International Workshop on
Machine-Learning Techniques for Software-Quality Evaluation. 2020.

[Dalla Palma 2020] Dalla Palma, Stefano, Dario Di Nucci, and Damian A. Tamburri. "AnsibleMetrics:
A Python library for measuring Infrastructure-as-Code blueprints in Ansible." SoftwareX 12
(2020): 100633.

[Tianyin Xu 2013] Xu, Tianyin, et al. "Do not blame users for misconfigurations." Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems Principles. 2013.

[Rahmanl 2019] Rahman, Akond, Chris Parnin, and Laurie Williams. "The seven sins: security
smells in infrastructure as code scripts." 2019 IEEE/ACM 41st International Conference on
Software Engineering (ICSE). IEEE, 2019.

[Schwarz 2018] Schwarz, Julian, Andreas Steffens, and Horst Lichter. "Code Smells in Infrastructure
as Code." 2018 11th International Conference on the Quality of Information and
Communications Technology (QUATIC). IEEE, 2018.

[Sharma 2016] Sharma, Tushar, Marios Fragkoulis, and Diomidis Spinellis. "Does your configuration
code smell?." 2016 IEEE/ACM 13th Working Conference on Mining Software Repositories
(MSR). IEEE, 2016.

[Rahman2 2020] Rahman, Akond, et al. "Gang of eight: A defect taxonomy for infrastructure as code
scripts." Proceedings of the 42nd International Conference on Software Engineering, ICSE.
Vol. 20. 2020.

[Alon 2019] Alon, Uri, et al. "code2vec: Learning distributed representations of code." Proceedings
of the ACM on Programming Languages 3.POPL (2019): 1-29.

[Liu 2019] Liu, Kui, et al. "Learning to spot and refactor inconsistent method names." 2019
IEEE/ACM 41st International Conference on Software Engineering (ICSE). IEEE, 2019.

[Sharma 2018] Sharma, Tushar, and Diomidis Spinellis. "A survey on software smells." Journal of
Systems and Software 138 (2018): 158-173.

D4.2 - laC Management - Intermediate Version Page 50
© Copyright Beneficiaries of the SODALITE Project

9% .
{***} Project No 825480. ’ SOdallte

Appendix - Ansible Implementation Metamodel

Notes about the notation

The “1 to 1” relations are all represented like attributes in the entities, to improve readability. The
question mark “?” written before one of those attributes means that the relation is “1 to 0..1”. For
example, the Base entity could be in relation with 0 or 1 Connection entity. In all the other cases,
the relation is represented with the classic arrow with the indication of the cardinality of the
relation.

The metamodel is split among different figures, to improve readability as well.

This metamodel is strongly coupled with the model generated by the xtext grammar implemented
in the IDE, in the sense that there is almost a 1 to 1 relation between the entities of this metamodel
and the entities belonging to the model generated by the xtext grammar.

Because of the strong relation between the metamodel and the grammar, and because the Ansible
grammar defined in the IDE is used together with the RM grammar defined in the IDE as well, this
metamodel contains references to elements belonging to the RM grammar. When this happens,
those elements are referenced with a “RM_" prefix.

The metamodel

In the following the figures reporting the metamodel are shown, with an explanation of the main
aspects of it.

Base

7 privilege_esealation : PrivilegeEscalation
7 validation_mode : ValidationMade

7 connection : Connection [ﬂms variable_declarations VariahleDeclaration
7 no_log : BooleanPassed = =
7 debugger : String [0..*] | value_passed : ValuePassed

7 module_defaults : ListPassed
?envirenment : ListP assed

7 collections : ListP assed

7 tags : ListP assed

i

Play

2 play_name : String

7 play_exe_settings : PlayExeSettings Execution

2 enor_handling : PlayEmaHandling BlockTask
2 fasts_settings : FactsSettings [vesi]

?wars_files : ListPassed

7 exe_settings : ExecutionExeSettings
7 delegation : Delegation
2 when_ ian : JinjaE Evaluati

2 vars_prompt : ListPassed ~"
7 force_handlers : BooleanPassed \
TaskHandler
7 ewor_handling : TaskHandlerE norHandling
Block | Rolelnclusion Nofifiable |, has_notifiablegq] 1"““”'J'"JEE’S‘::?;’_‘A""S"'”Q

7 block_name : Stiing

I 5
7 enor_handling : andling I9E_NAmE:Sng

| 1 10,1 ?aigs : DistionaryPassed
module : MaduleCall

7 loop : Loop

7| 2 register : Registeivariable

7 task_name: Sting

7 handler_name: Stiing

1]

listen_to

0..%]

MNotifiedTopic |

Figure 30 - Ansible main elements hierarchy.

D4.2 - laC Management - Intermediate Version Page 51
© Copyright Beneficiaries of the SODALITE Project

{*”} Project No 825480. ? SOdalite

Playbook Block

name : String

2 - Shi
2 nade_type | RM_NodeType block_name : Sting
? ti M_O

7 enai_handling : BlockErrerHandling

i o [0-1] [0-1]
has_plays has_tasks has_rescue_tasks \has_always_tasks
1
-y
Play

. o) o

7 play_name : String
7 play_exe_settings : PlayExeSettings Task
1] 7 enmor_handling : PlayErrarHandling
7 facts_settings : FactsSettings 7 task_name: Sting

7 wvars_files : ListPassed
7 vars_prompt : ListPassed
7 force_handlers : BooleanPassed

[

has_post_tasks has_role_inclusions

has_pre_tasks has_handlers

0. [0:
BlockTask Roleinclusion Handler
| rale_name: String Z handler_name: String
[0.%]
listen_to
[U..*]‘

MotifiedTopic

Figure 31 - Playbooks, Play and Block.

PrivilegeEscalation

7 become : BooleanP assed WalidationMode
P become_exe : JinjaExpressionAndString o

o ? check de : Bool P d
P become_flags : JinjaExpressionAndString e :iﬂe'cB_o";Ioe:nF'aso:e:a" e
7P become_method : JinjaExpressionAndString E .
P hecome_user: JinjaExpressionAndString

FactsSettings
AsynehronousSettings 7 gather_facts: BooleanPassed Deleqation
7 async : NumberPassed ? gather_subset : ListPassed 9
7 poll : MumberPassed 7 gather_timeout : NumberP assed T delegate_to : JinjaExpressionAndString
T fact_path : JinjaExpressionAndString 7 delegate_facts : BooleanPassed
Connection
?connection : JinjaExpressionAndString
P port: NumberP assed
TFremote_user: JinjaExpressionAndString -
ExeSettings
7 throttle : NumberPassed
ModuleCall : "
P rn_once : BooleanPassed Matifiable

name : String
T direct_parameter : ValuePassed

0.7
has_parameters
0. FPlayExeSettings
= 7 strategy : JinjaExpressionAnd String ExecutionExeSettings
Parameter P serial_list : ListP assed - - -
: 7 arder : JinjaExpressionAndString MotifiedHandler NotifiedTopic
S name : Handler name : String
wvalue_passed : WaluePassed

ErrarHandling

7 any_ermors_fatal : BooleanPassed
Tignore_errors : BooleanPassed
7ignore_unreachable : BooleanPassed

TaskHandlerErrorHandling

7Fchanged_when : JinjaExpressionEvaluationWithoutBrachkets
7 failed_when : JinjaExpressionEvaluationWithoutBrackets

BlockErrorHandling PlayErrorHandling

7 max_fail_percentage : NumberPassed

Figure 32 - Groups of parameters.

D4.2 - laC Management - Intermediate Version Page 52
© Copyright Beneficiaries of the SODALITE Project

Project No 825480. 3 SOdalite

LaopControl

label : ValuePassed
pause : NumbePassed
index_var : IndexOrLoopVariable
laop_var : IndexOrLoopVariable
extended : BooleanP assed

LoopOverList Until

loop_list : ValuePassed
7 laop_control : LoopControl

until
? 1etries : NumberPassed
7 delay : NumberPassed

Figure 33 - Loops.

ParenthesisedExpression TalElement

? basic_value : ValuePassedTolinjaExpression [1]
7 parenthesised_term : FilteredExpression 1
7index : Humber

function_call : FunctionCall
?index : Number

JinjaExpressionEvaluation QrExpression AndExpression
i ” o - T 5 left_or: AndExpression left_and : TruthExpression
| E EvaluationWithoutBrackets) i
JLLIECEXRIERICN: 21N = XRIRAT AT-YE LALSE LI TS R Ene 7P right_or: OrExpression ?right_and : AndExpression

TruthExpression Operation IsExpression
left_value : Operation left_operand : IsExpressian galrenthte-s:teld_expremon : ParenthesisedExpression
7 equality_sign : Stiing 7 operator : String ‘-)':t_tﬂﬂ i Eﬂng)
e ———— Zrighi_tperand - Qgeratian 2 c:nI::i.n:r ’:(r:rg:;iln : IsExpression
WaluePassedTodinjaBxpression
FunctionCall V\

JinjaExpressionEvaluationWithoutBrackets Value Specialvariable VariableReference
name : String
7 empty_brackets : String

[0..1]

name : String

has_parameters

[0.

FilteredExpression

IfExpression

if_expression : FilteredExpression
if_condition : Filtered Expression
7 else_expression : FilteredExpression

to_filter : OrExpression
7 filter : FiteredExpression

Figure 34 - Expressions.

D4.2 - laC Management - Intermediate Version Page 53
© Copyright Beneficiaries of the SODALITE Project

Project No 825480. 3 SOdalite

RegistervariableReference variableReference YariableDeclarationVariableReference
register_variable_reference : Registerariable variable_declaration_variable_reference : VariableDeclaration
InputOperationvariableReference InputinterfaceVariahleReferance IndexQrLoopWariahleReference
name : RM_ParameterDefinition name : RM_PropertyDefinition name : String

VariahleDeclaration Registervariable

name : String

name : String
walue_passed : ValuePassed

List | has_elements ValuePassed

[0..1] [T

ValueWithoutString Value JinjaExpressionAndString

(1
has_jinja_expression_and_string
v [

Composedvalue Simplevalue JinjaExpressionQrString
Dictionary SimpleValueWithoutString String JinjaExpressionEvaluation
jinja_expression : JinjaExpressionEvaluationWithoutBrackets

[
has_dictionary_pairs
[3.*

DictionaryPair

MNull Mumber Boolean

name : String
value : ValuePassed

Figure 35 - Variables and values.

[JinjaExpressionAndString

[

has_jinja_expression_and_string

.1,
[NumberPassed [ListPassed [DictionaryPassed [JinjaExpressionorstring [BooleanPassed

[[[[| L‘S

Mumber I List l [Dictionary [JinjaExpressionEvaluation String Boolean

Figure 36 - Types of parameters passed by a TOSCA interface to an Ansible Playbook.

D4.2 - laC Management - Intermediate Version Page 54
© Copyright Beneficiaries of the SODALITE Project

{'**} Project No 825480. /’ SOdalite

® Base: This entity was modelled by taking inspiration from the official ansible repository
(https://gi ansible/ansik] ib/ansible/playk) All the main entities of
the model inherit from the Base entity, which groups the attributes that they have in
common.

® Play: It all starts with the Playbook, which is a collection of plays (as it can be seen in the
second image). The playbook is the artifact to which the interface’s operation of the TOSCA
Resource Model refers. The playbook can contain one or more plays, and each play contains
an ordered list of operations (BlockTask) to be executed. The operations (BlockTask) could be
“normal” operations, “pre_tasks” or “post_tasks”. It’s just a matter of order of execution:
“pre_tasks” are executed before the roles included, the “normal” operations after the roles
included, then the triggered handlers and then the “post_tasks” (if some concepts named
here are not clear, the reader can find an explanation in the points that follow).

Play inherits from Base, so it contains all the Base’s attributes plus other attributes shown in
the first image.

® BlockTask: The operations contained in a Play can be blocks or tasks. The BlockTask entity
was modelled to capture in a unique entity all the operations that can be run in a Play, so
Block and Task inherit from BlockTask.

® Execution: The Execution entity was modelled to capture the entities that represent some
operation that can be run. The main point is grouping in this Execution entity all the
attributes that they have in common (apart from the Base’s attributes of course, from which
Execution inherits).

e Block: As it can be seen in the second image, the Block is a collection of tasks (an ordered
list). Apart from the “normal” tasks that it can contain, it can also have an ordered list of
“always” tasks and “rescue” tasks. The “always” tasks are run in any case, even in case of
errors. The “rescue” tasks are run to recover from error states.

® Roleinclusion: a play could contain an ordered list of roles identifiers to be executed.
Executing a role means executing a set of operations, and a role can be for example
downloaded from the internet (usually from Ansible Galaxy). For example, a role could be
named “mongodb_server”, and executing that role means making the host on top of which it
runs a mongodb server. So, the “mongodb_server” role contains all the operations that, if
executed, make the host a mongodb server. Rolelnclusion however doesn’t model the role
itself, but its inclusion in the play. So it contains the identifier of the role (the name attribute)
and other attributes inherited from Execution that can be used to set how the inclusion is
done.

® TaskHandler: Since Task and Handler entities share a lot of attributes, the TaskHandler entity
was modelled in order to group all of them.

® Task: It is the basic operation that can be run in a Play. The main thing to consider is that it
executes a module (the same happens with the Handler, so the ModuleCall is contained in
the TaskHandler entity). A module is a predefined operation that can be run and needs some
inputs to be executed. The task passes those inputs to the module and executes it (to make
an analogy: it’s like if the module was an implemented function, and the task calls this
function passing it some parameters). A list of the available modules can be found here:
The inputs passed to a module are modelled as parameters (with the Parameter entity), that
have an identifier and a value passed. However, it can happen that the input to the module is
given without an explicit parameter with an identifier. It happens for example with the
“shell” module®, in which the shell command is passed without an explicit named

" https://docs.ansible.com/ansible/2.9/modules/shell_module.html#shell-module

D4.2 - laC Management - Intermediate Version Page 55
© Copyright Beneficiaries of the SODALITE Project

https://github.com/ansible/ansible/tree/devel/lib/ansible/playbook
https://docs.ansible.com/ansible/2.9/modules/list_of_all_modules.html

{'**} Project No 825480. /’ SOdalite

parameter. The direct_parameter attribute modelled in this metamodel has the purpose of
being used in situations like this, instead of the Parameter entity.

® Handler: Very similar to the Task, but it’s executed when an event occurs. The TaskHandler
entity can be associated with some Notifiable elements, as it can be seen in the first image. A
Notifiable element, as it can be seen in the third image, could be a Handler or a topic. So
TaskHandler (tasks and handlers) can notify one or more handlers (or topics, as it will be
explained shortly). It means that when the task/handler finishes its execution, the notified
handlers are executed as consequence.

A Handler can also listen to a specific topic. If the Notifiable element associated with the
task/handler is a topic, then all the handlers listening to that topic are executed
consequently.

® [oop: tasks and handlers (so the TaskHandler entity) have the “loop” attribute. A Loop
makes the execution of the task/handler iterate. As it can be seen in the fourth image, a Loop
can be a LoopOverlist entity or an Until entity. In the case of the LoopOverlList entity, the
task/handler is re-executed once for each element contained in the input given by the
LoopOverList. The LoopOverlList entity may also contain a LoopControl, with additional
settings for the execution of the loop. If the Loop is an Until entity instead, the task/handler
is re-executed until a certain condition is met.

® JinjaExpressionEvaluation: in Ansible, in order to pass for example a variable as parameter to
a module to be executed, its value needs to be accessed through a Jinja2 expression. This is
done by delimiting the expression between double curly braces. The curly braces are not
necessary in the cases in which the expression is evaluated in order to check if a certain
condition is met (like for example in the “when” attribute), so in those cases the
JinjaExpressionEvaluationWithoutBrackets entity is used.

The Jinja2 expression is modelled to have 2 alternatives: being an IfExpression entity (the
classic “if...then..else”) or a FilteredExpression. A FilteredExpression entity can contain filters
applied to the expression before being evaluated.

A Jinja2 expression can contain various elements and operands, like “and”, “or”, “
“.“ etc. In the xtext grammar this is defined thanks to various correspondent productions
with right recursions, and this finds correspondence in the metamodel. The basic element of
the chain of right recursions is the ValuePassedTolinjaExpression entity, while at the top of
the chain we find the FilteredExpression entity.

e TailElement: an expression could have a tail: basically a “.” followed by a function or the
identifier of an inner element, if the expression represents a dictionary. TailElement is the
entity put after the “.” sign. Of course, the expression could have a chain of tail elements. It’s
also possible, for each one of them, to access a specific element of a list (if the overall
expression represents a list), so there is also the “index” attribute. The “index” attribute
modelled in ParenthesisedExpression is there because the expression could be itself a list and
we may want to access an element of it, so without any tail element involved.

e ValuePassedTolinjaExpression: This is the basic element of a Jinja2 expression.
ValuePassedTolinjaExpression could be a value. A value, as it can intuitively be thought, is
something like a number, a string, a dictionary, a list, etc.

ValuePassedTolinjaExpression could be a SpecialVariable. This term was chosen by taking
inspiration from the special variables Ansible documentation®. It captures the variables that
contain something related to the internal state of Ansible. To make it clearer, an example
could be “ansible_facts”. Facts are basically properties gathered from the host on which the
ansible playbook is run, like for example its IP address, and “ansible_facts” is a variable (a

n”

> ’

n u
’

<"y

’

8 https://docs.ansible.com/ansible/latest/reference_appendices/special_variables.html

D4.2 - laC Management - Intermediate Version Page 56
© Copyright Beneficiaries of the SODALITE Project

{'**} Project No 825480. /’ SOdalite

dictionary) containing those facts. Even if not in the list of the special variables, in the page of
the Ansible documentation, it's reasonable to use the SpecialVariable entity also when the
“item” variable needs to be used. “item” is a keyword in ansible for accessing an element of a
list in a LoopOverlist. It could be for example the case that we have a list of 3 elements, and
we want to print each one of them. So ansible basically tells something like “print item” and
this command is executed 3 times. Each time “item” will have the corresponding value of the
element of the list.
Finally, ValuePassedTolinjaExpression could be a VariableReference entity, which is a
reference to a variable. The following dedicated point is necessary to better explain this
entity.

® VariableReference: it represents a reference to a variable. There are different types of
variables, in the sense that there are different possible ways in which they are
declared/passed to the playbook. Thus, there are different types of VariableReference
entities:

o VariableDeclarationVariableReference: it could be identified as a reference to the
“classic” declared variable: the VariableDeclaration entity associates an identifier of
the variable to a value, and VariableDeclarationVariableReference is a reference to
VariableDeclaration.

o RegisterVariableReference: it's a reference to RegisterVariable, an entity that models
the variables that are produced in ansible after the execution of a task or a handler:
after the execution, the output of it can be stored in a new variable, the registered
variable.

o InputOperationVariableReference and InputinterfaceVariableReference: They are
both related to variables given in input from the TOSCA Resource Model to the
playbook. The main difference between them is that the variable given in input could
be defined in the “operation” section of the interface, like it is done in the Snow
example® for “remote_server” and mysql_db_pass” (in that case we have the
InputOperationVariableReference) or in the interface itself, like it’s done in the HPC
example®® for “wm_public_address”, “wm_username”, etc. (so we have the
InputinterfaceVariableReference). The main reason for having these 2 different
entities, instead of just one capturing both the cases, is that in the first case the RM
grammar uses the ParameterDefinition entity to define the input, while in the second
case it uses the PropertyDefinition entity. Since the inputs are defined in these 2
different ways, it was reasonable to define 2 different correspondent entities for
referencing them.

o IndexOrLoopVariableReference: while looping, it's possible to define new variables
with the index_var®* keyword and the loop_var’*> keyword. This entity is just used for
capturing both the cases.

49

https://github.com/SODALITE-EU/ide/blob/master/dsl/org.sodalite.dsl.examples/snow_split.v2/snow_v2.rm
#L19

0 https://github.com/SODALITE-EU/ide/blob/master/dsl/org.sodalite.dsl.examples/hpc/hpc.rm#L87

51
https://docs.ansible.com/ansible/latest/user_guide/playbooks_loops.html#tracking-progress-through-a-loo
p-with-index-var

52
https://docs.ansible.com/ansible/latest/user_guide/playbooks_loops.html#defining-inner-and-outer-variabl
e-names-with-loop-var

D4.2 - laC Management - Intermediate Version Page 57
© Copyright Beneficiaries of the SODALITE Project

{'**} Project No 825480. /’ SOdalite

® ValuePassed: First, it's necessary to explain what a value in this model is. It can be a simple
value (string, boolean, number, null) or a composed value (a list, a dictionary).
The JinjaExpressionEvaluation, explained before, was introduced to model the values passed
to a module to be executed, but it’s not enough alone. As it can be seen in the create docker
host example®, a value passed could be a JinjaExpressionEvaluation concatenated with a
string. So, we have introduced the lJinjaExpressionOrString entity, that can be a
JinjaExpressionEvaluation or a string. JinjaExpressionAndString, instead, is an ordered set of
JinjaExpressionOrString entities. In this way, we have the JinjaExpressionAndString entity that
models the concatenation of strings and jinja expressions.
To sum up, a value passed could be a JinjaExpressionAndString or a value. Because
JinjaExpressionAndString contains strings, this would lead to ambiguity in the grammar
associated with this model, since both Value and JinjaExpressionAndString entities could be a
string. For this reason, ValueWithoutString was introduced in the model, which is basically
like Value but it can’t be a string.
For what concerns the attributes in general, like for example “delegate_facts”, “async”,
“check_mode”, etc., the value that is passed to them is not just simply ValuePassed. The
point here is that, thanks to the Ansible documentation and repository>* we know in advance
what is the type expected from each attribute. If, like in the case of “check_mode”*, the
value expected is a boolean, what can actually be passed to “check_mode” is a boolean or a
jinja expression (which should at run time be a boolean, but because of the strong relation
between this metamodel and the xtext grammar defined in the IDE, here we are focusing
rather on the compile time). So BooleanPassed is the entity that can be a Boolean or a
JinjaExpressionEvaluation, and is the one passed to “check_mode”. In this way, if the
programmer writes something like “check _mode: 5”, the IDE will raise an error message,
saying that the number type isn’t compatible with “check_mode”. The same consideration
holds for DictionaryPassed, ListPassed, NumberPassed. For what concerns String,
JinjaExpressionAndString is already fine for this purpose, so that can be used instead of
defining a StringPassed entity.
This kind of approach, that aims at forcing the programmer to pass the values with the right
type, wasn’t used for the Parameter entity (recall: it’s the one involved in the ModuleCall
entity) simply because in general we don’t know what is the right type of value that should
be passed as a parameter to a general module. We could know it if we consider a specific
module: if we select one from the list of modules®® of the Ansible documentation, we can see
the list of its parameters and for each one the expected type. If the IDE can access in some
way (with some endpoints for example) a component that provides this information, then in
principle it is possible to use an approach similar to the one just described for “check_mode”
for the parameters of the modules. However, this metamodel is general and doesn’t take
into account this possibility. In general, one could, with the ModuleCall entity, “call” every
possible module (even not existing in the list of modules) by providing an identifier, and
could pass every parameter that he/she wants, by providing an identifier. So, of course,
under these circumstances it’s inevitable to let the programmer use every possible type, with
the ValuePassed entity.

53

https://github.com/SODALITE-EU/iac-management/blob/master/use-cases/snow-uc/snow-openstack/playb
ooks/docker/create_docker_host.yml#L67

* https://github.com/ansible/ansible

* https://github.com/ansible/ansible/blob/devel/lib/ansible/playbook/base.py#L613

% https://docs.ansible.com/ansible/2.9/modules/list_of_all_modules.html

D4.2 - laC Management - Intermediate Version Page 58
© Copyright Beneficiaries of the SODALITE Project

