@ Sodalite

SOftware Defined AppLication Infrastructures managemenT and Engineering

First version of
ontologies and
semantic repository

D3.1

CERTH
31.7.2020

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 825480.

SN Project No 825480.

" Sodalite

Deliverable data
Deliverable First version of ontologies and semantic repository
Georgios Meditskos (CERTH),
Zoe Vasileiou (CERTH),
Authors Panagio.tis Mhtzias (CERTH),
Anastasios Karakostas (CERTH),
Stefanos Vrochidis (CERTH),
Jesus Gorrofiogoitia (ATOS)
. Kalman Meth (IBM),
Reviewers . .
Roman Sosa Gonzalez (ATOS)
Dissemination Public
level
Panagiotis Mitzias (CERTH) Outline created 7.10.2019
All Initial partner 19.12.2019
contributions
Additional partner
Al contributions 14/01/2020
Georgios Meditskos Version feady for 15/01/2020
review
Kalman Meth, Review forms available 21/01/2020
Roman Sosa Gonzalez
History of
changes All Final 28/01/2020
Updated ToC to
Georgios Meditskos address reviewers’ 03/05/2020
recommendations
All Partner contributions 01/06/2020
Georgios Meditskos Version feady for 01/07/2020
review
Kalman Meth, . .
, , Review forms available 08/07/2020
Roman Sosa Gonzalez
All Final 20/07/2020
-
D3.1 - First version of ontologies and semantic repository - Public Page 2

© Copyright Beneficiaries of the SODALITE Project

{*,*} Project No 825480. ? SOdalite

Acknowledgement

The work described in this document has been conducted within the Research & Innovation action
SODALITE (project no. 825480), started in February 2019, and co-funded by the European
Commission under the Information and Communication Technologies (ICT) theme of the H2020
framework programme (H2020-ICT-16-2018: Software Technologies)

D3.1 - First version of ontologies and semantic repository - Public Page 3
© Copyright Beneficiaries of the SODALITE Project

{***} Project No 825480. ? SOdalite

Table of Contents

1 Introduction 11
1.1 Objectives 12
1.1.1 Ontologies 12
1.1.2IDE 13

1.2 Overview of SODALITE architecture 14
1.2.1 Semantic Modelling 15

1.3 Structure of the Document 15

2 Related Work 16
2.1 Knowledge Representation and Ontologies 16
2.1.1 Description Logics 16

2.1.2 RDF, OWL and OWL 2 17

2.1.3 Semantic Web Technologies in Cloud 18

2.1.4 Meta-modelling 20

2.1.5 Ontology Design Patterns 21

2.2 IDE 21
2.2.1 User-centered DSL workbenches 21

2.2.2 Authoring tools for cloud applications 23

2.3 SODALITE Innovation 24
2.3.1 Ontologies 25
2.3.2IDE 26

3 SODALITE Conceptual Models 28
3.1 Tiers 28
3.1.1 Descriptions and Situations Pattern (DnS) 30

3.2 SODALITE Meta-Model 30

3.3 TOSCA Domain Ontology 31

3.4 Next Steps 38

4 Ontology Population and Checking 39
4.1 Exchange Model 39

4.2 Next Steps 41

5 SODALITE IDE 42
5.1 Domain Specific Language 42

5.2 Supported Features 42

5.3 Next Steps 45

6 Implementation 46
6.1 WP3 baseline technology stack 47
6.1.1 TopBraid Composer 47

6.1.2 GraphDB 49

6.1.3 Eclipse RDF4J 50

e
D3.1 - First version of ontologies and semantic repository - Public Page 4

© Copyright Beneficiaries of the SODALITE Project

{***} Project No 825480. ? SOdalite

6.1.4 SPARQL 51

6.1.5 XText 51

6.2 Semantic Knowledge Base 52
6.2.1 RDF Triple Store 53

6.2.2 Domain Models 53

6.3 Semantic Reasoner 54
6.3.1 Semantic Reasoning Engine 54

6.3.2 Semantic Population Engine 59

6.4 SODALITE IDE 60

7 Conclusion 65
8 References 66
9 Appendix 70

S
D3.1 - First version of ontologies and semantic repository - Public Page 5

© Copyright Beneficiaries of the SODALITE Project

{*”} Project No 825480. ? SOdalite

List Of Images

m Figure 1. SODALITE overall Architecture

m Figure 2. SODALITE Semantic Modelling components (WP3)

m Figure 3. Overview of the SODALITE modelling layers

m Figure 4. Core DnS pattern in DUL

m Figure 5. SODALITE meta-model (extension of DUL)

m Figure 6. Hierarchy for TOSCA concepts

m Figure 7. Hierarchy of Root (nodes, relationships, capabilities, etc.)

m Figure 8. Overview of the AADM model to capture topologies

m Figure 9. Example TOSCA node type and high-level assignment of SODALITE ODP
concepts

m Figure 10. Example attribute definition

m Figure 11. Example property definition

m Figure 12. Example interface definition

m Figure 13. Example of capability definition

m Figure 14. Example of situation and description instances

m Figure 15. Example node templates

m Figure 16. vm node template as instance of the sodalite.nodes.VM.OpenStack resource

m Figure 17. docker-host node template as instance of the sodalite.nodes.DockerHost
resource

m Figure 18. Example topology instance

m Figure 19. Basic class hierarchy of the exchange model

m Figure 20. Basic properties provided by the exchange model

m Figure21. Snow UC AADM in SODALITE IDE Editor

m Figure 22. Context-sensitive content assistance

m Figure 23. Storing AADM into the KB

m Figure 24. WP3 internal workflow

m Figure 25. TopBraid composer Class and Property views

m Figure 26. Home page of GraphDB Workbench

m Figure 27. Example response for getting the properties of sodalite.nodes.VM.OpenStack

m Figure 28. Example response for getting the attributes of sodalite.nodes.VM.OpenStack

m Figure 29. Example response for getting the capabilities of
sodalite.nodes.VM.OpenStack

m Figure 30. Example response for getting the interfaces of sodalite.nodes.VM.OpenStack

m Figure 31. Example response for getting the interfaces of sodalite.nodes.VM.OpenStack

m Figure 32. Example response of getting all known nodes

m Figure 33. example response on calling /valid-requirement-nodes with
requirement=host and nodeType = tosca.nodes.SoftwareComponent

m Figure 34. Snippet of AADM grammar

m Figure 35. Snippet of RM grammar

S
D3.1 - First version of ontologies and semantic repository - Public Page 6

© Copyright Beneficiaries of the SODALITE Project

{* : Project No 825480. a SOdalite

List Of Tables
m Table 1. Terminological and assertional axioms
m Table 2. Examples of concept and role constructors

S
D3.1 - First version of ontologies and semantic repository - Public Page 7

© Copyright Beneficiaries of the SODALITE Project

o ¢ .
{ } Project No 825480. ’ SOdallte

Executive Summary

The present deliverable reports on the work carried out within T3.1 “Application Semantic
Modelling” and T3.2 “Infrastructure Semantic Modelling”, relevant to the development of the
SODALITE ontologies (abstraction layer) and the representation and mapping of cloud
applications and infrastructures to ontological entities. In addition, it describes the first version of
the Semantic Reasoner module that populates the SODALITE Knowledge Base (KB) with the
resource models and Abstract Application Deployment Models (AADMs) composed through the
textual editor (Application Developer IDE). It also provides the REST API that different modules use
to get information from the KB.

More specifically, the deliverable presents the current content of the SODALITE semantic models
and the abstract conceptual model (Ontology Design Pattern [1]) that has been adopted to build
them. Based on the requirements set forth by WP2 and the dependencies incurring from the
interaction with the other WPs (mainly with WP4 in the first year of the project), the purpose,
scope, intended uses and the requirements of the SODALITE ontology were identified. These
specifications, along with the modelling insights from the relevant literature, served as guidelines
for building the first version of the ontologies that currently comprises modules for capturing
Cloud application and resources modelled using TOSCA node types and node templates. All this
information is used to build the SODALITE knowledge graphs that capture and interlink
cloud-related information.

In addition, we present the preliminary version of the reasoning layer whose purpose is: a) to
populate the Knowledge Base (KB) of SODALITE with application and resource models defined by
end users; b) to provide the basic reasoning infrastructure to be used in WP4 (T4.4) for
implementing advanced reasoning services, such as semantic retrieval and validation services;
and c) to provide the REST API needed to retrieve and store information in the KB.

Finally, we describe the specifics of the textual editor (Application Developer IDE) of SODALITE that
allows end users to define AADMs by reusing components and resources from the KB. More
specifically, we describe the DSL used to define AADM in an abstract level, along with technical
details on the interaction between the IDE and the semantic infrastructure of SODALITE in terms of
exchange models and REST API.

—-—
D3.1 - First version of ontologies and semantic repository - Public Page 8

© Copyright Beneficiaries of the SODALITE Project

SN Project No 825480.

" Sodalite

Glossary

Acronym Explanation

AADM Abstract Application Deployment Model
Application Ops Experts

AOE The equivalent process from the ISO/IEC/IEEE standard 12207 Systems and
software engineering — Software life cycle processes is Operation processes and
maintenance processes

API Application Program Interface

CpP Content Pattern

CAMP Cloud Application Management for Platforms

DL Description Logic

DOLCE Descriptive Ontology for Linguistic and Cognitive Engineering

DnS Descriptions and Situations

DSML Domain Specific Modeling Language

MDE Model Driven Engineering

DSL Domain Specific Language

DUL DOLCE Ultralite

EMF Eclipse Modelling Framework

GUI Graphical User Interface

laaS Infrastructure as a Service

laC Infrastructure as Code

IDE Integrated Development Environment

IRI Internationalized Resource Identifier

JSON JavaScript Object Notation

KB Knowledge Base

OASIS Organization for the Advancement of Structured Information Standards

ODP Ontology Design Pattern

OowL Web Ontology Language

PaaS Platform as a Service
Quality Expert

OF The‘ equiyalent process fro‘m ISO/IEC/IEEE standard 12207 Systems and software
engineering — Software life cycle processes: Infrastructure management and
Configuration management processes

QoS Quality of Service

RDF Resource Description Framework

D3.1 - First version of ontologies and semantic repository - Public Page 9
© Copyright Beneficiaries of the SODALITE Project

{***} Project No 825480. ? SOdalite

RDFS Resource Description Framework Schema

RDF4J Resource Description Framework for Java (open source java framework)

Resource Expert
The equivalent process from ISO/IEC/IEEE standard 12207 Systems and software

RE engineering — Software life cycle processes is Quality Management and Quality
assurance processes

REST Representational State Transfer

RM Resource Model

SaaS Software as a Service

SHACL Shapes Constraint Language

SPARQL SPARQL Protocol and RDF Query Language

SPE Semantic Population Engine
SRE Semantic Reasoning Engine
SWRL Semantic Web Rule Language

TOSCA Topology and Orchestration Specification for Cloud Applications

WP Work Package

XML Extensible Markup Language

D3.1 - First version of ontologies and semantic repository - Public Page 10
© Copyright Beneficiaries of the SODALITE Project

{***} Project No 825480. ’ SOdalite

1 Introduction

Cloud computing has revolutionised IT and has become a popular paradigm for the provision of
computing infrastructure with convenient and scalable access to computing resources. One of the
most important challenges in this domain is interoperability, since numerous vendors have
introduced different paradigms and services, making the cloud landscape diverse and
heterogeneous. The two noteworthy dimensions of interoperability in the cloud domain -
connectivity and usability - have been divided into five layers [2]: 1) Transport Interoperability: the
exchange of data using physical networks, such as the Internet; 2) Syntactic Interoperability: the
structure and coding of the data; 3) Semantic Interoperability: the intended meaning of the data; 4)
Behaviour Interoperability: service behaviour under certain conditions; 5) Policy Interoperability:
conformance of interacting systems to applicable laws, regulations and organizational policies.

In addition, the ability to move cloud services between different cloud environments, standardised
service definitions, and be vendor independent, can help technologies based on cloud computing
reach the next level. Portability between two systems must be considered separately for data and
for applications, since the factors of relevance differ substantially between these. Data portability,
on the one hand, is moving the data and/or applications from one system to another and having it
remain usable or executable. Application portability, on the other hand, is the ability to migrate an
application from one cloud service to another or between a customer’s environment and a cloud
service.

Many cloud resource management standards have been propolsed to cope with different aspects
of interoperability and portability. For2 example, TOSCA (Topology and Orche3stration
Specification for cloud Applications), OCCI (Open Cloud Computing Interface), and CIMI" (Cloud
Infrastructure Management Interface) are among the most known standards that focus on the
interoperable description of application and infrastructure cloud services, the relationships
between parts of the service, dependencies between application components, cloud computing
management tasks, etc. However, cloud resources that have been modelled and described using
different standards still face interoperability problems, since the provided modelling languages
and semantics differ, resulting in heterogeneous schemata and vocabularies that create cloud
silos and non-reusable cloud resources. In order to enable the development, management, faster
execution and reuse of complex applications, both the application’s components and
infrastructures should be modelled in a standardised, machine-readable format and abstraction
level.

Semantic Web technologies and, particularly, ontologies and reasoning can promote
interoperability and intelligent decision support mechanisms for various cloud-based services,
providing effective interoperability among the Cloud based systems and resources. A great body of
work has focused on the semantic representation of cloud-based services, resources and
infrastructures (see Section 2.1.3 for more details). While the majority of the existing solutions are
based on the semantic annotation of resources, APIs, operations, infrastructures, etc., in SODALITE
we follow a knowledge-intensive, Ontology Design Pattern (ODP) paradigm to build the Modelling
Layer and achieve semantic interoperability. The SODALITE’s rich conceptual meta-model enables
the formal abstraction of applications and infrastructures, allowing the semantic annotation and
interlinking of functional and non-functional requirements, software dependencies, service
capabilities and QoS, reusing existing general-purpose ontologies and extend them to our domain.
The models focus on capturing information at higher levels of abstraction, enabling the
conceptual description of artefacts, services, code and platforms that will foster advanced
context-aware searching, matchmaking, validation and reuse.

! http://docs.oasis-open.org/tosca/TOSCA/v1.0/0s/TOSCA-v1.0-0s.html

% https://occi-wg.org/

® https://www.dmtf.org/standards/cloud

e
D3.1 - First version of ontologies and semantic repository - Public Page 11

© Copyright Beneficiaries of the SODALITE Project

{***} Project No 825480. ’ SOdalite

However, although an ontological model is preferable at a higher level, developers usually prefer a
detailed, concrete syntactic representation. A DSL can provide a more programmer-oriented
representation of descriptions, offering a lightweight language abstraction level in an appealing
manner to the software engineering community, hiding the complexity of the ontology language
and the conceptual schema. Through reasoning and intelligent mapping services, the DSL can be
then transformed to the rich underlying conceptual model. To this end, SODALITE’s Modelling
Layer is enriched with a textual editor (Application Developer IDE) that allows end users to
describe applications and resources using a DSL.

This deliverable aims to present the first version of the SODALITE Modelling Layer, which consists
of the Semantic Knowledge Base, the Semantic Reasoner and the SODALITE IDE to support users
in defining resource and application models.

1.1 Objectives

In the following sections we clearly describe the objectives and motivations of using the two key
technologies of this deliverable, namely ontologies and IDE. More specifically, we describe the
concepts and principles that underpin our work, the expected results, and we associate them with
the methods and tools developed in the project to meet the overall objectives. More details on the
innovation and the baseline tools are provided in sections 2.3 and 6, respectively, whereas D2.4
“Guidelines for Contributors to the SODALITE Framework” elaborates on the quality of the
developed artefacts and the guidelines for software and release management.

1.1.1 Ontologies

In SODALITE, one of the objectives is to use ontologies as the means to achieve knowledge
interoperability, defining layers of conceptual abstractions to represent models and domain
knowledge. More precisely, through the use of ontologies, SODALITE aims to:

o Follow a common, extensible and formal standardised model to describe
cloud-related concepts: Ontologies are used in order to define the interoperable
abstraction layer in SODALITE, allowing the formal representation of applications and
infrastructures, the semantic annotation and interlinking of functional and non-functional
requirements, software dependencies, service capabilities and QoS. To this end, SODALITE
capitalizes on and reuses existing general purpose ontologies, adapting them to the
application domain. As we describe in section 3, the OWL 2 ontology language is used
(W3C recommendation) for defining the SODALITE meta-model and the underlying
semantics.

e Manage and share information in the form of interconnected resources in RDF
knowledge graphs for capturing structural and semantic relationships: Ontologies are
semantic data models that define the types of things that exist in our domain and the
properties that can be used to describe them. They are essentially generalized data
models, defining only general types of things that share certain semantics and properties,
but they don’t include information about specific individuals in our domain. The
instantiation of ontologies with real-world data that aggregate knowledge of real-world
entities and their relationships forms the Knowledge Graphs. Using Knowledge Graph,
information is represented as a network of relationships, instead of as separate tables,
capturing both structural and semantics relationships in an unambiguous manner.
Section 4 elaborates on the generation of the SODALITE Knowledge Graphs and the
assertions of abstract relationships among cloud components.

e Reuse of automated sound and complete reasoning tools for knowledge enrichment
and consistency checking: Reasoning over knowledge graphs aims to identify errors and
infer new conclusions from existing data. New relations among entities can be derived
through knowledge reasoning and can feed back to enrich the knowledge graphs. By
capturing knowledge in the form of interoperable RDF knowledge graphs with formal

—
D3.1 - First version of ontologies and semantic repository - Public Page 12

© Copyright Beneficiaries of the SODALITE Project

Project No 825480. ’ SOdalite

semantics, we can reuse existing logic-based frameworks and rule languages to enrich
SODALITE with an interpretation and validation layer. For example, custom reasoning logic
can infer semantic validation errors and smell detection [3], following the semantics of
TOSCA and the interconnection defined in the Knowledge Graphs

Foster interlinking with external datasets: Apart from capturing relationships in a
knowledge base only among the entities that are known in the system, another important
aspect is the ability to semantically enrich the Knowledge Graphs with external knowledge
(Linked Open Data), fostering advanced searching and reasoning services. For example,
Yago [4] is a prominent RDF knowledge graph extracted from Wikipedia that can be
interlinked with local knowledge graphs in order to improve the semantic content. For
example, Entity Linking and Word Sense Disambiguation (e.g. BabelNet*, WordNet’) on the
textual descriptions of TOSCA components can be used for advanced searching and
classification services, improving user experience.

1.1.2 IDE

The main objective of adopting an IDE in SODALITE is the integration of the main application
development environment with the main application deployment and governance environment,
both toolsets coexisting and interacting within the same framework. In particular, the IDE aims to
support the following features across the project lifetime:

DSML development and management: The IDE offers not only a complete development
environment, but also a complete framework for DSML development and management,
and also for model driven engineering, supporting inter-DSML transformation and code
generation. A significant baseline of MDE and DSML technologies, including some de-facto
standards are supported by the IDE (see section 2.2.1)

Multiview specification of application deployment topology: The IDE supports the
abstract specification of application deployment topologies, adopting both textual and
visual notations, and permit to visualize different facets of the same deployment model as
viewpoint representations. Textual notation suits the fast modeling needs of skilled
application owners, while visual notation facilitates the understanding of complex
topologies and improves their communication among other team roles.

Inter-DSML reference and resolution: The IDE supports inter-DSML reference and
resolution that largely simplifies the design of the SODALITE meta-models, which can be
split into specialized meta-models, which reference each other. In this way, users adopting
specialized roles can use customized interlinked DSML meta-models for describing
infrastructures, resources, application deployment topologies, optimizations and models
for other concerns in a simpler manner.

Semantic-driven modeling assistance: The IDE leverages the semantic knowledge base
(KB) to assist the modelers with hints and suggestions during the process of describing
their application deployment models. KB inference and reasoning capabilities can be
exploited to conduct semantic validation of application deployment models in order to
spot errors and provide recommendations. Moreover, the KB can suggest to modelers
available infrastructure resources that satisfy the requirements expressed by the
application components, either at design (through the IDE), deployment or runtime.
Centralised management dashboard: Through the IDE, application owners have a
centralised unique dashboard to design their deployment models, deploy them and
manage their application lifecycle.

“"BabelNet." https://babelnet.org/.
*"WordNet | A Lexical Database for English." https://wordnet.princeton.edu/.

D3.1 - First version of ontologies and semantic repository - Public Page 13
© Copyright Beneficiaries of the SODALITE Project

https://babelnet.org/
https://wordnet.princeton.edu/

{***} Project No 825480. ? SOdalite

1.2 Overview of SODALITE architecture

For the purpose of introduction, we present a short synopsis of the SODALITE architecture that has
been described in the previous public deliverable D2.1 (Section 3). For full details, please check the
functional description, inputs, outputs, and dependencies of each component.
SODALITE aims to provide developers and infrastructure operators with tools that abstract their
application and infrastructure requirements to enable simpler and faster development,
deployment, operation, and execution of heterogeneous applications on heterogeneous,
software-defined, high-performance, cloud infrastructures. To this end, SODALITE aims to
produce:
e A pattern-based abstraction library that includes application, infrastructure, and
performance abstractions.
e A design and programming model for both full-stack applications and infrastructures
based on the abstraction library.
e A deployment framework that enables the static optimization of abstracted applications
onto specific infrastructure.

e Automated run-time optimization and management of applications.

The SODALITE platform is divided into three main layers, each covered by a separate work
package (WP). These layers are the Semantic Modelling layer (WP3), the Infrastructure as Code
layer (WP4), and the Runtime layer (WP5). Figure 1 below shows these layers together with their
relationships. This deliverable focuses on the Semantic Modelling layer, describing the specifics of
the layer and the progress that has been achieved in the first year of the project.

SODALITE General Architecture

o .,S)—E SODALITE Modeling Layer |
e Serngntic s i

-

- ReaspnerAPl _ -
P | -~ use

i SODALITE Runtime Layer

T - g
% ~ -~

! ~ -

P b - -

- ! \ ~
“use use use ~ . use
/) -

Torgue OpenStack Kubernetes

ImageRegistryAPI Deployment
PreparationAP|

Figure 1. SODALITE overall Architecture

1.2.1 Semantic Modelling

The components of the SODALITE Semantic Modelling Layer are depicted in the following figure
(Figure 2).

e S
D3.1 - First version of ontologies and semantic repository - Public Page 14

© Copyright Beneficiaries of the SODALITE Project

o ¢ .
{ } Project No 825480. ’ SOdallte

WP3 Architecture Overview

Semantic Knowledge Base\

RDF Triplestore Semantic Reasoner\

(GraphDB)
% 1 ESemaﬁtic Reasoning Engine
ndpoipt

i i
©

SPARG

SODALITE IDE\

e ——— " SemanticREasoneraP|
N

Semantic Modelling & Abstraction
Application Ontology

Infrastructure Ontology

Performance Optimization Ontclogy
Deployment & Lifecycle ontology

Domain Ontologies

|

i Semantic Population Engine

= | 5 ~
S use - "use use ~ o use T _use
o = | ~ -
= - | ~ B

o ot o 49 g

DeploymentPreparationAP| DefectPredictionCorrectionAPI MonitoringAPI laCVerificationAPI OrchestratorAPI

Figure 2. SODALITE Semantic Modelling components (WP3)

The main objective of the Semantic Modelling layer is to provide the framework for semantically
representing abstractions of a) cloud applications, capturing higher-level information that will
enable the conceptual description of artefacts, code, functional and non-functional requirements,
software dependencies etc.,, and b) cloud infrastructures, available services and service
capabilities in terms of functionalities, resources and business characteristics offered, and QoS.
These semantic abstractions are realised in the form of RDF Knowledge Graphs, aiming at the
formal representation and linking of application and infrastructure requirements that enables
semantic reasoning framework to be developed on top of the RDF graphs to support search,
discovery, validation and reuse.

To this end, three main modules have been defined:

1. The Semantic Knowledge Base (KB), which is SODALITE’s semantic repository (RDF triple
store) that hosts the models (domain ontologies), created in WP3.

2. The Semantic Reasoner, which is a logical middleware that facilitates the interaction with
the KB through the REST API (Semantic Reasoning Engine module - SRE), as well as the
population of the KB with information coming from the SODALITE IDE users (Semantic
Population Engine module - SPE).

3. The SODALITE IDE that provides the GUI and the DSL Editor to assist end users in
composing resource and application models.

In the next section, we provide more details about the technologies and standards we have used
to implement these components and their modules.

1.3 Structure of the Document

This deliverable is structured as follows:

e Section 2 presents background and related work on the domains of a) knowledge
representation and ontologies (section 2.1), describing the basic semantics that underpin
ontologies, W3C standards for creating and sharing ontologies, existing ontology-based
solutions in the domain of software engineering, as well as best practices in the ontology
development process, and b) Domain Specific Languages and existing IDE solutions
(Section 2.2). We also present the key innovations of the developed technologies (Section
2.3), compared to the state of the art presented in Section 2.

e Section 3 presents the Semantic Models of SODALITE, i.e. the abstract Ontology Design
Pattern (ODP) that is used to capture definitions of application and resources. The section
describes the modelling components, i.e. the different logical modelling layers / tiers

—-—
D3.1 - First version of ontologies and semantic repository - Public Page 15

© Copyright Beneficiaries of the SODALITE Project

{***} Project No 825480. ’ SOdalite

defined, and the SODALITE Knowledge Base (KB). It also elaborates on the development
status and the functionality supported in the first year of the project, as well as next steps.

e Section 4 describes the Semantic Reasoner of SODALITE that runs on top of the KB that
supports ontology population and checking. We describe the reasoning services that have
been implemented to support basic (OWL 2 native) reasoning functionality and the
mapping of TOSCA-related definitions to the conceptual model of SODALITE. The section
concludes with the development status and next steps.

e Section 5 presents the IDE that has been developed to assist Resource Experts (REs) and
Application Ops Experts (AOE).

e Section 6 describes the WP3 technology stack, i.e. the set of technologies, frameworks and
standards that are (re)used and extended to develop the components of the Semantic
Modelling layer.

e Section 7 concludes the deliverable, presenting next steps.

2 Related Work

2.1 Knowledge Representation and Ontologies

In literature, ontologies have been widely used as an effective way for modelling domain
information because they can represent and organize information, the context and relationships
more accurately, especially considering the necessity of dynamic changes. In addition, they offer
easy expandability by merging, expanding and combining parts of existing ontologies.

Ontologies are models used to capture knowledge about some domain of interest. Formally
speaking, ontologies are explicit formal specifications of shared conceptualizations [5],[6]. They
represent abstract views of the world, including the objects, concepts, and other entities that are
assumed to exist in some area of interest, their properties and the relationships that hold among
them. Their expressivity and level of formalisation depend on the knowledge representation
language used.

Within the Semantic Web, which is an extension of the current Web that aims to establish a
common framework for sharing and reusing data across heterogeneous sources, ontologies play a
key role. The Semantic Web vision is to make the semantics of web resources explicit by attaching
to them metadata that describe meaning in a formal, machine-understandable way. In this effort,
the Web Ontology Language (OWL) [7] has emerged as the official W3C recommendation for
creating and sharing ontologies on the Web that is based on Description Logics (DLs).

2.1.1 Description Logics

Description Logics (DLs) [8] are a family of knowledge representation formalisms characterised by
logically grounded semantics and well-defined reasoning services. The main building blocks are
concepts representing sets of objects (e.g. Nodes), roles representing relationships between
objects (e.g. dependencies), and individuals representing specific objects (e.g. virtual_machine).
Starting from atomic concepts, such as Property, arbitrary complex concepts can be described
through a rich set of constructors that define the conditions on concept membership. For
example, the concept I hasProperty. Property describes those objects that are related through
the hasProperty role with an object from the concept Property; intuitively, this corresponds to all
those individuals that have at least one property. A DL knowledge base K typically consists of a
TBox T (terminological knowledge) and an ABox A (assertional knowledge). The TBox contains
axioms that capture the possible ways in which objects of a domain can be associated. For
example, the TBox axiom Compute £ Root asserts that all objects that belong to the concept
Compute, are members of the concept Root too. The ABox contains axioms that describe the real
world entities through concept and role assertions. For example, Compute(vm) and
L —
D3.1 - First version of ontologies and semantic repository - Public Page 16
© Copyright Beneficiaries of the SODALITE Project

{***} Project No 825480. ’ SOdalite

hasProperty(vm, name) express that vm has a property, which is described by the ‘name’ instance.
Table 1 summarises the set of terminological and assertional axioms in DLs.

Table 1. Terminological and assertional axioms

Name Syntax | Semantics
Conceptinclusion | CE D ccp
Conceptequality | C=D c'=D

Role Equality R=S R'=S'

Role inclusion RES RC S
Concept assertion | C(a) a'e ¢

Role assertion R(a,b) |(a', b') € R

The semantics of a DL language is formally defined through an interpretation | that consists of a
nonempty set A' (the domain of interpretation) and an interpretation function ', which assigns to
every atomic concept A a set A' € A' and to every atomic role R a binary relation R'C A'x A'. The
interpretation of complex concepts follows inductively. Table 2 shows the syntax and semantics of
some of the most common DL constructors.

Table 2. Examples of concept and role constructors

Name Syntax Semantics
Top T A
Bottom L d
Intersection cCnbD c'n p'
Union cCub c'up'
Negation -C AN C

Universal Quantification VR.C |{a € A|Vb.(a,b) €ER - b eE Y
Existential Quantification JR.C |{a€ A|3b.(a,b) €ER"Ab € (Y}

Inverse R~ {(b, a) € A'x A'| (a,b) € R}
Transitive Closure R U 1 (R
Composition ROS R'oS'
2.1.2 RDF, OWL and OWL 2

The Resource Description Framework (RDF) standard was originally released as a W3C
Recommendation in 1999, and was updated in 2004 and in 2014. The RDF standard consists of two
major components: a data model and language for representing data, and syntax standards for
expressing, exporting, and parsing the data model and language. The RDF data model is based on
graphs, as opposed to the tuples that underlie traditional relational data models. In RDF, a data
graph is constructed by the union of a number of three part assertions, called triples. A triple
consists of a subject, a predicate, and an object, in which the subject is an entity about which
some data is expressed, the predicate can be seen as the typing of the related data, and the object
is the actual related data relevant to the subject [9]. The RDF Schema (RDFS) standard, released
along with the second generation of RDF in 2004 (and updated in 2014), defines classes and
properties that extend the base RDF vocabulary and provides support for more expressive
knowledge modelling semantics. Using the RDFS vocabulary it is possible to model complex data
structures, including basic ontologies.

® http://www.w3.0rg/RDF/
e

D3.1 - First version of ontologies and semantic repository - Public Page 17
© Copyright Beneficiaries of the SODALITE Project

{***} Project No 825480. ’ SOdalite

The Web Ontology Language7 (OWL) was developed simultaneously with RDFS to provide better
support for such higher-level expressiveness. OWL is a knowledge representation language widely
used within the Semantic Web community for creating ontologies. The design of OWL and
particularly the formalisation of the semantics and the choice of language constructors have been
strongly influenced by DLs. OWL comes in three dialects of increasing expressive power: OWL Lite,
OWL DL and OWL Full. OWF Full is the most expressive of the three: it neither imposes any
constraints on the use of OWL constructs, nor lifts the distinction between instances (individuals),
properties (roles) and classes (concepts). This high degree of expressiveness comes however at a
price, namely the loss of decidability that makes the language difficult to implement. As a result,
the focus has been placed on the two decidable dialects, and particularly on OWL DL, which is the
more expressive of the two.

Despite the rich primitives provided for expressing concepts, OWL DL has often proven insufficient
to address the needs of practical applications. This limitation amounts to the DLs style model
theory used to formalise its semantics, and particularly the tree model property [10] conditioning
DLs decidability. Therefore, OWL can model only domains where objects are connected in a
tree-like manner. This constraint is quite restrictive for many real-world applications, including the
ambient intelligence domain, which requires modelling general relational structures.

Responding to this limitation and to other drawbacks that have been identified concerning the use
of OWL in different application contexts throughout the years, the W3C working group produced
OWL 2 [11]. OWL 2 is a revised extension of OWL, commonly referred to as OWL 1. It extends OWL 1
with qualified cardinality restrictions. Another prominent OWL 2 feature is the extended relational
expressivity that is provided through the introduction of complex property inclusion axioms
(property chains). To maintain decidability, a regularity restriction is imposed on such axioms that
disallow the definition of properties in a cyclic way. Three profiles, namely OWL 2 EL, OWL 2 QL
and OWL 2 RL, trade portions of expressive power for efficiency of reasoning targeting different
application scenarios.

2.1.3 Semantic Web Technologies in Cloud

Semantic Web technologies and, particularly, ontologies and reasoning can promote intelligent
decision support mechanisms for various Cloud based services, providing effective interoperability
among the Cloud based systems and resources.

A great body of work has focused on the semantic representatlon of Cloud-based services,
resources and infrastructures. OpenCrowd's Cloud Taxonomy is an online, freely navigable
taxonomy that categorizes Cloud Services according to both their service model (laaS, PaaS or
SaaS) and application context. It enables users to discover and access Cloud services so that they
can further navigate to respective home pages. Moving beyond just a static model, the Cloud
Taxonomy is interactive, where users can contribute comments and recommend additional
products to include, aiming at encouraging the dialog between Cloud computing services vendors
and developers. The authors in [12] focus on semantic-based QoS management and monitoring
for cloud-based systems and propose a new framework that combines semantic technologies and
distributed data stream processing techniques. In [13], a framework is described that facilitates
the discovery of Cloud services (laaS). [14] emphasises on migrating cloud applications between
cloud platforms. A Service Oriented Cloud Computing Architecture (SOCCA) is proposed where
cloud computing resources are componentized, standardized and combined in order to build a
“cross-platform virtual computer”.

Various European research projects deal with issues related to using semantics for PaaS portability
and interoperability. The Cloud4SOA’ project focuses on resolving interoperability and portability
issues existing in current Cloud infrastructures and on introducing a user-centric approach for

" https://www.w3.0rg/TR/owl-features/

® http://cloudtaxonomy.opencrowd.com

® http://www.cloud4soa.com/
e ——
D3.1 - First version of ontologies and semantic repository - Public Page 18

© Copyright Beneficiaries of the SODALITE Project

https://www.w3.org/TR/owl-features/

{***} Project No 825480. ’ SOdalite

applications that are built upon and deployed using Cloud resources. The mOSAIC " project aimed
at creating, promoting and exploiting an open-source Cloud application programming interface
and a platform targeted for developing multi-Cloud oriented applications.

The PaaSport project [15] focuses on resolving cloud platform interoperability and cloud
application portability issues that exist in the Cloud PaaS market through a flexible and efficient
deployment and migration approach. To this end, PaaSport combines Cloud PaaS technologies
with lightweight semantics in order to specify and deliver a thin, non-intrusive Cloud broker (in the
form of a Cloud PaaS Marketplace), to implement the enabling tools and technologies, and to
deploy fully operational prototypes. PaaSport uses three semantic models [16], the offering
model, which represents the description of a cloud computing platform, the application model
which represents the cloud-based requirements of the application or software/resource
dependencies on the hosting cloud platform, and the SLA model which represents the agreement
between the application owner and the PaaS provider. For offering extensibility, the PaaSport
ontology uses DnS ontology as an upper-level ontology.

In [17], the authors proposed an ontology representation of the TOSCA standard to fill the gap
between the structural aspect and the domain of the applications. The aim is to semantically
annotate the TOSCA specification with meaningful information which can give a clearer vision of
the concepts involved in each of components, rules and relationships defining them. To this end,
the paper proposes the definition and subsequent creation of a TOSCA structural ontology that,
joint with the appropriate domain ontologies, can help give a fully semantic level to a modelled
application, thus giving new opportunities for improving its development, deployment, and
portability in the cloud. The focus is mainly given in capturing the structural relationships of the
standard rather than generating an abstract model to represent different aspects of the
applications.

Open-Multinet (OMN) [18] is a bundle of ontologies for providing a common standardized model
for federated cloud environments. The ontology consists of nine ontologies, an upper ontology
and eight descendant ontologies. Those ontologies can be used formally to describe a federation
of e-infrastructures , including the attributes and types of resources as well as services available
within the federation. Also, the lifecycle of a collection of resources and services is also modeled.
OMN framework converts tree-based resource specification models to semantic models allowing
easy discovery of cloud resources.

FClouds [19] is a framework for semantic interoperability in multi-cloud environments. It provides
cloud formal models for cloud structure and cloud api operations and then reason over them for
proving some properties. Having defined the semantics of each cloud, transformations functions
can ensure interoperability from one cloud API to another. Until now, transformations are
available for OCCI, TOSCA GCP and AWS.

An ontology model has been proposed in [20] for efficient discovery of high performance
computing resources/services distributed in cross-regional supercomputing centers. An upper
ontology is used, named HPCRO, modeled with the 5W1H principle. The domain ontology
facilitates the description of cross-regional hardware and software resources. For example,
computing capabilities such as network and accelerators are models for hardware resources, and
application libraries, operating systems and compilers for software resources. Furthermore, the
semantic model has been extended by Quick Service Query List representing a resource index list
containing semantic relationships. The WQIRL algorithm is used, combining QSQL and WordNet,
for fast resource discovery, which uses WordNet database for mapping a published resource to the
best ontology conceptin index list.

In [3] an (anti) pattern ontology and SWRL detection rules are used to form the Knowledge Base
and propose recommendations to the cloud API developer through SPARQL queries. Four

0 http://www.mosaic-cloud.eu/
e ——

D3.1 - First version of ontologies and semantic repository - Public Page 19
© Copyright Beneficiaries of the SODALITE Project

{***} Project No 825480. ’ SOdalite

ontologies are modeled, namely, two ontologies for representing the features of OCCl and REST
APl and a pattern and (anti) pattern ontology.

The methodology proposed in [21] defines an iterative approach for solving interoperability
problems. It uses semantic web annotations, semantic web services, ontology and the Al planning
methods. Briefly, the user selects a use case, performs interoperability analysis for choosing an
ontology of interoperability problems, and an Al planner. This paper does not propose an ontology
but a set of steps for creating a service for solving interoperability problems for use cases that the
user prefers to execute.

The work in [22] describes the development of two ontologies to capture functionalities, features
and interoperability problems among APIs of different providers of PaaS. The domain of the first
ontology is the representation of resources and operations in APIs of PaaS in order to map
resources of different APIs. This ontology is mostly based on the mOSAIC ontology; The concepts
are derived from many projects and some cloud computing standards (TOSCA, OCCI, CDMI). From
TOSCA, it models properties, capabilities, interfaces, operation and requirements. The second
ontology represents technical and semantic interoperability problems of commercial platforms as
a service offers.

2.1.4 Meta-modelling

Meta-modelling is the name commonly given to the practice of using a model to describe another
model as an instance [23]. Applications of meta-modelling in Ontology Engineering are manifold,
including the representation of provenance or versioning information, as well as the
documentation of modelling decisions. One feature of meta-modelling is that it must be possible
to assign properties to classes in the model. This way it is possible to assert the membership of
classes in meta-classes and interconnect them via meta-roles [24]. However, putting properties on
classes typically violates the separation of class and individual that allows a model to be described
in OWL DL.

Ontology languages differ with respect to their support for meta-modelling. While it is supported
by OWL Full, this high expressivity leads to undecidability [25]. One variant, which is also
supported by OWL 2 DL, is called punning [26]. Punning allows for using the same identifier, e.g.
for an individual and a class. The class and its corresponding individual are, however, treated as
entirely independent.

A number of motivations for meta-modelling exist. One such motivation is that a model often
needs to play more than one role in an application: A particular concept should be viewed as a
class in one role but as an instance in another role. For example, as we describe in Section 3.3,
TOSCA nodes need to be treated both as classes and as individuals: in the former case, by
capturing nodes as classes, we reuse the ontology semantics regarding subsumption hierarchies.
However, descriptive information regarding nodes, e.g. capabilities and interfaces can be captured
only by treating nodes as instances as well, in pattern instantiations. In addition, by espousing
meta-modelling, we allow the representation of contextualised views on complex situations,
affording reusable pieces of knowledge that cannot otherwise be expressed by the standard
ontology semantics. Moreover, the meta-model enables the reuse of the encapsulated semantics
across domains with similar scope but different implementation frameworks, by translating them
into the respective framework language.

2.1.5 Ontology Design Patterns

As ontology engineering became more broadly used, knowledge engineers needed ways to
optimize and accelerate parts of the ontology development process. One of the approaches was
employing Ontology Design Patterns (ODPs) - small, modular, and reusable solutions to recurrent
modelling problems - and templates based on these patterns or other representation regularities
in the ontology[27]. ODPs provide a consistent way for developing ontologies [28]. They can be
viewed as modularised foundational ontology fragments that serve as design snippets for good

—
D3.1 - First version of ontologies and semantic repository - Public Page 20

© Copyright Beneficiaries of the SODALITE Project

{***} Project No 825480. ’ SOdalite

modelling practices. They also can be viewed as a way of bottom-up pattern finding that is then
reused across the ontology and offered to others as a ‘best practices’ design solution for some
modelling aspect.

There are different types of ODPs. For example, the Logical Pattern deals with the absence of some
features of representation languages, such as to capture n-aries relations in OWL. The Content
Pattern (CP) [29] is one of the most frequently used ODP. It can be considered roughly analogous
to a software design pattern, with the added benefit that it includes a reference base
implementation (in the form of an OWL 2 building block) ready forimmediate customisation. CPs
are small ontologies that mediate between use cases (problem types) and design solutions. They
are used as modelling components: ideally, an ontology results from a composition of CPs, with
appropriate dependencies between them, plus the necessary design expansion based on specific
needs. SODALITE’s conceptual model reuses the DnS [30] ontology pattern of DOLCE+DnS Ultralite
(DUL) ontology11 [31], so as to capitalise on the high axiomatisation provided by DUL and achieve a
better degree of knowledge sharing, reuse and interoperability.

2.2IDE

2.2.1 User-centered DSL workbenches

Domain specific languages (DSL) are those intended for the purpose of representing knowledge in
a particular application domain; they are designed as an abstraction that focuses on the
conceptualization of such a domain. Concrete realities in the domain are conceptualized as model
instances that are compliant with the DSL meta-model. A framework that assists modelers in
creating these DSLs, maintain and transform them is called a DSL workbench'?. Workbenches offer
full fledged features that facilitate the authoring of DSL compliant models, including customizable
syntax highlighting, context-aware code assistance and completion, syntactic and semantic
validation, error marking and quick fixing, code generation, reference resolution, navigation in
outline views, folding model sections, model comparison, auto formatting, DSL testing and others
[32]. DSLs are specified through meta-models or grammars and can adopt different modeling
notation, including textual, graphical, tabular, etc. [32][33]. Several textual based workbenches,
including pure textual, and textual projectional, have been proposed and implemented [34][35],
including Xtext [36], Textual Editing Framework (TEF)*, Textual Concrete Syntax, TCS [37],
EMFText [38], MetaModeling System (MMS)™, Monticore [39], Rascal MPL [40], Spoofax [41], and
others. Pure text workbenches support free textual edition of DSL models, which are parsed and
validated before they are converted into an abstract syntax tree (AST) model. Projectional
workbenches provide an editable projection of the AST, which is edited by the modeler.

XText is one of the most popular industrial, mature, textual-based workbenches in the Eclipse
ecosystem. DSLs are specified in Xtext with concrete syntax grammars, which are translated into
Ecore models (the abstract syntax), while a modeling workflow engine file generates the Java
model source code tree and the DSL editor code, which is integrated within the Eclipse Ul. This
engine also generates Xtend classes for processing customized validation, code-assistance, etc,
and XPand templates for code generation.

TEF is an academic prototype of textual workbench based on Eclipse, that uses a Textual Syntax
Language (TSL) to define the DSL grammar, which is translated into Ecore using EMF codegen.
Several DSL editors, namely textual and tree-based are generated. Other similar Eclipse EMF based
textual workbenches are TCS and EMFText.

! http://ontologydesignpatterns.org/wiki/Ontology:DOLCE+DnS_Ultralite

2 "Language Workbenches: The Killer-App for Domain Specific ... 12 Jun. 2005,
https://martinfowler.com/articles/languageWorkbench.html. Accessed 29 Jun. 2020.

13 https://www2.informatik.hu-berlin.de/sam/meta-tools/tef/tool.html

" www.jetbrains.com/mps
—
D3.1 - First version of ontologies and semantic repository - Public Page 21

© Copyright Beneficiaries of the SODALITE Project

https://martinfowler.com/articles/languageWorkbench.html
https://www2.informatik.hu-berlin.de/sam/meta-tools/tef/tool.html
http://www.jetbrains.com/mps

{***} Project No 825480. ’ SOdalite

MMS is a projectional textual workbench. This approach may offer multiple projections for the
same AST. Despite the different approach, MMS offers a similar textual based authoring experience
to modelers, although combined with symbolic and tabular notations. For instance, different
entities in the DSL could be injected into the model by selecting them from a drop-down list of
options. Unlike Eclipse-based textual workbenches that require compilation and plugin
deployment to use the generated DSL editors, MMS generated editors are immediately available
after reloading the changes in the DSL AST specification.

Monticore is a Java based workbench available for Eclipse and IntelliJ that, like Xtext, offers a
context-free rich grammar for defining the DSL syntax, rules and terminal symbols. From the
grammar definition, Monticore generates (like Xtext and similar workbenches) the lesser, parser,
DSL editor and code generation (based on templates) components. Rascal, like above
workbenches, offers a complete framework for DSL metaprogramming manipulation,
transformation and generation of source code, with primitives located at the language itself.
Spoofax is another Eclipse based textual DSL workbench, similar to others mentioned above. It
includes a Spoofax meta-language and editor for declarative language definition, generators that
produce lessers, parsers, syntactic validators, compilers and interpreters, DSL editors for Eclipse
and IntelliJ, and programmatic API to extend the default DSL management behavior.

A key feature supported by some of these DSL textual workbenches (e.g. XText, Rascal, Spoofax) is
the possibility to compose more complex DSLs by aggregating distinct, separate, simpler DSLs.
Besides textual notation, other DSL workbenches that support graphical and tabular notations are
also popular, and some have evolved to high matured state in the Eclipse IDE, considered by some
as the de-facto standard ecosystem for open source DSL meta-modeling and Model Driven
Engineering [42]. Among those graphical DSL workbenches available in this ecosystem, we can
highlight Sirius [43] and Graphiti*®, both leveraging the Eclipse Graphical Modeling Framework
(GMF). Both workbenches leverage Eclipse GEF*® and GMF' APIs, adopting a
Model-View-Controller (MVC) strategy, to generate graphical notations and editors for DSL
authoring, releasing modelers from the intrinsic programmatic complexity of these Eclipse
frameworks.

Graphiti offers a simplified API, on top of GEF and GMF, that supports the definition of features,
instead of adopting the MVC approach, and provides CRUD operations for the managing of the
business models and the graphical elements associated with these features. However, it still
remains a programmatic API, although it largely simplifies the development of graphical DSL
editors compared to the low-level GEF and GMF APlIs.

Sirius offers a complete workbench for DSL graphical modeling that leverages GMF. Using Sirius,
modelers can design DSL meta-models and associated visual editors without any programming.
Sirius supports multiple viewpoint visual representations for the same DSL meta-model. These
representations can be enabled/disabled by modelers to offer different perspectives of the same
model. Representations can combine graphical elements in a canvas with tables, matrices
(crossed-tables) and tree-based hierarchies in separate views. Representations are designed by
using a visual tree-based editor. Sirius can be customized programmatically by providing Java
based extensions and Acceleo® queries.

[42] offers an empirical comparison of Graphiti and Sirius, concluding that Sirius is a preferable
choice because if offers a similar (or even better) features set than Graphiti but supporting
WYSIWYG edition of DSL visual editors, unlike the Graphiti’s programmatic definition of DSL visual
elements.

13 https://www.eclipse.org/graphiti/
18 https://www.eclipse.org/gef/
" https://www.eclipse.org/gmf-tooling/

8 http://www.eclipse.org/acceleo/
—
D3.1 - First version of ontologies and semantic repository - Public Page 22

© Copyright Beneficiaries of the SODALITE Project

https://www.eclipse.org/graphiti/

{***} Project No 825480. ’ SOdalite

A controversy among practitioners of DSL modeling is the debate about the benefits of adopting a
pure textual or graphical notation for DSL model authoring. The main benefit of adopting
graphical DSL notation is the effective communication of the model concepts between end-users
and domain practitioners [44]. The work in [45] summarizes the main benefits of both approaches
based on previous research works, classifying them in the following:
e Textual notation benefits:
o Analyzability of the textual model by external tools
o Consistency checking
o Platform and tool independent
o Shortening learning curve as textual modeling is similar to programming
e Graphical notation benefits:
o Representation of thoughts avoids language constructs misconceptions
o Spatial reasoning improves model comprehensibility
o Ease programming task through more attractive representations

It also reports the results of an empirical study where they compare textual and graphical
notations on the “efficiency, effectiveness and satisfaction of software developers while
performing analysability and modifiability tasks on two different applications”. It concludes that
“subjects in the experiment performed significantly better both for analysability coverage and
modifiability efficiency with a textual notation, while none of the measures was significantly in
favor of graphical notations. Despite this, subjects showed a slight preference towards the
graphical notation of the domain models used in the experiment”.

2.2.2 Authoring tools for cloud applications

Several modeling languages have been proposed in recent years for supporting the specification
of complex application topologies and their deployment into a variety of infrastructures, including
Cloud [46][47][48][49] and HPC [50][51]. The Topology and Orchestration Specification for Cloud
Applications, TOSCA [46] can be considered as the de-facto standard in the Cloud realm. TOSCA
encompasses in a single language, terminology to define the topologies of both infrastructures
and their resources, on the one hand, and an orchestration of application components on the
other. Moreover, although it standardizes a textual notation based on YAML®, it lacks visual
notation, leading to the appearance of different authoring tools that use their own
non-standardized visual notation. In order to address this limitation, some researchers have
designed their proposals to standardize the visual notation for TOSCA.

Vino4TOSCA [52] provides a visual notation that focuses on improving the human-centric
communication of cloud topologies and orchestrations. It partially covers the TOSCA specification
by focusing on the modeling of topologies of resources with node templates, relationship
templates and groups, leaving apart the specification of types. A Web tool prototype for
Vino4TOSCA visual modeling, named Valesca® was implemented in the project CloudCycle.

Vinery [53] is a Web TOSCA visual editor, also developed in CloudCycle, which can be openedina
Web browser, but it is also included, as a plugin, within the Eclipse and IntelliJ IDEs. Vinery
separates modeling concerns. On the one hand, it supports resource experts on the specification
of TOSCA types and their management, using the Element Manager. On the other hand, it supports
application owners on the definition of their application topologies, using the Topology Modeler.
This is done by instantiating types as application components (i.e. templates) and the
relationships among them. Aiming at facilitating the collaboration, all defined elements (types,
templates, relationships, topologies, etc) are shareable within a common repository, which can be

19 "YAML Ain't Markup Language (YAML™) Version 1.2 - YAML.org." 1 Oct. 2009,
https://vaml.org/spec/1.2/spec.html. Accessed 29 Jun. 2020.

2 http://www.cloudcycle.org/valesca
—
D3.1 - First version of ontologies and semantic repository - Public Page 23

© Copyright Beneficiaries of the SODALITE Project

https://yaml.org/spec/1.2/spec.html

{***} Project No 825480. ’ SOdalite

publicly exposed on the Web. Created topologies are exportable into CSAR files for deployment
into a TOSCA-compliant runtime environment. Experts can populate the repository with new types
defined with the Element Manager or imported from existing CSAR files.

The SIDE Workbench [54] developed in the project SWITCH is a Web graphical editor of Cloud
applications that enables i) app owners to design their application topologies as compositions of
components instantiated from a palette of component types that are retrieved from a common
repository, ii) experts to define the abstract infrastructure. Resulting specifications are exported
into TOSCA blueprints whose compliance is verified using semi-formal models and reasoners. SIDE
Workbench imposes a predefined schema for component specification that constrains its usage
within the SWITCH environment.

CloudCAMP DSML [48] supports the generation of laC deployment models from users’ abstract
business-oriented requirements. It offers a Web-based editor, leveraging WebGME*, for the
creation of application component topologies by utilizing TOSCA node templates and
relationships. These topologies are exported as Ansible scripts, using a MDE approach for code
generation that relies on above DSML and then deployed into the laC environment. CloudCAMP
incorporates in its DSML the available node and relationship types that are supported to
instantiate application components.

Alien4Cloud ** offers a Topology Editor, a Web-based editor, which enables application owners to
design the deployment topology of their applications as an orchestration of components
instantiated from types retrieved from a common TOSCA Catalogue. This catalogue contains types
(for nodes, relationships, artifacts, etc), imported from TOSCA descriptors, and topology, which
can be reused to create tailored application application topologies. Types and topologies can be
clustered into workspaces for restricting their access to authorized users. Types can be graphically
modeled using form-based editors. Application topologies can also be graphically modeled in the
Topology Editor using a canvas where to drag and drop types from the Catalogue palette.

Ubuntu Juju® offers a framework designing the deployment topology of applications into the
Cloud. It offers a graphical Web editor for building topology models and a repository, called
Charms Store, that contains buy-per-use reusable components called Charms for a variety of use
cases. Juju exports topology models into YAML documents called bundles, which can be usedin a
laC. However, Juju’s bundles are particular to Juju’s own orchestrator, and not based on the
portable and orchestration-neutral TOSCA language.

2.3 SODALITE Innovation

Following the literature review presented in the previous section, we describe in this section the
key innovation and research contributions of our work compared to the state of the art. The
technologies adopted and reused to implement the innovative features are presented in Section 6,
where we describe the baseline technologies of WP3.

2.3.1 Ontologies

Despite the growing interest in ontology-based solutions for cloud environments, comparatively
little focus has been given on:

e Provisioning of modular and reusable ontological components, following best practices in
ontology engineering, e.g. Ontology Design Patterns (ODPs) [55]: ODPs constitute small,
modular, and reusable solutions to recurrent modelling problems, providing a consistent
way for developing ontologies. From an ontology engineering perspective, this modular
knowledge can be maintained, comprehended and reasoned over more easily, leading to
self-contained, independent and reusable knowledge components, especially in domains

2 https://webgme.org/

2 ATOS, “Alien4Cloud 1.1 overview, "December 2017

3 https://jaas.ai/
—
D3.1 - First version of ontologies and semantic repository - Public Page 24

© Copyright Beneficiaries of the SODALITE Project

https://drive.google.com/file/d/0B-bJgbmOz4ipNlNfYkdsOUlocm8/view

{***} Project No 825480. ’ SOdalite

where we need to encapsulate different levels of abstractions, e.g. normative types,
resources and applications in TOSCA.

e Taking full benefit of the expressiveness and conceptual modelling capabilities of OWL 2,
e.g. punning [56][57]: In many domains, there is a need to encapsulate the different levels
of abstractions, having entities that play more than one role (e.g. a particular concept
should be viewed as a class in one role but as an instance in another role). OWL 2 supports
punning (meta-modelling) that allows for using the same identifier, e.g. for an individual
and a class. In TOSCA, for instance, nodes need to be treated both as classes and as
individuals: in the former case, by capturing nodes as classes, we can reuse the ontology
semantics regarding subsumption hierarchies. However, descriptive information regarding
nodes, e.g. capabilities and interfaces can be captured only by treating nodes as instances
as well.

In SODALITE we propose an ontology-based framework for capturing and interlinking
TOSCA-based descriptions of cloud applications and resources. Our approach performs a
conceptual lifting of TOSCA meta-model to the Descriptions and Situations pattern (DnS),
espousing meta-modelling to handle the specifics of the standard in a multi-tier manner. As we
describe in Section 3, our approach captures information in a conceptually uniform manner across
three tiers: the descriptive context of node types (Tiers 0 and 1) and node templates (Tier 2). In line
with the TOSCA meta-model that defines multi-level concept-object hierarchies (i.e. normative
types can be considered as schema types, but they are also instantiated to attach annotations,
therefore they are handled as instances), we start from concept hierarchies (Tier 0), where classes
obtain descriptive context through property assertions. The concept hierarchy is further extended
(Tier 1) and so does the meta-model space where custom resources are treated as instances as
well. Finally, Tier 2 contains only instances, closing this alternation of schema and instance
definitions.

By implementing the DnS pattern, we ensure the provision of modularised foundational ontology
fragments as a reference base implementation (in the form of an OWL 2 building blocks), ready to
be customised in TOSCA-based environments. At the same time, the use of meta-modelling allows
us to represent contextualised views on complex situations (nodes and templates), affording
reusable pieces of knowledge that cannot otherwise be expressed by the standard ontology
modelling, e.g. multi-level concept-object hierarchies.

The innovation and contribution of our research can be summarised in the following:

e We propose an ODP-based abstraction layer for TOSCA-compliant descriptions of
applications and resources, offering a common modelling strategy for one of the fastest
growing standards in OASIS.

e We enhance the proposed conceptual lifting with meta-modelling, fostering the reuse and
extension of TOSCA entities in different levels of abstraction (i.e. TOSCA normative types,
resource and application models).

e We demonstrate the use of emerging W3C standards for enrichment and validation of
TOSCA-compliant Knowledge Graphs.

2.3.2IDE

SODALITE IDE supports the specification of application deployment topologies, and the resources
the application requires on the target infrastructure, ranging from Cloud to HPC, as model
instances of the SODALITE DSL. This DSL has been designed as an abstraction that leverages
TOSCA to facilitate the export of AADM topologies as TOSCA blueprints into the SODALITE laC
environment (D4.1 laC Management). As TOSCA is a vast modeling language that shows significant
complexity for modelers, the SODALITE DSL has been conceived to reduce this complexity, by
adopting design and implementation decisions explained in the following.

—
D3.1 - First version of ontologies and semantic repository - Public Page 25

© Copyright Beneficiaries of the SODALITE Project

{***} Project No 825480. ’ SOdalite

The DSL has been designed as a group of interlinkable meta-models that cover different modeling
concerns, namely:

e the modeling of application topologies

e the modeling of application optimizations, and

e the modeling of infrastructure resources,
for applications and resources of both Cloud and HPC domains.
Application Ops Experts (AOEs) tackle the modeling of application topologies as model instances
of the Abstract Application Deployment Meta-model (AADM). This meta-model defines classes for
describing application components, their requirements and relationships, which can be mapped
to TOSCA nodes, requirements and relationship templates, respectively.
Optimization Experts (OEs) tackle the design of deployment optimizations for components in
AADMSs, as instances of the Optimization Meta-model (OM). This meta-model defines classes to
apply optimization actions to selected application components, including compilation, Al training
and HPC parallelisation optimizations.
Resource Experts (REs) tackle the modeling of infrastructure resources as model instances of the
Resource Meta-model (RM). This meta-model defines classes for describing resource types, their
capabilities, relationships and interfaces, which can be mapped to the TOSCA nodes, capabilities,
relationships and interface types, respectively.
The AADM imports both the OM and the RM so that the application components in an AADM model
can refer to optimization models and they can be instantiated as instances of the types defined
within RM models. This split of meta-models for the different modeling domains permits these
three roles to focus only on the modeling of a particular concern.
Separation of modeling concerns is also a strategy adopted in other related works, specially in
Vinery, but also in SIDE Workbench and in Alien4Cloud. SODALITE goes beyond these approaches,
specifically designed for Cloud deployment, by extending the modeling support to the HPC
domain, and by incorporating specific modeling assistance for the optimization of application
deployments.
Authoring DSL models is being supported by the SODALITE IDE, based on Eclipse, and assisted by
the semantic repository, namely the SODALITE semantic Knowledge Base (KB). The IDE offers
textual and graphical editors for creating AADM models, and textual editors for OM and RM models
24
Textual editors for AADM, OM and RMs models are intended for skilled modelers that require fast
modeling.
Graphical views, tabular and form-based editors for AADM are intended for modelers that prefer a
visual modeling in a canvas by dragging and dropping entities from a palette, but also for textual
modelers that value visual representations of the AADM models as an improved communication
and knowledge exchange channel. They are synchronized with the textual edition so that changes
in the textual model are immediately reflected in the graphical views and the form-based property
views. Viceversa, changes in the graphical views and/or the form-based editors are reflected in the
textual editor. Multiple graphical views of the same DSL model are possible. SODALITE will offer an
AADM visual representation that resembles the TOSCA visual notation®, and another specific one
for workflow oriented notation. Graphical modeling of application topologies and infrastructure
resources is also supported by other related works, notably by Winery, SIDE Workbench,
CloudCAMP DSML, Alien4Cloud, and Jiji. However, they offer pure graphical editors, combining
graph, tabular and form-based modeling, but not textual, as Sodalite does, which could offer
faster modeling to skilled developers. Moreover, SODALITE combines synchronised textual and

*Visual editors are planned pending on the availability of resources for their implementation
“https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.2/0s/TOSCA-Simple-Profile-YA

ML-v1.2-os.pdf
—
D3.1 - First version of ontologies and semantic repository - Public Page 26

© Copyright Beneficiaries of the SODALITE Project

. 94 .
{ } Project No 825480. ’ SOdallte

graphical modeling of AADMs, and it offers different viewpoint notations for the same AADM
model. SODALITE adopts a baseline technology (i.e. Sirius) that facilitates the creation of multiple
viewpoint representations of the same model in order to express different facets.

Some related works also support the import of TOSCA YAML blueprints for populating
infrastructure resources into their repositories. SODALITE goes beyond providing a simplified DSL
for RM authoring that releases the REs from the complexity of the TOSCA YAML specification.
SODALITE also innovates in the modeling aids offered to the AOEs and REs. Editors provide
context-aware intelligent content-assistance to guide modelers through the grammar of the
SODALITE meta-models, suggesting possible elements to incorporate to the model at the point of
typing. The IDE only requires from AOEs and RMs the provision of the mandatory information they
own about the application topology and/or resources, and relies on the shared knowledge
contained within the KB to complete the model both at the design and deployment time. The IDE
also exploits the KB to assist modelers during the authoring of AADM or RM models, by suggesting
them, using context-aware intelligent content-assistance, suitable choices to fulfil certain model
entities, including the overriding of properties inherited from supertypes, the resolution of
mandatory requirements, the proper selection of component types, etc. AADM and RM models are
stored into the SODALITE KB to be reused and shared with other modelers.

The IDE textual editors conduct syntactic validation (i.e. to ensure DSL compliance) during the
modeling phase. Semantic validation is also conducted at the time the models are stored into the
KB or deployed into the SODALITE laC environment, by applying deep inference reasoning on the
shared knowledge that are referenced in the models. Although conformal and semantic validation
is supported in some related works, notably in the SIDE Workbench, to our knowledge, they are
not exploiting the reasoning and inference capabilities of a semantic KB. Moreover, SODALITE
innovates by extending the validation of the optimization of AADM models and the detection of
possible technical defects within them, which is conducted by the SODALITE optimization
sub-system. All detected errors and warnings are presented to the user in the IDE, close to the
affected component. If quick fixes are suggested by the validation process as well, they are
presented to the user, and applied upon selection.

—
D3.1 - First version of ontologies and semantic repository - Public Page 27

© Copyright Beneficiaries of the SODALITE Project

o ¢ .
{ } Project No 825480. ’ SOdallte

3 SODALITE Conceptual Models

This section describes in detail the conceptual model and modelling decisions that have been
taken to implement the ontology-based semantic abstraction layer of SODALITE, which involves
the capturing of resources and instantiations of custom and reusable patterns (AADMs). The
former are specified by the Resource Experts, while the latter by the Application Ops Experts (see
D2.1, Section 2.2. “Actors and use cases”). To this end, the current version of the semantic models
of SODALITE includes:
e The SODALITE meta-model, i.e. the formal ontology pattern to use in order to capture
information on different levels of abstraction.
e The domain ontology that provides the vocabulary to capture information in the two
modelling layers (tiers) considered in SODALITE, namely Tierl (resources) and Tier2
(pattern instantiations).

SODALITE capitalises on and combines existing Semantic Web standards and best practises for
ontology development. To this end, the ontologies have been implemented in OWL 2 [7], the
officially recommended language by W3C for knowledge representation in the Semantic Web. In
addition, a key design choice underpinning the engineering of the SODALITE conceptual models
has been the adherence to an Ontology Design Pattern (ODP) approach. The aim is to package
commonly recurring ontology features as small and reusable building blocks, to be reused by
ontology engineers in development. These building blocks emphasise the reusability of the
developed domain model, rather than the technical specifics and they can assist in ontology
engineering in two ways [1]:

1. By reducing the amount of modelling work needed for implementing common features.

2. By promoting the encoding and reuse of best practice solutions to common modelling

problems.

3.1 Tiers

SODALITE follows a modular, 3-tier approach to capture knowledge (Figure 6):

e Tier 0: This tier provides the basic TOSCA meta-model, i.e. the representation of TOSCA
meta-model in the conceptual model of SODALITE ODP. These are generic types of
resources, capabilities, properties, etc. This part is the static schema of the ontology/KB.

e Tier 1: Involves the instances that are created by Resource Experts, e.g. custom resource
types, their capabilities, associations, etc.

e Tier 2: These are the instances that are combined into “patterns” or “templates”, which
are reusable combinations of Tier 1 types. These patterns will be created by Application
Ops Experts using the DSL in the SODALITE IDE. These instances also define the Abstract
Application Deployment Model - AADM.

—-—
D3.1 - First version of ontologies and semantic repository - Public Page 28

© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

\? Sodalite

Tier 0 TOSCA basic Metamodel

(these are ontology
classes)

v Basic Type
Capability Type
Data Type
() Node Type
Capability
Capability Specification
Constraint
Constraint Type
Property
Property Specification

1/

Template
Node Template
Topology Template

A

is-a

Tier 1 Metamodel
as ontology instances populated
by the Resource Expert

Database
Node
is-a
f Web
532 App Node

Tier 2 Metamodel
as instances populated by the AppOps Expert
in order to define custom, reusable templates

is-a Node Template
X Server
Tempate

ihas—node

is-a | Soft.Component
Node
s-a

Compute Node <

ﬁ

is-a

X Server Node

has»capabilityi E_[\g@-capability

|

0s capability 1 ‘

A4
host capability 1

has-property |

is-a
requires-property-type
OS Capability ? propertyyp
is-a \
: optional-property-type
HOStCﬁDabiliwL:::::::::?::::::p:::p:::s:":yp
requires-property+
type
is.a TR
. Architecture
Is-a Property o
Num of CPUs | ! !
is-a Propert I —

is-a architecture
property 1

Disk Size
Propert; <

num cpus value
P ERERE
property 1

Definition of Abstract App Deployment Model

X Server | is-a
template 1 |
is-a

X Server <
template 2

Figure 3. Overview of the SODALITE modelling layers

From an ontology engineering perspective, this modular knowledge representation framework
can be maintained, comprehended and reasoned over more easily, leading to self-contained,
independent and reusable knowledge components.
The SODALITE conceptual model consists of two core ontologies that are used to capture
knowledge in the three tiers:

1.

SODALITE Ontology Design Pattern (ODP): It is the core meta-model (reusing the

Descriptions and Situations pattern) that describes the way knowledge should be
structured in modular, self-contained and reusable modules. This ODP is used to capture
knowledge in all tiers (Tiers 0, 1, 2).

TOSCA ontology: It consists of several instantiations of the SODALITE ODP in order to

capture knowledge in Tier 0 (static knowledge about TOSCA normatives).

Tier 1 and Tier 2 are the two dynamic tiers in the sense that their content is derived by mapping
input provided by the users (Application Ops and Resource Experts) through the IDE. In all tiers,
the SODALITE ODP is used, fostering a unified knowledge representation paradigm that enables
the harnessing of potentials of a complete and unified metadata model with dedicated features,
such as interoperability, cross-database search and smooth knowledge management.

D3.1 - First version of ontologies and semantic repository - Public
© Copyright Beneficiaries of the SODALITE Project

Page 29

{***} Project No 825480. ? SOdalite

3.1.1 Descriptions and Situations Pattern (DnS)

To promote a well-defined description and achieve a better degree of knowledge sharing and
reuse, the SODALITE ODP is defined as a specialised instantiation of the Descriptions and
Situations (DnS) ontology pattern that is part of DOLCE+DnS Ultralite (DUL).
The Descriptive Ontology for Linguistic and Cognitive Engineering (DOLCE) focuses on cognitive
issues and it aims at capturing the ontological categories underlying natural language and human
common sense. DnS (Descriptions and Situations) enhances DOLCE’s descriptive characteristics
even further allowing the context-sensitive “redescriptions” of the types and relations postulated
by other given ontologies or ground vocabularies. The current OWL encoding of DnS assumes
DOLCE as a ground top-level vocabulary. The DOLCE+DnS Ultralite (abbreviated as DUL) is a light
version, which provides simplifications and improvements of some parts of DOLCE and DnS. Its
purpose is to provide a set of upper level concepts that can be the basis for easier interoperability
among many middle and lower level ontologies.
DnS tries to capture the notion of “Situation” out of a state of affairs, with their interpretation
being provided by a “Description”:
e Situation: a set of domain entities that are involved in a specific pattern instantiation.
e Description: serves as the descriptive context of a situation, defining the concepts that
classify the domain entities of a specific pattern instantiation, creating views on situations.
e Concepts and parameters: Classify domain entities describing the way they should be
interpreted in a particular situation. Each concept may refer to one or more parameters,
allowing the enrichment of concepts with additional descriptive context.

The basic implementation of the DnS pattern in DUL allows the relation of situations
(dul:Situation) and descriptions (dul:Description) with domain concepts (dul:Concept) and
participants. More specifically, a situation describes the entities of a context, e.g. the components
that are involved, and satisfies (dul:satisfies) a description. The description in turn defines
(dul:defines) concepts that classify (dul:classifies) the entities of the situation, describing the way
they should be interpreted. Each concept may have one or more parameters (dul:hasParameter).
Figure 4 presents the DnS core pattern.

dul:Situation

dul:Description

dul:isSettingFor dul:defines

dul:classifies dul:Concept

rdfs:subClassOf dul:hasParameter

dul:Parameter

Figure 4. Core DnS pattern in DUL

3.2 SODALITE Meta-Model
The SODALITE meta-model extends the core DnS pattern by defining proper specialisations of the
core DUL concepts to model TOSCA definitions (Figure 5). More specifically:
e SodaliteSituation: Represents a situation, e.g. a node type (soda:SodaliteSituation C
dul:Situation).

e
D3.1 - First version of ontologies and semantic repository - Public Page 30

© Copyright Beneficiaries of the SODALITE Project

o ¢ .
{ } Project No 825480. ’ SOdallte

e SodaliteDescription: Each situation, e.g. node type, has a descriptive context
(soda:hasContext) that describes the properties, attributes, interfaces, requirements,
capabilities, etc. of the situation soda:SodaliteDescription T dul:Description.

e SodaliteConcept and SodaliteParameters: Each property, attribute, interface,
requirement, capability, etc. has a specification (soda:specification T dul:defines) which
involves one or more SodaliteConcepts with zero, one or more SodaliteParameters
(soda:SodaliteConcept T dul:Concept, soda:SodaliteParameter T dul:Parameter). Each
SodaliteConcept classifies one SodaliteEntity (soda:Entity T dul:Entity).

soda:SodaliteSituation Fsoda:hasConteXt—% soda:SodaliteDescription

| |

dul:isSettingFor soda:specification
‘ soda:SodaliteEntity Fidul:classifies% soda:SodaliteConcept ’
dul:hasParameter dul:hasParameter

soda:SodaliteParameter|

Figure 5. SODALITE meta-model (extension of DUL)

Intuitively, each TOSCA type (e.g. node, capability, etc.) is represented as a SodaliteSituation. Each
such situation is associated with a context (SodaliteDescription) that defines additional
descriptive information relevant to the type. For example, this description may contain definitions
about relevant properties, attributes, requirements and capabilities that a node type may have. As
already highlighted, the benefit of using a formal ODP to model knowledge in SODALITE is that the
same conceptual model can be used in all tiers, resulting in a unified model (knowledge graphs)
with increased modularity, interoperability and easier to define inference logic. In the following,
we describe key modelling guidelines for capturing knowledge in different tiers, along with
examples.

3.3 TOSCA Domain Ontology

SODALITE ODP is a generic ontology pattern that defines the modelling guidelines to be followed
in order to capture domain knowledge. As such, a domain ontology is needed to provide the
necessary vocabulary to capture context relevant to the application domain. Figure 6 depicts the
domain concepts that have been defined as subclasses of soda:SodaliteConcept to be used in
instantiations of the SODALITE ODP. At the same time, the TOSCA domain ontology contains the
definitions of Tier 0 (TOSCA basic Meta-model). The current version of the ontology provides the
modelling of TOSCA capabilities, datatypes, interfaces, nodes and relationships. Figure 7 presents
an excerpt of this hierarchy.

—-—
D3.1 - First version of ontologies and semantic repository - Public Page 31

© Copyright Beneficiaries of the SODALITE Project

{* : Project No 825480. a SOdalite

rdfs subClass0Of

rdfs:subClassOf rdfs:subClass O rdfs:subClassOf

rdfs.subClassOf rdfs:subClass_ rdfs:subClassOf

rdfs:subClassOf

rdfs subClassof

Figure 6. Hierarchy for TOSCA concepts

rafs:subClassof,

rdfs:subClassOf rdfs:subClassOf

rdfs:subClassOf

rdfs:subClassOf

rdfs:subClassOf

rdfs:subClassOf

rdfs:subClassof,

rafs:subClassof

rdfs:subClassOf

rdfs:subClassOf

rdfs:subClassOf rdfs:subClassOf

rdfs:subClassOf

rdfs:subClassOf
rdfs:subClassOf

Figure 7. Hierarchy of Root (nodes, relationships, capabilities, etc.)

The domain ontology also defines a number of properties pertinent to modelling of TOSCA-related
context. The following are key properties defined as subproperties of soda:specification, meaning
that can be used in soda:SodaliteDescription instantiations:
e tosca:attributes.
tosca:capabilities.
tosca:interfaces.
tosca:operations.
tosca:properties.
tosca:requirements.

S
D3.1 - First version of ontologies and semantic repository - Public Page 32

© Copyright Beneficiaries of the SODALITE Project

{***} Project No 825480. ? SOdalite

In addition, the TOSCA domain ontology provides the vocabulary to capture the Abstract
Application Deployment Model (AADM), which acts as a container for Tier 1 and Tier 2 definitions.
For example, information relevant to versioning, user id submitting the model, submission time,
etc. is part of this model. Figure 8 depicts the basic RDF graph schema that captures
topology-related information.

omcis)

rdfs:subPropertyOf rdfs:suUbClassof

rdfs:domain

rdfs:subPrope

rdfs:range rdfs:domain

rdfs subClassof

rdfssubClassOf

owl:someValuesFrom

rdfs:subPropertyOf

owl.onProperty

Figure 8. Overview of the AADM model to capture topologies

hitp:dwww w3 org/20064
ime#inXsSDDateTime

Example A: Node types (Tier 0 - Tier 1)

We present the capabilities of the SODALITE ODP through an example that demonstrates the
instantiation of the pattern to capture a complete definition of a node type. Figure 9 depicts an
example of a node type, along with the relations of the various TOSCA elements to ODP concepts.
The example actually refers to Tier 1, but the same rationale is followed in Tier 0 for capturing
definitions of the TOSCA meta-model (e.g. normative TOSCA node types).

- sodalite.nodes.DockerHost:
derived_from: tosca.nodes.SoftwareComponent
properties:

— registry ip:
type: string
description: IP of the SODALITE docker registry
required: true
default: localhost
N

attributes:
registry_ip:
type: string IEIEILEal
description: IP of the SODALITE docker registry
interfaces:
Standard:
type: tosca.interfaces.node.lifecycle.Standard
—— inputs:
registry_ip: { default: { get_property: [SELF, registry ip] } }
public_ipv4_address: { default: { get_attribute: [SELF, host, public_address] } }

implementation:

primary: playbooks/docker/create_docker_host.yml
delete:
inputs:
registry_ip: { default: { get_property: [SELF, registry_ip] } }
implementation:
primary: playbooks/docker/destroy_docker_host.yml
capabilities:

—
host:
type: tosca.capabilities.Compute
valid_source_types: [sodalite.nodes.DockerizedComponent]

Figure 9. Example TOSCA node type and high-level assignment of SODALITE ODP concepts

D3.1 - First version of ontologies and semantic repository - Public Page 33
© Copyright Beneficiaries of the SODALITE Project

{«**} Project No 825480. ? SOdalite

Attributes: Each attribute is captured as an instance of the tosca:Attribute concept that classifies
the property we want to model (in this example, ex:registry_ip). For representing the description
text, we use the dcterms:description property of Dublin Core . Any other descriptive information
is captured through definitions of one or more soda:SodaliteParameters that are associated with
the instance of tosca:Attribute (Figure 10).

. r s
dul:classifies

tosca:Atiribute = dul:hasParameter - dul:classifies
) toscahasOhjectvalue
. e rdftype
dcterms:description +
v rdf:Property
()

IP of the
SODALITE

docker
registry

Figure 10. Example attribute definition

Properties: Properties are defined as instances of the tosca:Property concept. Similar to attribute
definitions, each property instance classifies the property we want to model. Additional context is
captured using dul:hasParameter property assertions, such as the fact that the property is
required and that it has a default value (Figure 11).

dul:classifies
excregistry_ip toscathasDataValue

dul:classifie

=

dul’hasParamete

dulhasParameter

IP ofthe
SODALITE
dcterms:description docker

regj,str]_r

IE

Literal dul:classifies

dulhasParameter

dulclassifies

tosca:hasDataValue

Figure 11. Example property definition

Interfaces: Interface specifications involve more complex structures with nested definitions. To
this end, the generated RDF graph that corresponds to the instantiation of the SODALITE ODP
becomes larger. However, the main conceptual model remains the same, i.e. definitions of
concepts that classify properties and are associated with one or more parameters in order to
capture additional descriptive context. Interfaces are defined as instances of the tosca:Interface

concept. For readability, Figure 12 presents only a part of the generated RDF graph for the
interface.

% https://www.dublincore.org/specifications/dublin-core/dcmi-terms/

D3.1 - First version of ontologies and semantic repository - Public Page 34
© Copyright Beneficiaries of the SODALITE Project

https://www.dublincore.org/specifications/dublin-core/dcmi-terms/

{* : Project No 825480. é SOdalite

dul:hasParameter

SHES qulhasParameter

dul:classifies

dul:hasParameter

dul-hasParameter dul classifies

dul:clagsifies dul:hasParameter

dul:hasParameter

dul:hasParameter

duliclassifies

toscahasObjectYalue

Figure 12. Example interface definition

Capabilities: Finally, the capability is defined as an instance of the tosca:Capability concept. The
SODALITE ODP is still valid here (Figure 13).

toscahasObjec
dul:classifies

toscahasObjectValue

dul:hasParameter toscahasObjec

dulhasParameter

dul:classifies
dul:classifies

Figure 13. Example of capability definition

Descriptions and situations: So far, we elaborated on the instantiation of the SODALITE ODP to
capture the context relevant to a node. As described in the previous sections, the full SODALITE
ODP revolves around the notions of situations and description, following the conceptual model of
the DnS pattern (in DUL). Therefore, in order to result in a conceptual valid instantiation of the DnS
pattern, we also need to associate the aforementioned context (properties, attribute, interface,
capability) with a description, which will then be associated with a situation. Figure 14 depicts the
resulting RDF graph with the pertinent situation and description instances. It is worth noting the

S
D3.1 - First version of ontologies and semantic repository - Public Page 35

© Copyright Beneficiaries of the SODALITE Project

{«**} Project No 825480. ? SOdalite

punning capabilities of OWL 2: sodalite.nodes.DockerHost is both a class (rdfs:subClassOf
tosca.nodes.SoftwareComponent) and an instance, since it participates in the SODALITE ODP and
has a context (soda:hasContext property assertion).

toscaatiributes
[soda:SodaIiteDescnpﬁ on]

tosca.capabilities

toscaAttribute ex.SodaliteDescripti on_‘1J

tosca:properties 4
sodathasContext

The TOSCA
SoftwareComponent
node represents a
generic software

component that can
be managed and

un.

o

Figure 14. Example of situation and description instances

Example B: Node templates (Tier 2)

We present here an example of using the SODALITE ODP to capture the definition of a node
template (Tier 2). The example considered in this section is depicted in Figure 15.

vm:

type: sodalite.nodes.VM.OpenStack

properties:
name: snow-vm
image: centos?
flavor: mil.small
network: 87b57656-381c-4921-82¢@-bd65a8ac7cfd
security groups: default,snow
key name: draganrx

docker-host:
type: sodalite.nodes.DockerHost
properties:
registry _ip: 154.48.185.207
requirements:
- host: vm

Figure 15. Example node templates

ODP is used in the same way as we did for node types: each node template is captured as a
situation that has a description. Each description describes the properties, attributes, interfaces,
requirements, capabilities, etc. of the template. They are captured as concepts that classify certain
properties with zero, one or more parameters. Figure 16 depicts the definition of vm and Figure 17
the definition of the docker-host node templates.

D3.1 - First version of ontologies and semantic repository - Public Page 36
© Copyright Beneficiaries of the SODALITE Project

{* : Project No 825480. a SOdalite

B87b57656-
381c-4921-

toscathasDataValue
dul:classifies

dul:classifies

sodahasContext

| tosca:properties tosca:properties

toscachasDataValue
dul:classifies
tosca:properties - . toscahasDatavalu

tosca:hasDataValue toscaproperties

dul:classifies oscaproperties

., toscachasDataValue

dul:classifies
toscathasDataValue |

Figure 16. vm node template as instance of the sodalite.nodes.VM.OpenStack resource

dul:classifies

. toscahasDataValue

toscathasObjectvalue toscaproperties

toscarequirements
dul:classifies sodahasContext

Figure 17. docker-host node template as instance of the sodalite.nodes.DockerHost resource

Topology

The way the RDF graphs of Tier 1 and Tier 2 are connected is described through container
instances of the topology conceptual model. Figure 18 depicts an example AADM instance that
contains references to the relevant node types and node template instances, along with additional
descriptive information, such as the version, date/time of the submission, etc.

S
D3.1 - First version of ontologies and semantic repository - Public Page 37

© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

? Sodalite

(exsodalite nodes DockerHost]

[_e)r.sodaiite.nodes.DockenzedCompm ent]

(exsodalite.nodes. VM OpenStack]

(soda:AbstractapplicationDeployment)

ex2:skyline-
ali g’:r_nent

&

sodaincludesTemplate
- sodaincludesTemplate
-AbstractspplicationDe
Literal extractor ex; ;
- H ployment_1 soda:createdBy
/) sodaincludesTemplate
201911 dacreatedat sodaiincludesTemplate
19T20:52:04 814+02:00 h J
Figure 18. Example topology instance
3.4 Next Steps

In the previous sections, we presented the first version of the SODALITE ODP, which has mainly
been used to model node types and node templates relevant to the use case requirements.
Several extensions are foreseen for future version of the ontologies, such as:

Definition of Policies: capturing of performance and non-functional parameters of
resources (e.g. QoS). As described in the innovation (Section 2.3.1), SODALITE provides
modular and reusable ontological components, following best practices in ontology
engineering in terms of a pattern-based design approach. Therefore, the SODALITE
meta-model can be easily extended and adapted to support additional modelling
requirements, like policies.

Versioning: ability to store different versions of the same AADM model (e.g. by using named
graphs). As described in the innovation (Section 2.3.1), the SODALITE meta-model is
defined on top of the OWL 2 meta-modelling capabilities. By treating resources as
first-class citizens, SOADALITE allows us to define different interpretations for the same
resources, e.g. for the same nodes or properties. This feature can be used in order to keep
different versions of the same resources, provisioning inherent support for versioning.
Adding RDF structures to capture the content of Ansible files relevant to deployment and
maintenance interfaces (create, delete, etc.). .
Use of additional W3C standards for modelling, such as the Web Annotation Data Model .

7 https://www.w3.0rg/TR/annotation-model/
N AN

D3.1 - First version of ontologies and semantic repository - Public

Page 38

© Copyright Beneficiaries of the SODALITE Project

. 94 .
{ } Project No 825480. ’ SOdallte

4 Ontology Population and Checking

SODALITE provides the algorithms for generating graphs following the conceptual model
described in the previous section. This involves the mapping of DSL (TOSCA models) generated by
users (in the IDE) to the SODALITE ontologies and the reasoning infrastructure to build the custom
inferencing developed in T4.4 - Analytics and Semantic Decision Support.

As far as the population of the KB is concerned, we have defined an RDF-based exchange model
between the IDE and the population engine as a lightweight version of the SODALITE meta-model.
The purpose of the exchange model is, on the one hand, to hide the complexity of the conceptual
model of the KB, and on the other hand, to serve as a formal, interoperable, machine readable
model to exchange descriptions. WP3 is responsible for mapping this exchange model to the
SODALITE ontologies, implementing the semantic mapping and structural consistency checking
mechanism. In addition, WP3 is responsible for checking the consistency of the KB in terms of the
native OWL 2 RL semantics. This is achieved by defining custom consistency checking logic at the
level of OWL 2 semantics. It should be noted here that the semantic validation is part of advanced
reasoning and decision making (WP4/T4.4). In WP3, consistency checking refers to basic restriction
and constraint checking, following the semantics of the meta-model.

4.1 Exchange Model

SODALITE’s KB contains both static and dynamic RDF knowledge graphs. The static knowledge
graph captures information about the TOSCA specification (TOSCA meta-model / Tier 0). The other
two tiers contain knowledge that is dynamically generated, based on the interaction with the IDE
users and the results of SODALITE analysis components.

As described in Section 5, users define their models using the SODALITE DSL. The SPE module is
responsible for mapping the DSL models to the rich conceptual model of SODALITE. In order to
foster interoperability, the mapping services of SPE do not operate directly on top of the DSL, but
on top of an RDF-based exchange model defined between the frontend and the backend. In the
rest of this section, we briefly describe the specifics of this exchange model.

Intermediate Exchange Model
This intermediate exchange model is a lightweight version of the SODALITE ODP. The main
purpose is to hide the conceptual complexity of the SODALITE ODP and to ease the interaction
between the IDE and the Semantic Reasoner.
The basic schema is depicted in Figure 19. It involves:
e Entity hierarchy: container classes to represent node types, node templates, interfaces,
relationships, requirements and capabilities.
e Parameters: used to define additional descriptive context for various resources
o Attributes, Properties: referenced by entities for defining properties and
attributes
o Each parameter may have additional parameters (nesting)
e AADM
o Root container to provide info about the user, version, etc.

—
D3.1 - First version of ontologies and semantic repository - Public Page 39

© Copyright Beneficiaries of the SODALITE Project

{***} Project No 825480. ? SOdalite

¢ Classes &3 l

v owl:Thing
® AADM
v @ Resource
w @ Entity
@ Capability
@ Interface
@ Mode
@ Relationship
@ Requiremen
@ Ternplate
w 0 Parameter
0 Attribute
@ Property

Figure 19. Basic class hierarchy of the exchange model

Apart from classes, the exchange model defines a set of properties (Figure 20). It involves:
e attributes, properties
0 Domain: Entity.
o Range: Attribute, Property (respectively).
e capabilities, interfaces, requirements
o Domain: Entity.
o Range: Capability, Interface, Requirement (respectively).
e hasParameter, value: to associate a resource with a parameter; each parameter may
have a value.
derivesFrom: to define the super type (string).
name, description (strings): for the name and description of a resource.
type: for the type of templates.
userld: properties of the AADM to specify the user id.

E} Properties &3 I
[attributes
capabilities
hasPararneter
interfaces
properties
requirements
derivesFrom
description

name
W type

B userld
M value

Figure 20. Basic properties provided by the exchange model

This basic schema provides all the necessary structures to translate DSL into the exchange model
and to populate the KB. As an example, we present below the DSL for the node template
hpc_wm_torque.

e
D3.1 - First version of ontologies and semantic repository - Public Page 40

© Copyright Beneficiaries of the SODALITE Project

{***} Project No 825480. ? SOdalite

hpc_wm_torque{
type: my.nodes.hpc.wm.torque
attributes{
public_address: "sodalite-fe.hlrs.de"
username: "kamil"
ssh_key: "~/keys/kamil-sodalite-fe"

The representation in the exchange model is as follows (Turtle syntax®):
:Template_1

rdf:type exchange:Template ;

exchange:name "hpc_wm_torque" ;

exchange:type "my.nodes.hpc.wm.torque" ;

exchange:attributes :Attribute_1, :Attribute_2, :Attribute_3 .

:Attribute_1
rdf:type exchange:Attribute ;
exchange:name "public_address" ;
exchange:value "sodalite-fe.hlrs.de" .

:Attribute_2
rdf:type exchange:Attribute ;
exchange:name "username" ;
exchange:value "kamil" .

:Attribute_3
rdf:type exchange:Attribute ;
exchange:name "ssh_key" ;
exchange:value "~/keys/kamil-sodalite-fe"

4.2 Next Steps

The current version of the ontology population provides the necessary features to the IDE in order
to assist a user in defining application and resource models. As the various SODALITE components
mature and provide advanced functionalities, more complex interactions will be needed to be
supported that will be implemented both in terms of the provided APl and of backend reasoning
services (WP4). In addition, in the first version of the framework, the automated translation of
node templates is only supported. For the future, the mapping mechanism will be enriched in
order to be able to map also DSL definitions about resources. Moreover, updates on the exchange
model might be necessary in order to capture additional knowledge, such as versioning, the
content of Ansible files (in interfaces), Docker image files, etc.

% Terse RDF Triple Language (Turtle) is a syntax and file format for expressing data in the Resource
Description Framework (RDF) data model. Turtle syntax is similar to that of SPARQL, an RDF query language.

It is a common data format for storing RDF data, along with N-Triples, JSON-LD and RDF/XML.
[R ——
D3.1 - First version of ontologies and semantic repository - Public Page 41

© Copyright Beneficiaries of the SODALITE Project

{***} Project No 825480. ’ SOdalite

5 SODALITE IDE

The SODALITE IDE is an Integrated Development Environment that assists AOEs and REs in the
authoring of AADMs and RMs. IDEs also offer complete assistance for the development of the user’s
application, so that the selection of an IDE for AADM authoring, within the same environment
where the application is implemented, is a natural choice. The IDE offers a multi-view textual
editor for AADM/RE definition, complemented with edit assisting features such as
context-sensitive content-assistance, code completion, syntactic and semantic validation, syntax
highlighting, and so on. The IDE also offers views for managing the complete life-cycle of AADM/RE
models.

The IDE leverages on the remote SODALITE KB to retrieve resources to be assigned to the AADM
node instances, as well as to assess the semantic validity of the model. The IDE also leverages on
the laC layer to deploy the AADM.

AADM and RM are instances of the SODALITE DSL for Abstract Application Deployment and
Infrastructure Resources. A domain specific language (DSL) is a computing language designed for a
specific modelling purpose within a concrete application domain. In SODALITE, DSLs are specified
as meta-models. A meta-models is, in this context, a modelling conceptualization schema (and the
rules and constraints that determine how it can be applied) designed to create model instances
that are compliant with that schema.

5.1 Domain Specific Language
SODALITE defines two DSLs for the specification of AADMs and RMs. Both DSLs are based on the

OASIS Topology and Orchestration Specification for Cloud Applications (TOSCA)B.

The AADM DSL captures the essential data included in TOSCA to define abstract application
models. This includes the relevant application-owner-centric information required to define
application components for deployment, which matches the TOSCA nodes templates and their
nested elements: properties, attributes and requirements. AADM DSL references node types (and
other TOSCA type specifications) defined within the RM DSL. Moreover, application deployment
nodes within the AADM DSL refer to infrastructure resources, available within the KB, which have
been defined as node types, using the RM DSL.

The RM DSL captures the essential data included in TOSCA to define infrastructure and platform
resources for Cloud and HPC; other platforms (e.g. Kubernetes will be supported in future releases
of the SODALITE framework). This includes the relevant resource-owner-centric information
required to define reusable resources, which matches the TOSCA node type and their nested
elements: properties, attributes, interfaces, capabilities and requirements. Other types can be
defined, including: data, relationship and policy types.

Both AADM and RM DSL are designed to collect from users the minimum set of deployment
topology information needed to synthesize the target TOSCA blueprint, upon its deployment into
the laC layer. Remaining information required to complete the blueprint is obtained from the KB
by applying its inference and reasoning capabilities and/or derived by the laC layer from internal
heuristic knowledge. This approach would largely simplify for AOEs and REs the authoring of the
abstract application deployment and the resource models, respectively, reducing the cost in fixing
potential application deployment modeling errors and in reducing the total application
deployment time. In the following paragraphs, we provide additional technical details about the
specification and implementation of both DSLs.

5.2 Supported Features
The features that are currently supported are as follows:

» https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca
[
D3.1 - First version of ontologies and semantic repository - Public Page 42

© Copyright Beneficiaries of the SODALITE Project

{***} Project No 825480. ? SOdalite

DSL specification: current version provides a grammar for both the AADM and the RM. They are
simplified versions of the TOSCA specification for node templates. They include the required
modelling elements to fully specify an AADM for the Snow and HPC use cases.

DSL editor: current version implements the following features (see section above):

e Modelling support for designing AADMs (see Figure 21): current version supports the
modelling of application node instances (e.g. node templates), their type, properties,
attributes and requirements.

e Modelling support for designing RMs: current version supports the modelling of data types,
artifact types, capability types, interface types, relationship_types, node_types and policy

types.
[Project Explorer 22 = B || hpc.aadm |2 snow_v2.aadm &2 = ()
=) i§ — [l node_templates{
~ % Sodalite e vm{
» &= hpc type: sodalite.nodes.VM.OpenStack
= properties{
~ = snow & name: 'snow-vm'

B snow_v2.aadm image: 'centos7’

flavor: 'ml.small’

= snow_v2.rm
- - network: '87b57656-381c-4921-82c@-bd65a8a67cfd’
b (= src-gen security_groups: 'default,snow'
» (= xopera key_name: 'draganrX’
}
}
= docker_host{
type: sodalite.nodes.DockerHost
properties{
registry_ip: '154.48.185.207"'
}
requirements{
= host{
node: wvm
- o | = }
= Qutline 2 = |5, 8)
b 1= snow_v2 }

= skyline_extractor{
type: sodalite.nodes.DockerizedComponent
properties{

Figure 21. Snow UC AADM in SODALITE IDE Editor

e Textual Editor for AADMs:
o Creation, edition, and deletion of AADMs.
o Editing facilities: grammar highlighting, code completion.
o Context-based content assistance:
content assistance based on grammar constraints and relationships: entity
cross-resolution.
content assistance based on SODALITE KB support (see Figure 22).
e Textual Editor for RMs:
o Creation, edition, and deletion of RMs,
o Edition facilities: grammar highlighting, code completion.
o Context-based content assistance:
content assistance based on grammar constraints and relationships: entity
cross-resolution.

e
D3.1 - First version of ontologies and semantic repository - Public Page 43

© Copyright Beneficiaries of the SODALITE Project

{***} Project No 825480. ? SOdalite

runtime-Sirius - org.sodalite.dsl.examples/hpc/hpe.ai

File Edit Mavigate Search Project Run Window Help

M= EHE -s:_-,_q,v;il:g- fledlrtatbew L’ 4
{5 ProjectExplorer 2| E% & ¥ TO | E *hpcaadm =

b & External Plug-in Libraries _ node_templates:

= hpc_wm_torgque:
= type: my.nodes.hpc.wn. torgue

~ &4 > org.sodalite.dsl examples [ide master]

~ & > hpc BB my.nodes.hpe.job.torque
. b

24 hpc.aadm

us My.nodes.hpc.my_job
55 my.nodes.hpc.wm.torque

sodalite.nodes.ConfigurationDemo

= hpc_job_tao
= type: sodalite.nodes.DockerHost
.8 > meidles PYOPET cndalite.nodes.DockerizedComponent
» E% > optimization = na
L_ k3 sc Sedalite.nodes.DockerNetwork 3b.pbs.§2"
¥ i > snoyt em sodalite.nodes.DockerRegistry
b B > snown2 PP

b sodalite.nodes DockerVolume
b B > sre-gen

; ppn: "IV
b g% vehicleiot walltime: "09:02
» (5 xopera monitor_period: "

monitor_retries_headroom: "2"
= heuristics. ot

=3 my_model.aadm requirements:
= host:

b =3 my_model.aird node: hpc_wm_torque

3 Sodalite AADM

Figure 22. Context-sensitive content assistance

e Automatic serialization of AADMs into Turtle format for storage into the KB.
e Connectivity between the SODALITE IDE and the KB:

o for querying that provides support in content-assistance.

o forstoring AADMs into the KB.
e Outline view for both AADMs and RMs.

Storage of AADMs into the KB (see Figure 23).

Jul14 14:10

runtime-Sirius - org.sodalite.dsl.examples/hpc/hpc.aadm -
File Edit Mavigate Search Project Run Window Help

N~ Ee = v Bletahr e ol
IS Project Explorer £ | B% ¥ 70 || £ *hpcaadm =
b i External Plug-in Libraries . nede_templates:

hpc_wm_torque:

- &% > org.sodalite.dsL.examples | i R R

3> hpe attributes:
- C public_address: "sodalite-fe.hlrs.de"
New » usernam kamil
b ki hpc.aird | ssh_key: "~/keys/kamil-sodalite-fe'
5 hporm Qpen F3
Open With » b_torque_1:
% job.txt | T Ay i
Showln j+yy » [PE3 my.nodes hpc. job. torque
» &% > modules operties:
v &3> optimizal B Copy CirieC | name: "hpc-test-1" ‘ .
script_template: "~/soda-repa/src/wpa/opera-job/artifacts/job.pbs.j2"
¥ & > snowyl email: "tokmakov@hlrs.de"
EAT) & Delete i
b By > snowa2 ppn: "1
B e Remove f nb_nodes: "1"
G5 > SrC-g i Marka . o i
¥ &3 vehicleiot "pa; g
& vehiclel Move... walltime: 102:08

[xopera monitor_pe : IA
B " Reome:; F2 " monitor_retries_headroom: "2
% heuristics.t | T
i Import..

= my_model. &5 Bipiort.. uu:‘::-::nts:
b B my_modell i ¥
L] Refresh F5 node: hpc_wm_torgue
3 Sodalite AADM
O RunAs ib_torque_4:
4 Debug As pe: my.nodes.hpc.job. torque
Profile As
Acceleo

o = —vera-job/artifacts/job. pbs.j2"
o= Outline 2 & Ty

k= hpc Team

Deploy AADM
Get AADM optimization recommendations

- i= <ynnamed: Compare With

~ mhpc_wm, Replace With monitor_period: "le"
= i= hpe_job_ Properties Alt+Enter ‘quirements:
¥ 1= my.nodes.hpc job.torgue 2] // TODO (SIMPLIFICATION) see above
< hast

S
D3.1 - First version of ontologies and semantic repository - Public Page 44

© Copyright Beneficiaries of the SODALITE Project

o 9 .
SN Project No 825480. ’ SOdallte

___properties{

Save AADM % |

The selected AADM model has been succesfully store in the KB

ROSTT

e

Figure 23. Storing AADM into the KB

5.3 Next Steps
The next development period will focus on the development of the IDE features that simplifies the
authoring and management of AADM and RMs, including improvements in KB enabling assistance,
AADM viewpoint visualization, optimization modeling, dashboards for modeling and deployment
management, and more:
AADM DSL:
e Extended support for designing AADM, incorporating additional modeling elements for
TOSCA instance entities (e.g. templates) not supported in the first version of this DSL.
e Refactoring of the AADM DSL in order to simplify the modeling experience for AOEs.
AADM Editor:
e Support for semantic validation conducted by the Semantic Reasoner and reported back
to the IDE:
o IDE support to request the semantic validation to the Semantic Reasoner.
o Visualization of the validation issues and hot fixes within the AADM editor.
o Application of selected hotfixes into the AADM.
e Support for optimization selection.
e Support for multi viewpoint visual representation and modeling
RM DSL:
e Extended support for designing RM, incorporating additional modeling elements for
TOSCA type entities not supported in the first version of this DSL.
e Refactoring of RM DSL to simplify to REs the modeling experience.

RM Editor:
e Support for semantic validation conducted by the Semantic Reasoner and reported back
to the IDE:

o IDE support to request the semantic validation to the Semantic Reasoner.
Visualization of the validation issues and hot fixes within the RM editor.
o Application of selected hotfixes into the RM.
Optimization DSL and Editor:
e Definition of Optimization DSL,
e Textual editor for optimization models
e Syntactic and semantic validation of optimization models
IDE:
Wizards for AADM/RM model creation
Wizards/Views for AADM/RM store/retrieval to/from KB.
Wizards for AADM deployment into the laC layer.
Governance dashboard for AADM/RM management
Governance dashboard for AADM deployment management

e
D3.1 - First version of ontologies and semantic repository - Public Page 45

© Copyright Beneficiaries of the SODALITE Project

. 94 .
{ } Project No 825480. ’ SOdallte

6 Implementation

This section presents details about the implementation of the Modelling Layer. As briefly
described in Section 1.2.1, the main software components are:
The Semantic Knowledge Base (KB) - A semantic repository (RDF triple store) to accommodate
SODALITE’s knowledge in the domains of applications, infrastructure, performance optimisations,
deployment and lifecycle, and more. This knowledge is generated by multiple stakeholders (e.g.
Resource Experts) and represented into RDF-based knowledge graphs (ontologies). The KB should
be compliant with W3C Standards, especially regarding RDF, OWL 2 and SPARQL
recommendations, and provide the core infrastructure for modelling agility, data integration,
relationship exploration, data publishing and consumption. In addition, it should be capable of
handling powerful semantic queries and of using inference for uncovering new information out of
existing relations.
The Semantic Reasoner - A dedicated middleware to support the interaction with the Semantic
Knowledge Base through a REST API for importing/retrieving data. It also implements the mapping
logic for mapping application and resource models in the abstraction layer of SODALITE (Section
4). To this end, this module reuses the technologies, tools and standards to implement basic
SODALITE reasoning services, such as to handle the native OWL 2 semantics and to facilitate the
population of the KB.
The SODALITE IDE - A software component to provide complete support for the authoring of
abstract application deployment models with the use of the SODALITE DSL (Section 5).
The WP3 internal workflow is depicted in Figure 24. End users use the SODALITE IDE to define the
AADM in the SODALITE DSL. As described in section 4, in order to foster interoperability, the DSL is
first translated into an RDF-based exchange model (in Turtle syntax) and then pushed to the
Semantic Reasoner API in order to be stored in the Semantic Knowledge Base. The Semantic
Reasoner API is also used by the IDE in order to fetch data from the knowledge base (in JSON),
such as already defined TOSCA entities and properties relevant to specific TOSCA nodes. The
Semantic Population Engine is responsible for populating the KB, using the RDF format. Similarly,
the Semantic Reasoning Engine communicates with the KB in order to update (after reasoning) or
get information. The Semantic Reasoner APl is also used by other components of the system, such
as components developed within WP4 (e.g. to perform validation).

Semantic Reasoner

SODALITE IDE
I Semantic Semantic
Population Engine Reasoning Engine
<[> DSL. [7urtie Turtle | |_). JSON, RDF
/ generator -
API API
———————
/" JSON
RDF RDF

RDF triple store Domain Ontologies

Semantic Knowledge Base

Figure 24. WP3 internal workflow

D3.1 - First version of ontologies and semantic repository - Public Page 46
© Copyright Beneficiaries of the SODALITE Project

. 94 .
{ } Project No 825480. ’ SOdallte

The rest of this section is structured as follows: in Section 6.1 we present the baseline technologies
that have been used or planned to be used to implement the necessary components in the
Semantic Modelling layer. We expect to augment these technologies with the necessary features
that will be further required to implement the final Modelling Layer. It should be noted that these
technologies were selected based on the consortium partners’ expertise, as well as the potential
to further uptake the work in several tools/technologies that were developed as part of past EU
projects and initiatives, in which the consortium partners have been involved. The section
continues by describing technical details about the developed WP3 components: the Semantic
Knowledge Base (Section 6.2), the Semantic Reasoner (Section 6.3) and the IDE (Section 6.4).

6.1 WP3 baseline technology stack
The following technologies are being considered to be used for the WP3 developments.

6.1.1 TopBraid Composer

Ontology editors are software tools that allow the creation and maintenance of ontologies
through a graphical user interface. They provide the interfaces that help end users carry out the
main activities of the ontology development process, such as conceptualization, implementation,
consistency checking and documentation [3]. A number of ontology editors have been developed,
each one having different capabilities and targetggg different users, according to their expertise. In
SODALITE, we have used the TopBraid Composer as the ontology development environment.
TopBraid Composer is a powerful integrated development environment for implementing
Knowledge Graphs and Linked Data services. It is an enterprise-class modelling environment for
developing Semantic Web ontologies and building semantic applications. Fully compliant with
W3C standards, the suite supports the development of RDF and OWL ontologies, providing at the
same time advanced querying and reasoning services. It is implemented as an Eclipse plug-in and
it can be used to develop ontology models, convert data and models to and from RDF/OWL,
transform and integrate data source integration, and develop Semantic Web services and
applications. More specifically, TopBraid Composer lets users:

e Create ontology models.

e Create RDF data.

e Use Forms with drop-downs, autocomplete and wizards, use Visual editors with diagrams
for classes and RDF graphs or use syntax-directed text entry.
Auto-convert from RDFS/OWL to SHACL.
Auto-generate SHACL from data.
Work with files or databases.
Refactor models and data.

It also provides rich capabilities for:
e Inferencing.
Ontology mapping.
Auto-generation of SPARQL “by example” from the graph view.
Query and Rule development with auto-complete and templates.
Testing - with SPARQL and GraphQL Endpoints running on the localhost server.

30 https://www.topquadrant.com/products/topbraid-composer/
=S S SSS——
D3.1 - First version of ontologies and semantic repository - Public Page 47

© Copyright Beneficiaries of the SODALITE Project

https://www.topquadrant.com/products/topbraid-composer/

o 9 .
SN Project No 825480. ’ SOdallte

Filc Edit Navigate Model System Inference Resource Window Help

= LTSN RA TR e v 0 i @ toscacapabilities Root i &

H BB @R 7 O [sebutim = 0| T Propenies ¢
~ © owtThing (95) — = DUL:actsFor

w (0 DULEmtity (291) Clss Fre % @ = o
DUL:Abstract (8] Rt hetps//y g Roet
DULEvent

~ Annotations
DULInformationEntity m DUL:conceptualizes

~ () DUL:Gbject (283) ~ Class Axioms DUL:cancretelyExpresses

DULAgent fosut 2 DULscoparticipatesWith
DULPhysicalObject ® tosca.entity Root b DUL:covers

v) DULSocislObject (283) JentClass m DULdescribes

~ Other Properties
DULPLace opert]
w @ DULStustion
5] [The TOSCA base capability type from which all other normative TOSCA copability types derrve.

® owtClass

® tosco.copabifties.Attachment
@ tosca.capabilties.Container
@ tosca.capabiliies Endpaint
® tosca.capabilities Network sedin
@ tosca.capabilities Node retelyExpressedBy
@ tosca.capabilities.OperatingSystem DULis ituentOf

® tosca.capabilties Scalable DULsisCaveredBy

= DULisDescribedBy

Instances MM Domain O Error Log b SPARQL 4 Text Search B@= 07 = 0| Meske i
vg/dc/elements/1.1/ (owkimpons from /TopBraid/Commen/dc-1.1.11)

g/de prts fram /TopBraid/Common/terms.tl)
skos/core (owkimports from /TopBeaid/SKOS/skosscoretl)
jes/sodalite-metamodel/ (owkimports from
) htpe//umwwdoa-cnr.it/ontologiesDUL.owl fsodalie/ 2 s/ sodai /DULrd)
skosCollection @ itpe// w3009/ 2006/ time (owkimperts)
skos:Concept

skosiCencepteheme
timeDayOfvieek (T)
time:TemporelDuration (7)
timeTempersléntity
timeTemporalPosition
time:TimeZone

timeTRS

vl >

Figure 25. TopBraid composer Class and Property views

TopBraid Composer comes in three editions: Maestro, Standard and Free. Although the Free
edition has some limitations compared to the other two editions, such as direct connectivity with
RDF triple stores, it provides a fully-fledged ontology editor (Figure 25) that covers all the ontology
development requirements in SODALITE.

Other well-known ontology editors include Protégé31 and Fluent Editor . Protégé is one of the
most widely used ontology development tools, which was developed at Stanford University. Itis a
free, open-source platform that provides a suite of tools to construct domain models and
knowledge-based applications with ontologies. It mainly supports the creation and editing of one
or more ontologies in a single workspace via a completely customisable user interface.
Visualization tools allow for interactive navigation of ontology relationships. Advanced
explanation support aids in tracking down inconsistencies. Refactor operations available including
ontology merging, moving axioms between ontologies, rename of multiple entities, and more.
Fluent Editor is a tool for editing, manipulating and querying complex ontologies written in OWL,
RDF or SWRL. It is fully compatible with most of the Semantic Web W3C standards (OWL, RDF, and
SPARQL) but at the same time has an intuitive user interface that uses the Ontorion Controlled
Natural Language (OCNL) that is a human friendly alternative to XML ontology language like OWL
or RDF but is completely compatible with OWL2, RDF and SWRL. Furthermore, the OCNL can also
be used as a query language compatible with SPARQL.

Although Protégé is considered as the most popular ontology editor [4], TopBraid Composer has
been selected as the main ontology editor in SODALITE mainly due to the advanced
meta-modelling capabilities it offers. As we explain in Section 3.3, the conceptual model of
SODALITE makes extensive use of meta-modelling, where classes are treated as properties as well.
TopBraid Composer makes it easier to use the same name for both an instance and a class.
However, it should be noted that SODALITE ontologies are not editor-specific. Any
general-purpose ontology editor can be used that supports basic ontology development tasks.

31 https://protege.stanford.edu/

32 https://www.cognitum.eu/Semantics/FluentEditor/
= ..
D3.1 - First version of ontologies and semantic repository - Public Page 48

© Copyright Beneficiaries of the SODALITE Project

https://protege.stanford.edu/
https://www.cognitum.eu/Semantics/FluentEditor/

o ¢ .
{ } Project No 825480. ’ SOdallte

6.1.2 GraphDB

The RDF triple store is a type of graph database that stores semantic facts. Being a graph
database, a triple store handles data as a network of objects with materialized links between
them. This makes RDF triple stores the preferred choice for managing highly interconnected data,
such as in the SODALITE domain where resource and application models are interconnected
through the semantic abstraction layer.

GraphDB33 is a family of highly efficient, robust and scalable RDF databases. It streamlines the
load and use of linked data cloud datasets, as well as a user’s own resources. For easy use and
compatibility with the industry standards, GraphDB implements the RDF4J framework interface,
the W3C SPARQL Protocol specification, and supports all RDF serialization formats. The database
is the preferred choice of both small independent developers and big enterprise organizations
because of its community and commercial support, as well as excellent enterprise features such as
cluster support and integration with external high-performance search applications - Lucene, Solr
and ElasticSearch.

GraphDB is one of the few triple stores that can perform semantic inferencing at scale, allowing
users to derive new semantic facts from existing facts. It handles massive loads, queries, and
inferencing in real time [5]. GraphDB comes with three editions: Free, Standard and Enterprise.
GraphDB is packaged as a storage and inference layer for RDF4J and makes extensive use of the
features and infrastructure of RDF4J, especially the RDF model, RDF parsers, and query engines.
Inference is performed by GraphDB’s native reasoning engine, where the explicit and inferred
statements are stored in highly optimised data structures that are kept in-memory for query
evaluation and further inference. The inferred closure is updated through inference at the end of
each transaction that modifies the repository.

GraphDB comes with a web-based administration tool (Workbench, Figure 26), which provides a
REST API for automating various tasks for managing and administering repositories. The tool can
be also used for:

Managing GraphDB repositories.

Loading and exporting data.

Executing SPARQL queries and updates.

Managing namespaces.

Managing contexts.

Viewing/editing RDF resources.

Monitoring queries.

Monitoring resources.

Managing users and permissions.

Managing connectors.

* http://graphdb.ontotext.com/
—-—
D3.1 - First version of ontologies and semantic repository - Public Page 49

© Copyright Beneficiaries of the SODALITE Project

http://graphdb.ontotext.com/

{***} Project No 825480. ? SOdalite
GraphDB g4 View resource

@ Import
@ Explore
{} SPARQL
Active repository Saved SPARQL queries
Monit
o Add statements
Local
- & & ;\
Setup .
{é} TOSCA Clear graph
Hal total statements 3.611 explicit
@ e 27,525 23,914 inferred
7.62 expansion ratio Remove statements
Import RDF data
Import tabular data with OntoRefine SPARQL Select template
Export RDF data
License

GraphDB Free Edition

Figure 26. Home page of GraphDB Workbench

Other alternative triple stores include AllegroGraph34, OpenLink Virtuoso™ and Jena TDB™.
GraphDB has been selected mainly because it is easy to install and deploy, it provides an
easy-to-use administration interface (Workbench) and provides one of the fastest querying and
reasoning engines. However, it should be noted that because SODALITE capitalises on existing
standards for modelling, reasoning and querying ontologies, any W3C compliant RDF triple store
can be used as the underlying RDF triple store in SODALITE.

6.1.3 Eclipse RDF4J

Eclipse RDF4J” is a powerful Java framework for processing and handling RDF data. This includes
creating, parsing, scalable storage, reasoning and querying with RDF and Linked Data. It offers an
easy-to-use API that can be connected to all leading RDF database solutions, including GraphDB. It
enables us to connect with SPARQL endpoints and create applications that leverage the power of
linked data and Semantic Web.
Programmatically, GraphDB can be used via the RDF4J Java framework of classes and interfaces.
RDF4J comprises a large collection of libraries, utilities and APIs. The important components in
SODALITE for accessing GraphDB are:

e the RDF4J classes and interfaces (API), which provide a uniform access to the components

from multiple vendors/publishers.
e the RDF4J server application.

RDF4J's RDF database API differs from comparable solutions in that it offers a stackable interface
through which functionality can be added, and the storage engine is abstracted from the query
interface. Many other triple stores can be used through the RDF4J API, including AllegroGraph and
OpenLink Virtuoso.

34 https://franz.com/agraph/allegrograph/

3 https://virtuoso.openlinksw.com/

% https://jena.apache.org/documentation/tdb/

37 https://rdf4j.org/

e —————

D3.1 - First version of ontologies and semantic repository - Public Page 50
© Copyright Beneficiaries of the SODALITE Project

https://franz.com/agraph/allegrograph/
https://virtuoso.openlinksw.com/
https://jena.apache.org/documentation/tdb/
https://rdf4j.org/

{***} Project No 825480. ’ SOdalite

6.1.4 SPARQL

SPARQL38 is the W3C recommendation for querying RDF graphs and its specification defines the
syntax and semantics of the SPARQL query language for RDF. SPARQL can be used to express
queries across diverse data sources, whether the data is stored natively as RDF or viewed as RDF
via middleware. SPARQL contains capabilities for querying required and optional graph patterns
along with their conjunctions and disjunctions. It also supports aggregation, subqueries, negation,
creating values by expressions, extensible value testing, and constraining queries by source RDF
graph. The results of SPARQL queries can be result sets or RDF graphs.
SPARQL is based on matching graph patterns. The simplest graph pattern is the triple pattern,
which is like an RDF triple but with the possibility of a variable instead of an RDF term in the
subject, predicate, or object positions. Combining triple patterns gives a basic graph pattern,
where an exact match to a graph is needed to fulfil a pattern.
However, SPARQL is more than just a query language. Itis also an HTTP-based transport protocol,
where any SPARQL endpoint can be accessed via a standardised transport layer. RDF results can
be returned in several data-interchange formats and RDF entities are identified by Universal
Resource Identifiers (URIs).
SPARQL has four types of queries. It can be used to:

e ASK whether there is at least one match of the query pattern in the RDF graph data.

e SELECT all or some of those matches in a tabular form (including aggregation, sampling

and pagination through OFFSET and LIMIT).
e CONSTRUCT an RDF graph by substituting the variables in these matches in a set of triple
templates.
e DESCRIBE the matches found by constructing a relevant RDF graph.

SPARQL is supported by leading semantic graph databases that also provide intuitive SPARQL
editors with autocomplete, explorer and many other features that facilitate building powerful
SPARQL queries.

6.1.5 XText

XText" is an Eclipse based framework for designing domain specific languages (DSLs) and
implementing associated textual editors, which are4(i)ntegrated within the Eclipse workbench.
XText leverages the Eclipse Modelling Framework (EMF) to manage the internal model
representation of the DSL.
A modeller describes the DSL using the XText grammar. This approach largely simplifies the
specification of the DSL, supporting an incremental and iterative DSL authoring. XText DSL
grammar definition is modular and composable: DSL entities can refer to other entities defined in
other DSLs. From the DSL grammar, Xtext automates the generation of the DSL textual editor,
integrated with Eclipse. The editor is enriched with a large number of features that largely improve
the user’s experience, namely:
e Syntax/semantic colouring: DSL keywords and elements are rendered differently
according to a colour schema.
e Validation/Error checking: detection of model entities that are not compliant with the DSL
specification (i.e. grammar).
e Content-assistance, auto-completion, cross-references: user is assisted during the
authoring of textual DSL models, with suggested/automated completions of DSL snippets,
or suggested references to other DSL elements.

3 https://www.w3.org/TR/spargll1-query/
3 https://www.eclipse.org/Xtext/

0 https://www.eclipse.org/modeling/emf/
—
D3.1 - First version of ontologies and semantic repository - Public Page 51

© Copyright Beneficiaries of the SODALITE Project

https://www.w3.org/TR/sparql11-query/

. 94 .
{ } Project No 825480. ’ SOdallte

e Automatic formatting: correct indentation is automatically managed by Xtext.

e Hover information: information about DSL entities are displayed when mouse pointer is
hovering over them.

e Quick fix proposals: on spotted validation errors, available quick fixes could be offered to
the user and applied into the DSL text, when accepted.

e Outline/Structure view: aside view offers an outline of the DSL elements of the model that
is displayed in the DSL editor.

e Automatic conversion into any textual serialization.

Apart from these user’s oriented features, Xtext supports the generation of a Web-based textual
editor, which can be embedded Wlthln some of the most popular Web-based code editors,
including Orion" Ace or Code error It can also be mtegrated with Eclipse based graphical
model frameworks including GEF Sirius” or Graph|t| Even more, it supports the Language
Server Protocol”".

6.2 Semantic Knowledge Base

The Semantic Knowledge Base (KB) is the semantic database management system of SODALITE
that enables storing, querying and managing structured data. It follows the semantic data schema
paradigm, called ontology, which is stored and managed independently from the data. As
described in Section 3, SODALITE follows a pattern-based approach to define the application and
resource abstraction layer, making extensive use of meta-modelling. As such, both the upper-level
patterns and the instantiation of these patterns (resource and application models) are stored and
interlinked in the KB, creating the SODALITE Knowledge Graphs that have the following
characteristics:
e They have a formal structure (RDF/OWL) that enables their retrieval and reuse in an
efficient and unambiguous manner.
e Resource descriptions, such as classes, properties and instances, form a network (graph),
where each entity represents part of the description of the entities, related to it.

The KB of SODALITE logically encapsulates two subcomponents:

1. The RDF triple store: It is the semantic graph database of SODALITE (NoSQL graph
database) that provides advanced integrating capabilities of heterogeneous data, defining
links between resources and entities. SODALITE builds its RDF triple store on top of
GraphDB, one of the most powerful RDF repositories that offers:

a. Fastloading and indexing of W3C compliant ontologies (RDF, OWL2).

Full standard-compliant reasoning for RDFS and OWL 2 RL.

Full SPARQL 1.1 support.

Query optimizer allowing effective query execution.

Compatibility with the RDF4J framework.

2. Domaln ontologies: These ontologies define the conceptual model of SODALITE. Their
expressivity is compliant with the OWL 2 RL profile. The current version of the ontologies
include modules that provide:

a. The formal schema, i.e. classes and properties that can be used to capture
application and resource models (TOSCA ontology).

paow

* http://eclipse.org/orion/

2 http://ace.c9.io/

*® http://codemirror.net/

* https://www.eclipse.org/gef/

* https://www.eclipse.org/sirius/

*® https://www.eclipse.org/graphiti/

*" https://langserver.org/
e
D3.1 - First version of ontologies and semantic repository - Public Page 52

© Copyright Beneficiaries of the SODALITE Project

{***} Project No 825480. ? SOdalite

b. The ontology pattern that should be followed (SODALITE meta-model) in order to
define modular and reusable knowledge graphs.

In the following we provide technical details about the components.

6.2.1 RDF Triple Store
Software dependencies

e GraphDB9.0.0.
e Java SE DevelopmentKit 8, 11, or 12.
e RDF4JV3.0.0.
e Windows 10.
Requirements

e Tosupportstoring, querying and management of structured data.
To support existing Semantic Web standards (RDF, OWL 2, SPARQL).
To allow remote access (HTTP protocol).

To provide a SPARQL endpoint.

To support native RDF / OWL 2 RL reasoning.

Composed of
GraphDB (third-party software) is used as the underlying RDF triple store of SODALITE.

Roles that interact with the component (i.e. AOE, RE)
There is no direct interaction of AOEs and REs with the RDF triple store.

Depends on
N/A

Repositories
There is no repository for the triple store. It is a third party, standalone component.

6.2.2 Domain Models

Software dependencies
N/A

Requirements

To provide the necessary knowledge structures and vocabularies to model
application/infrastructure models.

Composed of
Serialisation of RDF graphs in different formats (e.g. Turtle).

Roles that interact with the component (i.e. AOE, RE)
N/A

Depends on
N/A

e
D3.1 - First version of ontologies and semantic repository - Public Page 53

© Copyright Beneficiaries of the SODALITE Project

{***} Project No 825480. ’ SOdalite

Repositories
https://github.com/SODALITE-EU/semantic-models

6.3 Semantic Reasoner

The Semantic Reasoner can be seen as a service over the Knowledge Base, which acts as the
interface to the KB for saving, updating and retrieving information. This interface is used both by
components that belong to the Semantic Modelling layer, e.g. the IDE, and by components that
belong to different architecture layers, such as in the 1aC layer.

The population of the KB, i.e. the instantiation of the respective ontology patterns to capture
resources and applications (AADM), is performed by the Semantic Reasoner, which encapsulates
the necessary logic to translate the DSL composed in the IDE by the users to the conceptual model
of SODALITE. In addition, the Semantic Reasoner provides all the necessary interfaces to retrieve
data from the KB, as well as to expose reasoning functionality developed in WP4 with respect to
searching and validation services.

More specifically, the Semantic Reasoner logically clusters two modules: the Semantic Population
Engine and the Semantic Reasoning Engine.

1. Semantic Population Engine (SPE): implements the custom population logic of the KB,
i.e. the mapping of TOSCA-related definitions to the abstraction model of SODALITE,
instantiating the ontology patterns and applying advanced meta-modelling techniques.

2. Semantic Reasoning Engine (SRE): ensures the consistency of the RDF knowledge graphs
in terms of native OWL 2 semantics, interfacing with GraphDB’s internal OWL 2 RL
reasoning engine. It also provides the reasoning infrastructure needed to implement
custom reasoning logic in WP4/T4.4 - Analytics and Semantic Decision Support - regarding
searching, validation and reuse. Finally, it provides the REST API through which the various
components can interact with the KB.

6.3.1 Semantic Reasoning Engine

During the first year of the project, a number of REST APl endpoints have been developed in order
to assist users in defining models in the IDE. It should be noted that this REST API exposes
functionality that has been mainly developed in WP4/T4.4 relevant to searching and validation.
More details on the backend implementation of the REST API are provided in D4.1 (Topology
Verifier module).

The REST API returns information in JSON. To this end, the Semantic Reasoning Engine performs a
transformation of the RDF graphs returned by decision making (WP4) into a lightweight JSON
structure in order to ease the processing at the IDE level. In the rest of this section, we present
example responses.

GET /properties(resource)

It allows the IDE to retrieve the properties of a node type. This is useful when users are defining a
node template of a specific node type and want to be informed about relevant properties. It
should be noted that the interface returns all properties relevant to the node, either directly
defined in the specification of the node type or inherited from super nodes (derives_from TOSCA
relationship). An example JSON output for the properties of sodalite.nodes.VM.OpenStack is
presented in Figure 27.

—
D3.1 - First version of ontologies and semantic repository - Public Page 54

© Copyright Beneficiaries of the SODALITE Project

https://github.com/SODALITE-EU/semantic-models

{***} Project No 825480. ? SOdalite

"data": [
{

"https://www.sodalite.eu/ontologies/snow/tierl/flavor": {
"description": "OpenStack flavor id (flavor names are not accepted)”,
"specification": {

"type": {
"https://www.sodalite.eu/ontologies/tosca/string": {
"label": "string"

}
}
¥
}
}J

Figure 27. Example response for getting the properties of sodalite.nodes.VM.OpenStack

GET /attributes(resource)
This interface is similar to the /properties endpoint, returning relevant attributes.

"data": [
{
"https://www.sodalite.euf/ontologies/tosca/public address"”: {

"description™: "The primary public IP address assigned by the cloud provider
that applications may use to access the Compute node."”,

"specification": {

“type”: {
"https://www.sodalite.eu/ontologies/tosca/string™: {
"label™: "string”

¥
¥
}
}
¥
;i
"https://waw.sodalite.eu/ontologies/tosca/private_address": {
"description™: "The primary private IP address assigned by the cloud
provider that applications may use to access the Compute node."”,
"specification™: {
“type”: {
"hitps://www.sodalite.eu/ontologies/tosca/string”: {
"label": "string"
¥
¥
¥
h
1

Figure 28. Example response for getting the attributes of sodalite.nodes.VM.OpenStack

GET /capabilities(resource)

Returns the capabilities of a resource, both the ones directly asserted for the resource, and the
inherited ones following the hierarchy (Figure 29).

S
D3.1 - First version of ontologies and semantic repository - Public Page 55

© Copyright Beneficiaries of the SODALITE Project

{***} Project No 825480. ? SOdalite

"data": [[
{
"https://www.sodalite.eu/ontologies/tosca/host": {
"specification": {

"type": {

"https://www.sodalite.eu/ontologies/tosca/tosca.capabilities.Compute": {
"label": "tosca.capabilities.Compute"

L

¥

"valid_source_types": "[tosca.nodes.SoftwareComponent]"

I
}
1

Figure 29. Example response for getting the capabilities of sodalite.nodes.VM.OpenStack
GET /interfaces(resource)
Returns the interfaces of a resource.

{
"data": [
{
"https://www.sodalite.eu/ontologies/tosca/Standard": {
"specification": {
"type": {
"https://www.sodalite.eu/ontologies/tosca/tosca.interfaces.node.lifecycle.Standard": {
"label": "tosca.interfaces.node.lifecycle.Standard"
T
3
"create": {
"implementation": "playbooks/vm/create.yml",
"inputs": {
"image": "{ default: { get_property: [SELF, image i o
"security_groups": "{ default: { get_property: [SELF, security_groups 1 } }",
“"flavor": "{ default: { get_property: [SELF, flavor ek B i
"vm_name": "{ default: { get_property: [SELF, name i
"network": "{ default: { get_property: [SELF, network] } }",
"key_name": "{ default: { get_property: [SELF, key_name] } }"
}
b
"delete": {
"implementation": "playbooks/vm/delete.yml",
"inputs": {
"id": "{ default: { get_attribute: [SELF, id] } }"
by
¥
}
¥
¥
1
¥

Figure 30. Example response for getting the interfaces of sodalite.nodes.VM.OpenStack

S
D3.1 - First version of ontologies and semantic repository - Public Page 56

© Copyright Beneficiaries of the SODALITE Project

{***} Project No 825480. ? SOdalite

GET /requirements(resource)
Returns the requirements of a resource.

{
"data": [[
{
"https://www.sodalite.eu/ontologies/tosca/dependency”: {
"specification": {
"relationship”: {
"https://www.sodalite.eu/ontologies/tosca/tosca.relationships.DependsOn": {
"label": "tosca.relationships.DependsOn"
by
1.
"occurrences": {
"max": "UNBOUNDED",
"min": ©
}J
"capability": {
"https://www.sodalite.eu/ontologies/tosca/tosca.capabilities.Node": {
"label": "tosca.capabilities.Node"
¥
1,
"node": {
"https://www.sodalite.eu/ontologies/tosca/tosca.nodes.Root": {
"label": "tosca.nodes.Root"
'
5
by
¥
T,
Figure 31. Example response for getting the interfaces of sodalite.nodes.VM.OpenStack
GET /nodes

Returns all known nodes from the KB.

"data™ |
]
"https://www.sodalite.eu/ontologies/snow/tierl/sodalite.nodes.VM.OpenStack": {
"label": "sodalite.nodes.VM.OpenStack",

“type”: {
"https://www.sodalite.eu/ontologies/tosca/tosca.nodes.Compute”: {
"label": "tosca.nodes.Compute"
}
}

¥

Figure 32. Example response of getting all known nodes

GET /valid-requirement-nodes(requirement, nodeType)

Returns nodes that satisfy a certain requirement, when defining a node template of type
nodeType. This interface actually exposes the WP4 decision making functionality relevant to

D3.1 - First version of ontologies and semantic repository - Public Page 57
© Copyright Beneficiaries of the SODALITE Project

o 9 .
SN Project No 825480. ’ SOdallte

suggesting to IDE users entities that are semantically valid, checking TOSCA constraints on
capabilities and nodes. Figure 33 depicts the response of the APl when it is called for
requirement=host and nodeType = tosca.nodes.SoftwareComponent. In this example, the vm
node template is returned, since it is the only node template in the KB that satisfies the
requirement tosca.nodes.SoftwareComponent sets on host, according to TOSCA specification:

tosca.nodes.SoftwareComponent:

[...]
requirements:
- host:
relationship:

type: tosca.relationships.HostedOn
capability: tosca.capabilities.Compute
node: tosca.nodes.Compute
occurrences: [1, 1]

{
“Hatats T
{
"https://www.sodalite.eu/ontologies/workspace/1/vm": {
"label™: "vm",
"type": {
"https://www.sodalite.eu/ontologies/snow/tierl/sodalite.nodes.VM.OpenStack™: {
"label": "sodalite.nodes.VM.OpenStack"
¥
i
¥
by
]
1

Figure 33. example response on calling /valid-requirement-nodes with requirement=host and nodeType =
tosca.nodes.SoftwareComponent

POST /saveAADM (ttl, aadm, submissionid)

Stores the submitted AADM in the KB, assigning a unique id (IRI), which is returned back to the
client. As described in Section 4.3.2, the IDE sends to the REST API both the DSL definition and an
RDF-based translation of DSL into the exchange model that has been defined between the IDE and
the Semantic Reasoner. The exchange model actually corresponds to a lightweight version of the
SODALITE ODP whose purpose is to define an interoperable way of exchanging information
between the frontend and the backend. The role of the Semantic Population Engine is to translate
this exchange model into the full conceptual model of SODALITE and populate the KB. Since in the
first version of the ontologies and the semantic repository versioning is not supported, there is a
need to manually assign an id to the submitted model (submissionld parameter), in order to
uniquely identify different versions. In future versions, this parameter will be omitted.

GET /aadm(iri)

Returns the AADM JSON that corresponds to the resource Id (IRI). This is the interface used in WP4
in order to get the AADM definition of a single model. To this end, the Semantic Reasoning Engine
performs a translation of the RDF AADM into a JSON. As a parameter, this endpoint requires the id
(IRI) returned by calling the saveAADM endpoint.

e
D3.1 - First version of ontologies and semantic repository - Public Page 58

© Copyright Beneficiaries of the SODALITE Project

o 9 .
SN Project No 825480. ’ SOdallte

GET /aadm(iri, format=dsl)
Returns the AADM in DSL textual format that corresponds to the resource Id (IRI).

GET [aadm(user_iri)
Returns the list of AADM models created by a user, given by their id.

Software dependencies

Java SE Development Kit 8, 11, or 12.
RDF4J v3.0.0.

Jersey RESTful Web Services.

Tomcat 9 (for deploying the REST API).

Requirements

e To support native OWL 2 reasoning.
e To provide the reasoning infrastructure for custom rule-based logic.
e To provide the interface to access the semantic repository.

Composed of
The REST API and the reasoning infrastructure by interfacing with the GraphDB reasoning engine.

Roles that interact with the component (i.e. AOE, RE)

There is no direct interaction of Application Ops and Resource Experts with the Semantic
Reasoner.

Depends on
The Semantic Reasoning Engine depends on the Semantic Knowledge Base.

Repositories
https://github.com/SODALITE-EU/semantic-reasoner

6.3.2 Semantic Population Engine
Software dependencies

e Java SE DevelopmentKit8, 11, or 12.
e RDF4Jv3.0.0.

Requirements

e To map DSL definitions to the SODALITE semantic models.
e To ensure the mapping consistency.

Composed of
Mapping services of the RDF-based exchange model on the SODALITE ODP.

Roles that interact with the component (i.e. AOE, RE)

There is no direct interaction of Application Ops and Resource Experts with the Semantic
Population Engine.

Depends on

e
D3.1 - First version of ontologies and semantic repository - Public Page 59

© Copyright Beneficiaries of the SODALITE Project

https://github.com/SODALITE-EU/semantic-reasoner

{***} Project No 825480. ’ SOdalite

The Semantic Population Engine depends on the Semantic Knowledge Base.

Repositories
https://github.com/SODALITE-EU/semantic-reasoner

6.4 SODALITE IDE

The SODALITE IDE is the visual programming interface between the end users, namely the
Application Ops Experts (AOEs) and the Resource Experts (REs) (see D2.1), and the SODALITE
Infrastructure as Code (laC) Layer (see D2.1). The IDE enables (see D2.1 for additional details):
e Application Ops Experts to:
o Define an Abstract Application Deployment Model (AADM).
o Select suitable infrastructure/platform resources from the KB that satisfy the
requirements of the AADM nodes.
o Store the AADM into the KB.
o Initiates the deployment of the AADM within the IAC layer.
e Resource Experts (REs) to:
o Modelinfrastructure/platform resources to be stored into the KB.
o Map resources and optimizations.

The IDE provides complete support for design-time modelling of AADMs by AOEs and resource
models (RMs) by REs. Both AADMs and RMs are compliant to the SODALITE DSLs defined (based on
TOSCA) to support the deployment of complex systems into distributed infrastructures (e.g. Cloud
or HPC).

Both users use the IDE to:

e Browse the AADMs/RMs stored locally (e.g. with the user’s local file system) or remotely in
the KB. AOEs/REs can retrieve/store models from/to the KB.

e Create/update AADMs/RMs within a textual editor. Future versions of the IDE will consider
support for browser textual edition, or standalone IDE graphical AADM authoring. Current
prototype consists of a standalone IDE with AADM/RM textual edition.

e Verify the syntactic/semantic validity of AADMs/RMs. Syntactic conformance (to the
AADM/RM schema) is managed by the textual editor. Semantic conformance is verified by
the Semantic Reasoner. Verification issues are reported to the user in the textual editor,
next to the affected element.

o As part of the verification or the optimization task initiated within the deployment
process, verification and/or optimization suggestions will be presented to the user,
next to affected AADM/RM elements. Available quick fixes will be provided and
executed when selected.

e Request the deployment of the AADM within the SODALITE IaC layer.

AADM and RM authoring in the IDE requires users to provide a minimal amount of information, as it
relies on the Semantic KB (interfaced by the Semantic Reasoner) and the IaC to infer missing
information that fills the gaps. Therefore, proposed SODALITE DSLs for AADM and RM, despite the
fact that they are based on the TOSCA specification, are a subset of them that focus on gathering
only essential information.

The IDE relies on the KB (through the Semantic Reasoner) to guide the AOEs on the authoring of an
AADM, by providing suggestions to complete the AADM, by detecting and spotting conformance
issues, by suggesting optimization patches, and so on.

The IDE serializes the AADMs into a Turtle serialization format that is compatible with the KB; then
it sends them to the KB to be stored. In addition, upon user’s request, the IDE sends the AADM to
the laC framework in JSON format to be deployed into the target infrastructure.

—
D3.1 - First version of ontologies and semantic repository - Public Page 60

© Copyright Beneficiaries of the SODALITE Project

https://github.com/SODALITE-EU/semantic-reasoner

{***} Project No 825480. ? SOdalite

The IDE consists of the following components:
e DSLs for AADM and RM.
e DSL Editor.
These components are described in the following in more detail.

Software dependencies

The IDE depends on the following software dependencies:
e Eclipse 2019-09 (4.13.0).
e EMF- Eclipse Modelling Framework 2.19.0.
e XText Complete SDK 2.19.0.

Requirements
The IDE is requested to fulfil the following requirements (see D2.1):

e Support the specification of AADMs:

o design the application topology.

o describe application constraints.

o design inter-component boundaries.

o express optimization requirements and constraints.

o Assign target resources to the AADM.
Support the specification of RMs.
Show to the AOE and RE known resources from the KB.
Conduct a syntactic and semantic validation of AADMs and RMs.
Show validation inconsistencies and other recommendations.
Store AADMs and RMs into the KB.
Request to the laC layer the validation of the AADM.
Request to the IaC layer the deployment of the AADM.

Composed of
The IDE consists of the following components:

e DSLs for AADM and RM: both DSLs have been implemented as Eclipse EMF Ecore
meta-models using the XText framework. For both DSLs, we have defined their
corresponding grammar. Figure 34 shows a snippet of the AADM grammar. Figure 35 shows
a snippet of the RM grammar.

e
D3.1 - First version of ontologies and semantic repository - Public Page 61

© Copyright Beneficiaries of the SODALITE Project

{***} Project No 825480. ? SOdalite

12 grammar org.sodalite.dsl.AADM with org.eclipse.xtext.common.Terminals
14 dmport "http://www.sodalite.org/dsl/RM" as rm

15

156 generate aADM "http://www.sodalite.org/dsl/AADM"

17

18~ AADM_Model:

19 ('node_templates{'

20 nodeTemplates=ENodeTemplates
21 o

22 |5

23

24 ENodeTemplates:

25 {ENodeTemplates}(nodeTemplates+=ENodeTemplate)+
26 |5

27

287 ENodeTemplate:

29 name = ID '{'

30 ('"type:' type=QUALIFIED_NAME)

31 ("description:' description=STRING)?
32 ("properties{’

33 properties=EProperties

34 "}ry?

35 ('attributes{"

36 atributes=EAttributes

37 LRl

38 ('requirements{’

39 requirements=ERequirements
40 }ry?

41 "}";

Figure 34. Snippet of AADM grammar

12 grammar org.sodalite.dsl.RM with org.eclipse.xtext.common.Terminals

13

14 generate rM "http://www.sodalite.org/ds1l/RM"
15

16 import "http://www.eclipse.org/emf/2002/Ecore" as ecore
17

187 RM_Model:

19 ('data_types{'

20 dataTypes=EDataTypes

21 '}z

22 ('artifact_types{"'

23 artifactTypes=EArtifactTypes

~LERIE BT

25 ('capability_types{’

26 capabilityTypes=ECapabilityTypes

2 [TRryE

28 ('interface_types{'

29 interfaceTypes=EInterfaceTypes

<[R 4 1

('relationship_types{’
2 relationshipTypes=ERelationshipTypes
13 (VR R

4 ('node_types{"'

5 nodeTypes=ENodeTypes

fi (1312

7 ('policy_types{’

38 policyTypes=EPolicyTypes
3 | T}rRT

40 ;

Figure 35. Snippet of RM grammar

e DSL Editor: XText framework automatically generates a rich-featured textual editor for
both DSLs out of their grammar.

Roles that interact with the component (i.e. App Expert, ResExpert)
The IDE is the main SODALITE user interface for the following roles:
e Application Ops Expert (AOE): this role uses the IDE to define an abstract application
deployment model (see UC1 in D2.1) and to assign AADM nodes to target resources (see
UC2in D2.1).

S
D3.1 - First version of ontologies and semantic repository - Public Page 62

© Copyright Beneficiaries of the SODALITE Project

Project No 825480. ’ SOdalite

Resource Expert (RE): this role uses the IDE to define new resource patterns in a RM and
assign them to existing resources (see UC12 in D2.1).

Depends on
The IDE depends on the following SODALITE components:

KB: this semantic repository contains information about reusable resources and types
required in the definition of AADM whose specification lies on RMs.

Semantic Reasoner API: this is the interface between the IDE and the KB. It provides a
predefined set of queries to retrieve information about available resources and types from
the KB, which can be reused in the definition of AADM within the IDE editor. It also
supports the storage of AADMs into the KB. The IDE also uses this interface to request the
semantic validation of both AADMs and RMs. As a result of this interaction, the IDE can be
notified about model building inconsistencies and other recommendations. They will be
presented to the user next to the model entities affected by the validation error or by the
recommendation.

laC Verifier (laCVerificationAPI): before an AADM can be deployed, the IDE will request this
component to verify the conformance of the AADM with the deployment process. As a
result of this interaction, the IDE can be notified about model building errors, including
topology and provisioning workflow verification errors. They will be presented to the AOE
next to the AADM entities affected by the verification error.

laC Blueprint builder/Abstract Model Parser (DeploymentPreparationAPI): the IDE will
request this component of the laC layer to request the deployment of an AADM.

Bug Predictor and Fixer (DefectPredictionCorrectionAPl): the IDE will request this
component to predict bugs in the AADM. As a result of this interaction, the IDE can be
notified about model building errors and bugs. They will be presented to the AOE next to
the AADM entities affected by the verification error. Complementing the reported bugs,
this component may offer some bug fixes. They will offer to the AOE in the IDE editor,
within the bug report. If the AOE accepts to apply any fixes, the IDE will request its
application to this component.

Repositories
The IDE component is located in the folder ds! of the repository ide in the SODALITE GitHub portal:
https://github.com/SODALITE-EU/ide

The structure of this repository is as follows:

org.sodalite.dsl.AADM.parent: this is the parent Maven project for the AADM DSL and Editor
component.
o org.sodalite.dsl.AADM.feature: defines the Eclipse feature for the AADM DSL and
Editor component.
o org.sodalite.dsl.AADM.ide: creates the platform-independent IDE functionality for
the AADM editor plugin.
o org.sodalite.dsl.AADM.repository: provides an Eclipse update-site repository to
install the AADM Editor.
o orgsodalite.dsl.AADM.target: defines the Eclipse target (e.g. dependencies)
required by the ADDM editor.
o org.sodalite.dsl.AADM.tests: defines unit tests for the AADM language.
o org.sodalite.dsl.AADM.ui.tests: define unit tests for the ADDM editor.
o org.sodalite.dsl.AADM.ui: provides AADM Editor functionality and other
contributions to the Eclipse workbench.
o org.sodalite.dsl.AADM.web: provides support to embed the AADM editor within a
Web browser.

D3.1 - First version of ontologies and semantic repository - Public Page 63
© Copyright Beneficiaries of the SODALITE Project

https://github.com/SODALITE-EU/ide

{***} Project No 825480. ? SOdalite

o org.sodalite.dsl.AADM: defines the AADM grammar.

e org.sodalite.dsl.RM.ide: creates the platform-independent IDE functionality for the RM
editor plugin.

e org.sodalite.dsl.RM.ui: provides RM Editor functionality and other contributions to the
Eclipse workbench.

e org.sodalite.dsl.RM: defines the RM grammar.

e org.sodalite.dsl.kb_reasoner_client: provides a Java client for the Semantic Reasoner API,
which is used by both the AADM and RM IDE editors to send requests to the RB Reasoner.

The entire IDE DSL component, which encompasses the AADM and RM DSL and editors plugins, is
managed by Maven, so that the Eclipse update site for the SODALITE IDE could be built within the
SODALITE CI/CD pipeline. Through this update site, SODALITE AOEs and RMs could easily install
the IDE locally. See README.md file in SODALITE IDE repository for instructions to build the update
site and install the IDE within Eclipse.

e
D3.1 - First version of ontologies and semantic repository - Public Page 64

© Copyright Beneficiaries of the SODALITE Project

{***} Project No 825480. ? SOdalite

7 Conclusion

This deliverable presented the current version of the SODALITE Semantic Modelling layer, which is
relevant to T3.1 “Application Semantic Modelling” and T3.2 “Infrastructure Semantic Modelling”.
More specifically, the key meta-modelling principles and the SODALITE ODP have been presented,
which facilitate semantic representation of TOSCA-based cloud applications and cloud
infrastructures. In addition, the first version of the Semantic Reasoner has been described for
populating the KB and providing a REST API that different modules use to get information from the
KB. The module also provides the reasoning infrastructure to support entity search and
matchmaking, enabling the implementation of recommendation services and to support semantic
validation of the submitted AADLs. Finally, we described the specifics of the SODALITE IDE that
allows end users to define AADMs by reusing components and resources from the KB.

Next steps include further enrichments and enhancements of the SODALITE ontology-based
framework in three main directions. First, to update the semantic models (and the KB population
services) in order to support the representation of additional information based on the use case
and component requirements. Second, to extend the provided REST API in order to support
additional searching and reuse capabilities. Finally, the IDE will improve support for AADM and RM
modeling, including extensions to support additional TOSCA types and templates, simplified
modelling for AOEs and REs, support for semantic and optimization validation of AADMs and RMs
and hotfix application, wizards for AADM/RM persistences within the KB and AADM deployment
within the 1aC layer.

e
D3.1 - First version of ontologies and semantic repository - Public Page 65

© Copyright Beneficiaries of the SODALITE Project

P Project No 825480. ’ Sodalite

8 References

(1]
(2]

(18]

(19]

A. Gangemi and V. Presutti, “Ontology Design Patterns,” in Handbook on Ontologies, 2009.

R. Fischer and C. Janiesch, “A method to classify standards in emerging technologies: The
case of cloud computing,” in ECIS 2014 Proceedings - 22nd European Conference on
Information Systems, 2014.

H. Brabra, A. Mtibaa, F. Petrillo, P. Merle, L. Sliman, et al., “On semantic detection of cloud
API (anti)patterns”. Information and Software Technology, Elsevier, vol. 107, pp.65 - 82,
20109.

T.Rebele, F.Suchanec, J. Hoffart, et al., “YAGO: A Multilingual Knowledge Base from
Wikipedia, Wordnet, and Geonames”, In Proceedings of International Semantic Web
Conference, pp. 177-185, Springer, 2016.

T. R. Gruber, “A translation approach to portable ontology specifications,” Knowl. Acquis.,
1993.

R. Studer, V. R. Benjamins, and D. Fensel, “Knowledge engineering: Principles and
methods,” Data Knowl. Eng., vol. 25, no. 1-2, pp. 161-197, Mar. 1998.

F. van H. Deborah L. McGuinness, “Owl web ontology language overview,” W3C Recomm.
10.2004-03, 2004.

F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider, The
Description Logic Handbook: Theory, Implementation, and Applications. Cambridge
University Press, 2003.

K. Hammar, Content Ontology Design Patterns: Qualities, Methods, and Tools, vol. 1879.
Linkoping University Electronic Press, 2017.

M. Y. Vardi, “Why is modal logic so robustly decidable?,” in Descriptive Complexity and Finite
Models: Proceedings of a DIMACS Workshop, 1996.

B. C. Grau, I. Horrocks, B. Motik, B. Parsia, P. F. Patel-Schneider, and U. Sattler, “OWL2: The
next step for OWL,” J. Web Semant., vol. 6, no. 4, pp. 309-322, 2008.

D. Kourtesis, J. M. Alvarez-Rodriguez, and I. Paraskakis, “Semantic-based QoS management
in cloud systems: Current status and future challenges,” Futur. Gener. Comput. Syst., 2014.

F. Chen, X. Bai, and B. Liu, “Efficient service discovery for cloud computing environments,”
in International Conference on Computer Science and Information Engineering, pp. 443-448,
2011.

W. T. Tsai, X. Sun, and J. Balasooriya, “Service-oriented cloud computing architecture,” in
ITNG2010 - 7th International Conference on Information Technology: New Generations, 2010.
N. Bassiliades, M. Symeonidis, G. Meditskos, E. Kontopoulos, P. Gouvas, and I. Vlahavas,

“A semantic recommendation algorithm for the PaaSport platform-as-a-service
marketplace,” Expert Syst. Appl., vol. 67, pp. 203-227, Jan. 2017.
N. Bassiliades, M. Symeonidis, G. Meditskos, E. Kontopoulos, P. Gouvas, and I. Vlahavas,

“PaaSport Semantic Model: An Ontology for a Platform-as-a-Service Semantically
Interoperable Marketplace”, in Data and Knowledge Engineering, vol. 113, pp. 81-115,
Elsevier, 2018.

B.Martino, A.Esposito, S. Nacchia, S. Maisto, U. Breitenbiicher, “An Ontology for OASIS
TOSCA”, Advances in Intelligent Systems and Computing, vol. 1150, pp. 709-719, Springer
2020.

A. Willner, M. Giatili, P.Grosso, C.Papagianni, M.Morsey, I.Baldin. “Using semantic web
technologies to query and manage information within federated cyber-infrastructures.”
Information, pp. 1-26, 2017.

S. Challita, F. Paraiso, and P. Merle, “Towards Formal-based Semantic Interoperability in

D3.1 - First version of ontologies and semantic repository - Public Page 66
© Copyright Beneficiaries of the SODALITE Project

P Project No 825480. ’ Sodalite

(20]

(22]

(23]
[24]

(25]
[26]

(37]

Multi-Clouds”, 10th IEEE International Conference on Cloud Computing (CLOUD), pp.
710-713, June 2017.
A. Zhou, K. Ren, X. Li, W. Zhang, X. Ren, “Building Quick Resource Index List Using
WordNet and High-Performance Computing Resource Ontology towards Efficient Resource
Discovery”, In Proceedings of 21st IEEE International Conference on High Performance
Computing and Communications ,17th IEEE International Conference on Smart City and 5th
IEEE International Conference on Data Science and Systems, pp. 885- 892, 20109.
D. Androcec, and N. Vréek, “Methodology for detection of cloud Interoperability
problems.”, International Journal of Electrical and Computer Engineering Systems, vol. 7,
pp. 53-59, 2016.
D. Androcec, and N. Vrcek, “Ontologies for platform as service APIs interoperability.”,
Cybernetics and Information Technologies, vol. 16, pp. 29-44,2016
D. Allemang and J. Hendler, Semantic Web for the Working Ontologist. 2011.
B. Glimm, S. Rudolph, and J. Vélker, “Integrated metamodeling and diagnosis in OWL 2,” in
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), 2010.
B. Motik, “On the properties of metamodeling in OWL,” J. Log. Comput., 2007.
N. Jekjantuk, G. Groner, and J. Z. Pan, “Modelling and reasoning in metamodelling enabled
ontologies,” in Knowledge Science, Engineering and Management, Springer, 2010, pp.
51-62.
T. Tudorache, “Ontology Engineering: Current State, Challenges, and Future Directions,”
2019.
C. M. Keet, “An introduction to ontology,” Choice Rev. Online, vol. 51, no. 04, pp.
51-2000-51-2000, 2013.
A. Gangemi, “Ontology design patterns for semantic web content,” in Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), 2005.
A. Gangemi and P. Mika, “Understanding the Semantic Web through Descriptions and
Situations,” in Proceedings of ODBASE03 Conference, Springer, Berlin, Heidelberg, pp.
689-706, 2003.
N. Guarino, A. Oltramari, L. Schneider, C. Masolo, and A. Gangemi, “Sweetening Ontologies
with DOLCE,” 2007.
S. Erdweg, T. Van Der Storm, M. Vélter, M.Boersma, R.Bosman, W. R. Cook. et al , “The state
of the art in language workbenches.”, In International Conference on Software Language
Engineering, pp. 197-217, Springer, 2013.
B.Langlois, C.E.Jitia, and E.Jouenne, “DSL classification”. In OOPSLA Tth workshop on
domain specific modeling, October 2007.
M. Pfeiffer, and J.Pichler, “A comparison of tool support for textual domain-specific
languages.”, In Proceedings of the 8th OOPSLA Workshop on Domain-Specific Modeling, pp.
1-7, October 2008.
B. Merkle, “Textual modeling tools: overview and comparison of language workbenches”, In
Proceedings of the ACM international conference companion on Object oriented
programming systems languages and applications companion, pp. 139-148, October 2010.
M. Eysholdt, and H.Behrens, “ Xtext: implement your language faster than the quick and
dirty way.”, In Proceedings of the ACM international conference companion on Object
oriented programming systems languages and applications companion, pp. 307-309,
October 2010.
F.Jouault, J.Bézivin, and |.Kurtev, “TCS: a DSL for the specification of textual concrete
syntaxes in model engineering.”, In Proceedings of the 5th international conference on

D3.1 - First version of ontologies and semantic repository - Public Page 67
© Copyright Beneficiaries of the SODALITE Project

{***} Project No 825480. ’ SOdalite

Generative programming and component engineering, pp. 249-254, October 2006.

[38] F. Heidenreich, J. Johannes, S.Karol, M.Seifert, and C.Wende, “Model-based language
engineering with EMFText.“, In International Summer School on Generative and
Transformational Techniques in Software Engineering, pp. 322-345, Springer, July 2011.

[39] H. Krahn, B. Rumpe, and S.Volkel, “MontiCore: a framework for compositional
development of domain specific languages.”, International journal on software tools for
technology transfer, vol.12, pp.353-372, 2010, Online: http://www.monticore.de/

[40] P. Klint, T. Van Der Storm, J. J. Vinju, “RASCAL: A domain specific language for source
code analysis and manipulation.”, In SCAM, pp. 168-177, IEEE, 2009.

[41] L.C.L Kats, E. Visser, “The Spoofax language workbench: Rules for declarative
specifica-tion of languages and IDEs.”, In OOPSLA, pp. 444-463, ACM, 2010.

[42] V.Vujovi¢, M. Maksimovi¢, and B. Perisi¢, “Comparative analysis of DSM graphical editor
frameworks: Graphiti vs. Sirius”, In Proceedings of the 23rd International Electrotechnical
and Computer Science Conference (ERK'14) , 2014,

[43] V.Vujovi¢, M. Maksimovi¢, and B. Perisi¢, “Sirius: A rapid development of a DSM graphical
editor.”, In IEEE 18th International Conference on Intelligent Engineering Systems INES, pp.
233-238,2014.

[44] D.Moody, “What makes a good diagram? Improving the cognitive effectiveness of
diagrams in IS development,” 15th international conference of Information Systems
Development, Springer, 2006.

[45] S. Melia, C. Cachero, J. M. Hermida, and E. Aparicio, “Comparison of a textual versus a
graphical notation for the maintainability of MDE domain models: an empirical pilot
study.”, Software Quality Journal, vol. 24, pp. 709-735, 2016.

[46] “Oasis topology and orchestration specification for cloud applications version 1.0”,
November 2013, http://docs.oasis-open.org/tosca/TOSCA/v1.0/0s/TOSCA-v1.0-os.pdf

[47] M. Carlson, M. Chapman, A. Heneveld, S. Hinkelman, D. Johnston-Watt, A. Karmarkar, T.
Kunze, A. Malhotra, J. Mischkinsky, A.Otto, V.Pandey, G.Pilz, Z.Song,and P. Yendluri,
“Cloud Application Management for Platforms,” December 2012. Available:
https://www.oasis-open.org/committees/download.php/47278/CAMP-v1.0.pdf

[48] A.Bhattacharjee, Y. Barve, A. Gokhale, and T. Kuroda, “ Cloudcamp: A model-driven
generative approach for automating cloud application deployment and management.”,
Tech. Rep. ISIS-17-105, Vanderbilt University, Nashville, TN, USA, 2017.

[49] N. Ferry, A. Rossini, F. Chauvel, B. Morin, A. Solberg, (2013, June). “Towards model-driven
provisioning, deployment, monitoring, and adaptation of multi-cloud systems.”, In IEEE
Sixth International Conference on cloud computing, pp. 887-894, June 2013.

[50] M. Palyart, D. Lugato, I. Ober, and J.M. Bruel, “MDE4HPC: an approach for using
model-driven engineering in high-performance computing.”, In International SDL Forum,
pp. 247-261, Springer, July 2011.

[51] M. Smiatek, K. Rybinski, R. Roszczyk, and K. Marek, “ Towards a Unified Requirements
Model for Distributed High Performance Computing.”, In Data-Centric Business and
Applications, pp. 1-20, Springer, 2020.

[52] U.Breitenbiicher, T. Binz, O. Kopp, F. Leymann, F., and D. Schumm, “Vino4TOSCA: A

visual notation for application topologies based on TOSCA. “, In OTM Confederated
International Conferences "On the Move to Meaningful Internet Systems", pp. 416-424,
Springer, September 2012.

[53] 0. Kopp, T. Binz, U. Breitenbiicher, and F.Leymann, “Winery-a modeling tool for

—
D3.1 - First version of ontologies and semantic repository - Public Page 68

© Copyright Beneficiaries of the SODALITE Project

{***} Project No 825480. ? SOdalite

TOSCA-based cloud applications. “, In International Conference on Service-Oriented
Computing, pp. 700-704, Springer, December 2013.

[54] P. Stefanic, M. Cigale, F. Q. Fernandez, D. Rogers, L. Knight, A. C. Jones, and .Taylor,
“TOSCA-based SWITCH Workbench for application composition and infrastructure
planning of time-critical applications”, In conference of the 3rd edition in the series of

workshop on Interoperable infrastructures for interdisciplinary big data sciences, Zenodo,
2018.

[55] T. Tudorache, “Ontology engineering: Current state, challenges, and future directions”,
Semantic Web - Interoperability, Usability, Applicability an 10S Press Journal, vol. 11, no. 1,
pp. 125-138,2019.

[56] B. Neumayr and M. Schrefl, “Multi-level conceptual modeling and OWL”, In Proceedings
of International Conference on Conceptual Modeling, vol. 5833, pp. 189-199, 2009.

[57] B.Motik, “On the properties of metamodeling in OWL”", Journal of Logic and Computation,
vol. 17, no. 4, pp. 617-637, 2007.

e
D3.1 - First version of ontologies and semantic repository - Public Page 69

© Copyright Beneficiaries of the SODALITE Project

{***} Project No 825480. ? SOdalite

9 Appendix

We present in this section example definitions of the snow use case. More specifically, we present
the DSL syntax for the node templates, the intermediate exchange model and the final SODALITE
meta-model definition. The TOSCA representation of the node templates is given below.

topology template:
node_templates:
vm:
type: sodalite.nodes.VM.OpenStack
properties:
name: snow-vm
image: centos?7
flavor: ml.small
network: 87b57656-381c-4921-82c@-bd65a8a67cfd
security_groups: default,snow
key name: draganrX

docker-host:
type: sodalite.nodes.DockerHost
properties:
registry_ip: 154.48.185.207
requirements:
- host: vm

skyline-extractor:
type: sodalite.nodes.DockerizedComponent
properties:
image_name: snow-skyline-extractor
ports: 8080:8080
exposed_ports: 8080
requirements:
- host: docker-host

skyline-alignment:
type: sodalite.nodes.DockerizedComponent
properties:
image_name: snow-skyline-alignment
ports: 8081:8080
exposed_ports: 8080
requirements:
- host: docker-host

DSL syntax
node_templates{

vm{

e
D3.1 - First version of ontologies and semantic repository - Public Page 70

© Copyright Beneficiaries of the SODALITE Project

{* : Project No 825480. é SOdalite

type: sodalite.nodes.VM.OpenStack
properties{
name: ‘snow-vm'
image: 'centos7’
flavor: 'ml.small’
network: '87b57656-381c-4921-82c0-bd65a8a67cfd’
security groups: 'default,snow’
key_name: 'draganrX'

docker_host{
type: sodalite.nodes.DockerHost
properties{
registry_ip: '154.48.185.207'

}
requirements{
host{
node: vm
}
}

skyline_extractor{
type: sodalite.nodes.DockerizedComponent
properties{
image_name: 'snow-skyline-extractor'’
ports: '8080:8080'
exposed_ports: '8080'

}
requirements{
host{
node: docker_host
}
}

skyline_alignment{
type: sodalite.nodes.DockerizedComponent
properties{
image_name: 'snow-skyline-alignment'
ports: '8081:8080'
exposed_ports: '8080'
}
requirements{
host{
node: docker_host

e
D3.1 - First version of ontologies and semantic repository - Public Page 71

© Copyright Beneficiaries of the SODALITE Project

{*”} Project No 825480. ? SOdalite

Exchange Model

baseURI: https://www.sodalite.eu/ontologies/exchange@/

imports: https://www.sodalite.eu/ontologies/exchange/

@prefix : <https://www.sodalite.eu/ontologies/exchange@/> .

@prefix exchange: <https://www.sodalite.eu/ontologies/exchange/> .
@prefix exchange@: <https://www.sodalite.eu/ontologies/exchangeo#> .
@prefix owl: <http://www.w3.0rg/2002/07/owl#> .

@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.0rg/2000/01/rdf-schema#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

rdf:type owl:Ontology ;
owl:imports exchange: ;
owl:versionInfo "Created by the SODALITE IDE" ;

:AADM_1
rdf:type exchange:AADM ;
exchange:userId "27827d44-0f6c-11lea-8d71-362b9e155667" ;

:Property_1
rdf:type exchange:Property ;
exchange:name "name" ;
exchange:value "snow-vm" ;
:Property_2
rdf:type exchange:Property ;
exchange:name "image" ;
exchange:value "centos7" ;
:Property_3
rdf:type exchange:Property ;
exchange:name "flavor" ;
exchange:value "ml.small" ;

:Property_4
rdf:type exchange:Property ;
exchange:name "network" ;
exchange:value "87b57656-381c-4921-82c0-bd65a8a67cfd" ;

:Property_5

e
D3.1 - First version of ontologies and semantic repository - Public Page 72

© Copyright Beneficiaries of the SODALITE Project

{***} Project No 825480. ? SOdalite

rdf:type exchange:Property ;
exchange:name "security_groups” ;
exchange:value "default,snow" ;

:Property_6
rdf:type exchange:Property ;
exchange:name "key_name" ;
exchange:value "draganrX" ;
:Property_7
rdf:type exchange:Property ;
exchange:name "registry_ip" ;
exchange:value "154.48.185.207" ;

:Property_8
rdf:type exchange:Property ;
exchange:name "image_name" ;
exchange:value "snow-skyline-extractor"” ;

:Property_9
rdf:type exchange:Property ;
exchange:name "ports" ;
exchange:value "8080:8080" ;

:Property_10
rdf:type exchange:Property ;
exchange:name "exposed_ports" ;
exchange:value "8080" ;

:Property_11
rdf:type exchange:Property ;
exchange:name "image_name" ;
exchange:value "snow-skyline-alignment" ;

:Property_12
rdf:type exchange:Property ;
exchange:name "ports" ;
exchange:value "8081:8080" ;

:Property_13
rdf:type exchange:Property ;
exchange:name "exposed_ports" ;
exchange:value "8080" ;

:Parameter_1
rdf:type exchange:Parameter ;
exchange:name "node" ;

e
D3.1 - First version of ontologies and semantic repository - Public Page 73

© Copyright Beneficiaries of the SODALITE Project

{***} Project No 825480. ? SOdalite

exchange:value "vm" ;

:Requirement_1
rdf:type exchange:Requirement ;
exchange:name "host" ;
exchange:hasParameter :Parameter_1 ;

:Parameter_2
rdf:type exchange:Parameter ;
exchange:name "node" ;
exchange:value "docker_host" ;

:Requirement_2
rdf:type exchange:Requirement ;
exchange:name "host" ;
exchange:hasParameter :Parameter_2 ;

:Parameter_3
rdf:type exchange:Parameter ;
exchange:name "node" ;
exchange:value "docker_host" ;

:Requirement_3
rdf:type exchange:Requirement ;
exchange:name "host" ;
exchange:hasParameter :Parameter_3 ;

:Template_1
rdf:type exchange:Template ;
exchange:name "vm" ;
exchange:type "sodalite.nodes.VM.OpenStack" ;

exchange:
exchange:
exchange:
exchange:
exchange:
exchange:

:Template_2

properties
properties
properties
properties
properties
properties

:Property_1 ;
:Property_2 ;
:Property_3
:Property_4
:Property_5 ;
:Property_6

rdf:type exchange:Template ;
exchange:name "docker_host" ;

3
]
.
3
]

]

exchange:type "sodalite.nodes.DockerHost" ;
exchange:properties :Property_7 ;

e
D3.1 - First version of ontologies and semantic repository - Public Page 74

© Copyright Beneficiaries of the SODALITE Project

{*”} Project No 825480. ? SOdalite

exchange:requirements :Requirement_1 ;

:Template_3
rdf:type exchange:Template ;
exchange:name "skyline_extractor" ;
exchange:type "sodalite.nodes.DockerizedComponent" ;
exchange:properties :Property_8 ;
exchange:properties :Property 9 ;
exchange:properties :Property_10 ;
exchange:requirements :Requirement_2 ;

:Template_4
rdf:type exchange:Template ;
exchange:name "skyline_alignment" ;
exchange:type "sodalite.nodes.DockerizedComponent" ;
exchange:properties :Property_11 ;
exchange:properties :Property_12 ;
exchange:properties :Property_13 ;
exchange:requirements :Requirement_3 ;

SODALITE Meta-model

@prefix dul: <http://www.loa-cnr.it/ontologies/DUL.owl#> .

@prefix soda: <https://www.sodalite.eu/ontologies/sodalite-metamodel/> .
@prefix tosca: <https://www.sodalite.eu/ontologies/tosca/> .

@prefix ws: <https://www.sodalite.eu/ontologies/workspace/1/> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

ws : AADM_a0@poo8igdenfgvepasnlh0193r a soda:AbstractApplicationDeployment;
soda:createdAt "2020-01-27T09:42:02.579+02:00";
soda:createdBy ws:27827d44-0f6c-11ea-8d71-362b9e155667;
soda:includesTemplate ws:docker_host, ws:skyline_alignment,
ws:skyline_extractor,
ws:vm .

ws:27827d44-0f6c-11ea-8d71-362b9el155667 a soda:User .

WS :vm a
<https://www.sodalite.eu/ontologies/snow/tierl/sodalite.nodes.VM.OpenStack>;
soda:hasContext ws:Desc_6ee6c02gj5kcb3gl3nt6e3hgsq .

ws :Desc_6ee6c02gj5kcb3gl3nt6e3hgsq a soda:SodaliteDescription;
tosca:properties ws:PropClassifer_5fbmfmjehp3bfjfcgqk5qjv88o,
ws:PropClassifer_5phkcn69cctahuu3lboh5aut3i,
ws:PropClassifer_emp5em4jdt7eupotnh9gigpfih,
ws:PropClassifer_hndt50uf4kpiqteoblk3kgt5ijq,

e
D3.1 - First version of ontologies and semantic repository - Public Page 75

© Copyright Beneficiaries of the SODALITE Project

{*”} Project No 825480. ? SOdalite

ws:PropClassifer_kafsrlfpo9smdktcp5nbtigokn5,
ws :PropClassifer_sei8blnl@ludk8gshl6u354elr .

ws :PropClassifer_sei8blnl@ludk8gshl6u354elr a tosca:Property;
dul:classifies <https://www.sodalite.eu/ontologies/snow/tierl/image>;
tosca:hasDataValue "centos7" .

ws:PropClassifer_5phkcn69cctahuu3lboh5aut3i a tosca:Property;
dul:classifies <https://www.sodalite.eu/ontologies/snow/tierl/flavor>;
tosca:hasDataValue "ml.small" .

ws:PropClassifer_5fbmfmjehp3bfjfcggk5qjv880 a tosca:Property;
dul:classifies <https://www.sodalite.eu/ontologies/hpc/tierl/job_name>;
tosca:hasDataValue "snow-vm" .

ws:PropClassifer_hndt50uf4kpiqtOoblk3kgt5jq a tosca:Property;
dul:classifies <https://www.sodalite.eu/ontologies/snow/tierl/key_name>;
tosca:hasDataValue "draganrX" .

ws:PropClassifer_emp5em4jdt7eupotnh9gi9pfih a tosca:Property;
dul:classifies <https://www.sodalite.eu/ontologies/snow/tierl/networks>;
tosca:hasDataValue "87b57656-381c-4921-82c0-bd65a8a67cfd" .

ws:PropClassifer_kafsrlfpo9smdktcp5nbtiokn5 a tosca:Property;

dul:classifies
<https://www.sodalite.eu/ontologies/snow/tierl/security_groups>;
tosca:hasDataValue "default,snow" .

ws :docker_host a
<https://www.sodalite.eu/ontologies/snow/tierl/sodalite.nodes.DockerHost>;
soda:hasContext ws:Desc_4e5rjkgnbegbmua96spleggfq3 .

ws :Desc_4e5rjkgnbogbmua96spleggfq3 a soda:SodaliteDescription;
tosca:properties ws:PropClassifer_balpu92n6ro6uj291g70c3eask;
tosca:requirements ws:ReqClassifier_m@819bq22rvhvdbtmt3m7bc463 .

ws:PropClassifer_balpu92n6ro6uj291g70c3eask a tosca:Property;
dul:classifies <https://www.sodalite.eu/ontologies/snow/tierl/registry_ip>;
tosca:hasDataValue "154.48.185.207" .

ws :ReqClassifier_m@819bq22rvhvdbtmt3m7bc463 a tosca:Requirement;
<dul:hasParameter> ws:ParamClassifier_6rbsqgigpnvm3a4h6r7ee2p7b4;
dul:classifies tosca:host .

ws:ParamClassifier_6rbsqgigpnvm3ad4h6r7ee2p7b4 a soda:SodaliteParameter;
dul:classifies tosca:node;
tosca:hasObjectValue ws:vm .

e
D3.1 - First version of ontologies and semantic repository - Public Page 76

© Copyright Beneficiaries of the SODALITE Project

{*”} Project No 825480. ? SOdalite

ws:skyline_extractor a
<https://www.sodalite.eu/ontologies/snow/tierl/sodalite.nodes.DockerizedCompon
ent>;

soda:hasContext ws:Desc_voma@7qtumgd2hve9d76271q95 .

ws :Desc_voma@7qtumg42hve9d76271q95 a soda:SodaliteDescription;

tosca:properties ws:PropClassifer_9mn53edlosno6472uhkq5uj65v,
ws:PropClassifer_ee5c4meam7bgg4jib3dp7kpvis,

ws:PropClassifer_nu90hqd8b7iqpk7205cn7ro85;
tosca:requirements ws:ReqClassifier_anlgc6knsnp8a9lfpjj3rmc30a .

ws:PropClassifer_ee5c4meam7bggdjib3dp7kpvi4 a tosca:Property;
dul:classifies
<https://www.sodalite.eu/ontologies/snow/tierl/exposed_ports>;
tosca:hasDataValue "8080"~"xsd:int .

ws:PropClassifer_9mn53edlosno6472uhkq5uj65v a tosca:Property;
dul:classifies <https://www.sodalite.eu/ontologies/snow/tierl/image_name>;
tosca:hasDataValue "snow-skyline-extractor" .

ws:PropClassifer_nu90hqd8b7iqpk7205cn7ro85 a tosca:Property;
dul:classifies
<https://www.sodalite.eu/ontologies/snow/tierl/exposed_ports>;
tosca:hasDataValue "8080:8080" .

ws:ReqClassifier_anlgc6knsnp8a9l1fpjj3rmc30a a tosca:Requirement;
<dul:hasParameter> ws:ParamClassifier_45774i7h3qg3r34j4oqt10odi3;
dul:classifies tosca:host .

ws:ParamClassifier_45774i7h3qg3r34j4oqt10odi3 a soda:SodaliteParameter;
dul:classifies tosca:node;
tosca:hasObjectValue ws:docker_host .

ws:skyline_alignment a
<https://www.sodalite.eu/ontologies/snow/tierl/sodalite.nodes.DockerizedCompon
ent>;

soda:hasContext ws:Desc_8jsgmOvqgebem77jujrl7vbiém2 .

ws :Desc_8jsgmOvgebem77jujrl7vblém2 a soda:SodaliteDescription;

tosca:properties ws:PropClassifer_615jhg@1krova3rk3962jhorsn,
ws:PropClassifer_sa3gd9pqghp219ecplnd7ifphc,

ws:PropClassifer_t37gv7otfqjvlc2pgdfblcoogs;
tosca:requirements ws:ReqClassifier_llal2mvma6tifioe5Shilrsrihk .

ws:PropClassifer_sa3gd9pqghp219ecpind7ifphc a tosca:Property;
dul:classifies
<https://www.sodalite.eu/ontologies/snow/tierl/exposed_ports>;
tosca:hasDataValue "8080"~"xsd:int .

e
D3.1 - First version of ontologies and semantic repository - Public Page 77

© Copyright Beneficiaries of the SODALITE Project

{* : Project No 825480. a SOdalite

ws:PropClassifer_t37gv7otfqjvlc2pg4fblcooqs a tosca:Property;

dul:classifies
<https://www.sodalite.eu/ontologies/snow/tierl/exposed_ports>;

tosca:hasDataValue "8081:8080" .

ws:PropClassifer_615jhg01kr9va3rk3962jh9rsn a tosca:Property;
dul:classifies <https://www.sodalite.eu/ontologies/snow/tierl/image_name>;
tosca:hasDataValue "snow-skyline-alignment" .

ws:ReqClassifier_1lal2mvma6tifioe5Shilrsrlhk a tosca:Requirement;
<dul:hasParameter> ws:ParamClassifier_fkigml5qcibjcpldcdtebd2qn2;
dul:classifies tosca:host .

ws:ParamClassifier_fkigml5qcibjcpldcdtebd2qn2 a soda:SodaliteParameter;
dul:classifies tosca:node;
tosca:hasObjectValue ws:docker_host .

e
D3.1 - First version of ontologies and semantic repository - Public Page 78

© Copyright Beneficiaries of the SODALITE Project

