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Executive Summary 

This deliverable reports on the progress of the SODALITE project in developing a model for 
application and infrastructure performance. Application performance deployed in an infrastructure 

can be predicted from the Performance Model of the application and infrastructure. Predicting and 

improving performance helps not only to reduce application costs but also improve infrastructure 
utilisation in general.  As part of this M12 deliverable, this report describes the prototype model 
developed and also reports on the baseline performance of use case applications.  

 

Application optimisation can be performed before deployment (static) or at runtime (dynamic). 

Static application optimisation will enable applications to be optimised based on the optimisation 

selected by the Application Ops Expert (AOE). Application Optimiser component will map the 
optimisations to a selected infrastructure target based on the Performance Model and then 
configure and validate them for the deployment. The application and infrastructure Performance 
Model for static optimisation is based on a simple statistical model, that is developed from running 

standard benchmarks and applications on an infrastructure target.  

 

At runtime (dynamically), different available options of deployment will be explored and enacted 

based on monitoring information and a machine learning model, built by profiling these deployment 
variants. Also, at runtime, given selected deployment applications can be quickly reconfigured (i.e., 
vertical scalability) in terms of resources allocated to meet the current demands using a lightweight 

control theory-based approach. 

 

As part of the deliverable, the initial baseline performance of the demonstrating use case 

applications are reported. The results from running the benchmarks on an HPC cluster and the 
resulting application and infrastructure Performance Model are also reported. This model is 
validated by predicting runtime of a standard HPC application. The Performance Model will be 
further improved and extended to support heterogenous hardware like GPUs and Cloud based 

targets before the next deliverable (Full release of application and infrastructure performance 
models). 

 

As future work, we plan to better integrate the machine learning model that provides deployment 
refactoring with the control theoretical approach, that provides fine-grained resource allocation, in 

a hierarchical and comprehensive solution. On the one hand, control theory can request from the 

machine learning component a new deployment selection when resources are not sufficient to 
address the current demand. On the other hand, the machine learning solution can change the goals 
of controllers at runtime when a new deployment model is selected. 
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Glossary 

 

Acronym Explanation 
AI Artificial Intelligence 

API Application Programming Interface 

ASA Average Skyline Accuracy 

CNN Convolution Neural Network 

CPU Central Processing Unit 

CT Computer Tomography 

DEM Digital Elevation Model 

DNN Dense Neural Network 

DSL Domain Specific Language 

ETL Extract Transform Load 

FPGA Field- Programmable Gate Array 

GPS Global Positioning System 

GPU Graphic Processing Unit 

HPC High Performance Computing 

HPCC High Performance Computing Challenge 

HPCG High Performance Conjugate Gradient 

HPL High Performance Linpack 

IaC Infrastructure as Code 

IO Input Output 

IoT Internet of Things 

ML Machine Learning 

MPI Message Passing Interface 

MT Model Tree 

OCR Optical Character Recognition 

ONNX Open Neural Network eXchange 

PCIe Peripheral Component Interconnect Express 

QoS Quality of Service 

SIMD Single Instruction Multiple Data 

SLA Service Level Agreement 

STL Standard Template Library 

VM Virtual Machine 
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1 Introduction 

This report describes a prototype for application and infrastructure performance modelling. The 
prototype aims to take a performance-centric view of the applications and infrastructure and will 

model them to enable performance decisions to be made. Performance optimisation will be 

performed before deployment (static optimisations) and also after deployment based on refactoring 
or reconfiguration (dynamic optimisations). 

 

SODALITE will provide a model for HPC infrastructure using standard benchmarks and applications 
based on the features that influence performance. These performance models for infrastructure and 

application will be used in the Application Optimiser (as defined in deliverable D2.1 [1]) component 

to statically optimise the application and deployment. At runtime, a Machine Learning (ML) based 
application model will be used for the entire application workflow to dynamically optimise/refactor 
its deployment model based on performance metrics and monitoring information. We will refer to 
the static model as Performance Model and the latter for refactoring as ML-based Predictive Model for 

clarity.  Also, we will explore a model based on control theory for reconfiguration during run time. 

 

For the application Performance Model, the applications will be classified broadly as AI, Big Data and 

Traditional HPC and performance attributes for classes of application will be defined separately. 
Applications in demonstrating uses cases will be used to test and validate the model. Further, the 
hardware infrastructure will be modelled based on HPC benchmarks like HPL1 and STREAM2. The 

HPL benchmark is used to rank the HPC machines in the Top 5003 list. With the application and 

infrastructure model, the SODALITE system will be able to make decisions on optimising an 
application deployment. The model will be further improved based on metrics measured at 

application run time. 

2 Static Performance Optimisation 
The performance of an application that is deployed using Infrastructure as Code (IaC) on 

heterogeneous infrastructure targets is paramount. The performance of an application can be 
determined by modelling the application and infrastructure. The application modelling extracts the 
application parameters that influence the performance of an application and the infrastructure 

modelling will help us extract the performance characteristics of the infrastructure target such as 

peak performance and memory bandwidth. With the understanding of the Application and 
Infrastructure, performance optimisation maps the optimal application parameters to the 

infrastructure target. The application parameters can also be autotuned during run time. 

 

Figure 1 shows the application optimisation requirements in a heterogeneous target. The target 
infrastructure can have multiple combinations of CPU, GPU or FPGA with different memory 

hierarchy. The target’s File System and Network are also diverse and are usually shared by multiple 
nodes within the infrastructure. With different schedulers for HPC and Cloud, orchestrating a 

workflow optimally becomes complex. This diversity in HPC and Cloud based infrastructure targets 

results in a complex problem of application optimisation. Optimising all applications on a diverse 
target is out of scope for this project and instead the project will focus on three different application 
types like AI Training & Inference, Big Data Analytics and Traditional HPC applications like Solver. 

 

1 The Linpack Benchmark https://www.top500.org/project/linpack/ 

2 Sustainable Memory Bandwidth in High Performance Computers https://www.cs.virginia.edu/stream/ 

3 Top 500 supercomputing sites https://www.top500.org/lists/2019/11/ 

 

https://www.top500.org/project/linpack/
https://www.cs.virginia.edu/stream/
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This broad spectrum represents a majority of HPC applications and also represents the 

demonstrating use cases in SODALITE. 

 

 
Figure 1: Performance Optimisation for applications deployed in a Heterogeneous infrastructure 

The list below shows the mapping of actual applications to application types: 

1. AI Training and Inference - Pixelwise Mountain Skyline detection CNN [2] training and 

PolimiDL[3] inference 
2. Big Data Analytics - HiBench Suite4 from Intel 
3. Traditional HPC - Code Aster5 based Solver for in-silico clinical trials. 

For these applications, the following optimisations will be enabled:  

1. Autotuning – Application parameters can be autotuned for performance improvement. We 
will use the DSL-based autotuner developed as part of the CRESTA EU6 project. 

2. Multi Architecture support. This will enable applications to efficiently use multiple hardware 
like CPUs, GPUs or FPGAs. The application will be built for a particular target architecture or 
use specific target libraries. 

3. Specific optimisations for application groups namely, AI training/inference, HPC data 

Analytics and Traditional HPC application (Solver): 
a. AI training will be optimised with target-specific libraries and Graph compilers7. The 

Extract, Transform, Load (ETL)8 pipeline will be optimised by improving data 
movement by prefetching, caching and reuse of data. 

 
4 https://github.com/intel-hadoop/HiBench 

5 https://www.code-aster.org 

6 http://www.cresta-project.eu 

7 Graph compilers for AI training and inference - https://www.sodalite.eu/content/graph-compilers-ai-

training-and-inference 

8 ETL https://docs.microsoft.com/en-us/azure/architecture/data-guide/relational-data/etl 

https://github.com/intel-hadoop/HiBench
https://www.code-aster.org/
http://www.cresta-project.eu/


Project No 825480. 

D3.3 Prototype for Application and Infrastructure performance models - Public                                                              

Page 10 
© Copyright Beneficiaries of the SODALITE Project 

b. Big Data Analytics applications like Apache Spark9, DASK10, NVIDIA’s cuDataFrame11 
based on DataFrame API will be optimised for target hardware and storage.  

c. Solver (MPI) application will be optimised by using efficient solver libraries like 
PETSC12 and MUMPs13 for different targets. HPC Standards MPI14, OpenMP15 and 

OpenACC16 will be enabled to support performance scaling and portability.  
4. Applications will be delivered in an optimised container like Docker17 or Singularity18 to 

ensure portability across different targets. 
 

 
Figure 2: Architecture of Optimisation DSL and Optimisation Recipe 

 

Static application optimisation is achieved in SODALITE using the components described in the 

following two subsections.  

2.1 Optimisation DSL and recipe 

Figure 2 shows how the Optimisation recipe is built from the Optimisation DSL. This DSL contains all 
optimisation options for a particular application type along with autotuning and multi-architecture 

 
9 Apache Spark - Unified Analytics Engine for Big Data https://spark.apache.org/ 

10 DASK- Scalable Analytics in Python https://dask.org/ 

11 Open GPU Data Science | RAPIDS (https://github.com/rapidsai/cudf) 

12 PETSC - Portable Extensible Toolkit for Scientific computation https://www.mcs.anl.gov/petsc/ 

13 MUMPS: a parallel sparse direct solver http://mumps.enseeiht.fr 

14 Message Passing Interface https://www.mpi-forum.org/docs/ 

15 OpenMP https://www.openmp.org/ 

16 OpenAcc https://www.openacc.org/ 

17 Docker https://www.docker.com 

18 Singularity https://singularity.lbl.gov 

 

https://spark.apache.org/
https://spark.apache.org/
https://dask.org/
https://rapids.ai/
https://github.com/rapidsai/cudf
https://www.mcs.anl.gov/petsc/
http://mumps.enseeiht.fr/
https://singularity.lbl.gov/
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support choices. For example, for AI training workloads, the Application Ops Expert (AOE) can select 

the AI framework to use along with optimisations like Graph compiler and ETL options. This mapping 
of selected optimisations along with the Infrastructure targets and the Application tasks will be 
stored as Optimisation Recipe in the IaC Model Repository. The Application Optimiser component will 

retrieve the recipe from the repository and will decode, configure, build and validate the 
optimisations.  

2.2 Application Optimiser 

The Static Application Optimiser optimises application for a given target platform based on the 
optimisation options selected. Figure 3 shows the architecture of the Application Optimiser and its 

dependencies. The optimiser acts on the Optimisation Recipe, which contains the mapping of 

optimisations to application tasks and Infrastructure targets. This recipe will be retrieved from the 
IaC Model repository which will also host the application and infrastructure Performance Model. For 
each of the optimisations in the Optimisation Recipe, the optimisations will be configured and 
validated. For this, Application Optimiser requires the application code to be written in a standard 

High-level API along with the application inputs and configuration. This enables the optimiser to 

make performance decisions based on the available target. The optimiser will use the prebuilt 
optimised containers from the Image Registry and modify them to build an optimised container for 

the application deployment. The Application optimiser will also make changes to 
runtime/deployment and job scripts for submission to HPC resources.  

 

 
Figure 3: Architecture of Static Application Optimiser 

3 Static Application and Infrastructure Performance model  

The requirements for the application model will be derived from the demonstrating use cases, 

whereas the infrastructure model will reflect the test beds. Application/Infrastructure Performance 
Models help us in predicting the runtime of an application on an appropriate hardware 
infrastructure. There are multiple approaches taken in the HPC community to develop a model. This 
may be based on profiling an application, micro benchmarking primitive components of the 

application or simulation of application changes and analytical modelling. We will use a 

combination of benchmarking to model infrastructure and then an analytical modelling to model 
application runtime. We will aim to have a simple model that will help us identify the limiting factors 



Project No 825480. 

D3.3 Prototype for Application and Infrastructure performance models - Public                                                              

Page 12 
© Copyright Beneficiaries of the SODALITE Project 

for performance quickly and understand how the performance changes with application and 

infrastructure. 

3.1 Infrastructure Performance model 

A HPC resource can be modelled using the measured performance of benchmarks that capture 

particular aspects of the resource, for example the bandwidth of the memory.  Good examples which 
we plan to use are HPC benchmarks like HPL, STREAM, MPI Bandwidth/latency, IO Bandwidth.  This 
information along with the number of CPUs/GPUs will characterise an HPC cluster.  

3.1.1 High-Performance LINPACK benchmark 

The High-Performance LINPACK (HPL) benchmark is the standard and popular yardstick used to rank 
the supercomputers. It involves the solution of a dense system of linear equations and the problem 

can be scaled to the full size of the machine. This number reflects the performance of a dedicated 
system for solving a dense system of linear equations and is a good indication of the peak 
performance of the floating-point rate of execution of a machine.  

3.1.2 STREAM Benchmark 

The STREAM benchmark measures the sustainable memory bandwidth in HPC. Historically, 

computer cores have become faster whereas the memory bandwidth progress is limited. The peak 
performance that can be achieved for many applications, is limited by the memory bandwidth. The 

memory bandwidth is measured using simple vector kernels like copy, add, scale and triad. We use 
triad performance in our model. 

3.1.3 MPI Bandwidth/MPI Latency 

Network communication is a fundamental part of most parallel applications and the network 
bandwidth and latency drive the scaling of parallel applications. We will use the Effective 
Bandwidth19 (b_eff) as a single measure to represent the communication network. This benchmark 

takes into account short and long messages used in real applications to derive this metric. It also 

uses several communication patterns for the MPI communications (Ping-Pong, Naturally Ordered-
Ring, Randomly Ordered-Ring). We use the Randomly Ordered-Ring pattern in our model. 

3.1.4 IO Bandwidth 

Most HPC applications read and write data to a persistent storage like disks. The speedup of parallel 
applications at scale depends hugely on the IO bandwidth that can be achieved. We will use Effective 

IO bandwidth20 (b_eff_io) as a single measure of IO bandwidth. b_eff_io averages the bandwidth 

across several access patterns and buffer lengths. 

3.1.5 PCIe bandwidth 

In heterogeneous architectures, the accelerator is attached to the host CPU via a PCIe. Applications 

usually transfer data to the accelerator and receive processed data back to the host. This 

communication impacts the performance of the entire application. We will use the measured PCIe 
bandwidth as a metric for modelling performance of heterogeneous architectures. For GPUs, the 

Babel Stream21 and CUDA accelerated Linpack benchmarks22 will be used to help model it. 

 
19 https://fs.hlrs.de/projects/par/mpi//b_eff/ 

20 https://fs.hlrs.de/projects/par/mpi/b_eff_io/ 

21 https://github.com/UoB-HPC/BabelStream 

22 https://developer.nvidia.com/rdp/assets/cuda-accelerated-linpack-linux64 

 

https://fs.hlrs.de/projects/par/mpi/b_eff/
https://fs.hlrs.de/projects/par/mpi/b_eff_io/
https://github.com/UoB-HPC/BabelStream
https://developer.nvidia.com/rdp/assets/cuda-accelerated-linpack-linux64
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3.2 Application runtime Model 

An application performance model is used to predict application performance on specific hardware 
and to determine how this performance scales. Many approaches have been used in the past that 

combine hardware information along with application profiling data to study their performance. We 

will use a simple statistical model to predict application performance. This model will be further 
improved. We will use the application wall clock time as the metric that will be optimised, unless 
specified otherwise. 

An application run time 𝑡 on a hardware infrastructure can be represented as follows: 

𝑡 =  𝑡𝑐𝑜𝑚𝑝 +  𝑡𝑐𝑜𝑚𝑚 +  𝑡𝑚𝑒𝑚  + 𝑡𝑖𝑜, 

where 𝑡𝑐𝑜𝑚𝑝  is the time spent on computing, 𝑡𝑐𝑜𝑚𝑚is the communication time, 𝑡𝑚𝑒𝑚is the time 

spent in loading the data to memory, and 𝑡𝑖𝑜 is the time spent doing input/output. We can model the 
application time based on the HPC benchmarks described in the previous section by considering the 
following associations: 

● 𝑡𝑐𝑜𝑚𝑝  based on HPL (𝐻𝑃𝐿), 

● 𝑡𝑐𝑜𝑚𝑚  based on b_eff (only bandwidth, 𝑀𝑃𝐼 𝐵𝑊), 

● 𝑡𝑚𝑒𝑚  based on STREAM (only bandwidth, 𝑀𝐸𝑀 𝐵𝑊), 

● 𝑡𝑖𝑜  based on b_eff_io (𝐼𝑂 𝐵𝑊). 

In the case of heterogeneous architectures, additional parameters for PCIe bandwidth will be added 
to account for the data communication. We can generalize the equation by considering the 

dimensionless speed-up factors 𝑆, i.e. the ratio of the run time when running on a given number of 

cores with respect to a reference run time (usually obtained with a single core execution):  

𝑆 = 𝑓𝐻𝑃𝐿𝑆𝐻𝑃𝐿 + 𝑓𝑀𝑃𝐼 𝐵𝑊𝑆𝑀𝑃𝐼 𝐵𝑊 + 𝑓𝑀𝐸𝑀 𝐵𝑊𝑆𝑀𝐸𝑀 𝐵𝑊 + (1 − 𝑓𝐻𝑃𝐿 − 𝑓𝑀𝑃𝐼 𝐵𝑊 − 𝑓𝑀𝐸𝑀 𝐵𝑊) 𝑆𝐼𝑂 𝐵𝑊,(1) 

where we explicitly include the speed-up factors for each benchmark that are combined with a set 

of fractions 𝑓 such that by construction the sum of the fractions of all components is equal to 1. 

Therefore, the speed-ups are measured across different number of cores and hardware 
configurations and modelled using least square fitting in order to obtain estimated speed-up values 

𝑆̂. The value of the fractions should indicate which part of the hardware drives or hinders 

performance. For example, a higher 𝑓𝑀𝑃𝐼 𝐵𝑊 denotes high dependency on the communication 

bandwidth can application can achieve. 

Finally, we can estimate the run time of the execution at a given number of cores 𝑐 

                                                                                      𝑡𝑐  =  𝑡𝑟 𝑆̂𝑐 𝑆̂1/𝑆̂𝑟,  (2) 

where 𝑡𝑟is the run time measured when executing the application with 𝑟 cores. An example of 
application of the model is given in section 6.1. 

3.3 Application Performance  

There exists a wide range of traditional HPC applications, with different requirements which change 
rapidly with the increasing AI and Big Data workloads. Our model models the performance of an 

particular application configuration, and this model will fail if its configuration is changed. 
Application configuration space is huge, and all the parameters in this space cannot be modelled. 
For example, there are hundreds of inputs for a DNN training and performance will change with 

changes to input. Of these hundreds of parameters, there are a few that will heavily influence the 
performance and scaling of an application.  
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We will work with the application domain experts to identify these parameters and model them. The 

section below describes the three different application types that map to demonstrating use cases 
and also show the parameters that will be modelled.  

3.3.1 AI Training and Inference 

Skyline Extraction  

The skyline extraction for Snow use case will drive the AI Training and Inference application model. 
Fast identification of objects is at the core of Outdoor Augmented reality, and this demands not only 

high recognition accuracy, but also real time performance with energy and memory efficiency. The 

Pixelwise Mountain Skyline detection CNN [2] network forms the core of PeakLens mobile app. This 
CNN network uses 8940 manually annotated mountain images for training, with images obtained 
from Flickr and 2000 publicly available webcams. The network evaluates the probability of a pixel 

belonging to a skyline, which is then post processed to extract the actual skyline. 

 

The CNN model is adapted from the LeNet model, and these pixelwise CNNs have been found 

successful in edge extraction problems. The model contains 8 layers with a combination of 4 conv, 2 
max pool, 1 relu, and a softmax layer. The input to the model is the patches generated from the 

images, consisting of 300 patches per image. There are usually 100 positive patches - skyline edge 

detected - and 200 negative patches - no skyline edge detected - per image. The output is a binary 
classification problem of detecting a skyline or not. The model is trained using the Caffe framework23, 
and the model output is evaluated using Average Skyline Accuracy (ASA). ASA measures the fraction 

of image columns where the CNN skyline matches the ground truth. The model is embedded in the 
PeakLens app, where the initial peak position is calculated using the DEM, GPS, and sensors. After 
the initial detection, the Skyline extraction is used to correct substantial errors. 

PolimiDL Inference 

PolimiDL [3] is an application for accelerating DL inference on an embedded system with no impact 

on accuracy. This is competitive with TFLite24. PolimiDL is a C++ application that supports multi-
threading (STL concurrency) and SIMD optimisations with no specific platform support. 

Optimisations are performed at: 

● Generation-time: Layer fusion (Depthwise Separable Convolution), precomputing weights, 
data layout changes to match operations 

● Compile-time: per layer optimisation like loop unrolling, compilation to shared object, 

reduce cache miss, tick-tock pipe lining with memory as a dependency 
● Initialisation-time: Fuse memory buffers in allocation, prioritise memory efficiency over 

compute speed 
● Configuration time: Schedule tasks based on profiling and memory requirement 
● Run-time: Dynamic scheduling to tasks to thread pool 

PolimiDL has support only for TensorFlow25 format and does not support GPUs. Evaluation of 

PolimiDL on different mobile devices show competitive results compared to TFLite.  

 

Most inference optimisations use compression techniques like quantisation (reduce precision), 

pruning (remove redundant connections), and knowledge distillation (compress and transfer 
knowledge). Architectures like SqueezeNet also optimise by using small kernels with lesser 

 

23   https://caffe2.ai/docs/mobile-integration.html 

24 TensorFlow lite https://www.tensorflow.org/lite 

25 TensorFlow https://www.tensorflow.org/ 

https://caffe2.ai/docs/mobile-integration.html
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parameters. Google has developed efficient models for mobile phones called MobileNet, which are 

based on depthwise separable convolutions and also make multiple trade-offs for performance. 

 

Android Neural Network API and Metal API (Apple) also provide access to hardware acceleration in 

mobile phones. The training for such networks is performed offline using mainstream frameworks 
on HPC servers. The models are then converted to a mobile framework format before optimising for 
inference. ONNX26 provides a standard for model definition that enables porting across different 

frameworks. The optimisations are focussed not only on accuracy and execution time, but also 
Memory and Energy consumption. 

Modelling AI Training and Inference 

AI training depends on many parameters and is known particularly for hyper parameter tuning, 

which helps in optimising the training of Deep Neural network (DNN) models. DNN models are 
characterised by the number of layers, batch size, and number of parameters in general. We will use 

these three parameters to study how the application performance model reacts to changes to them. 

The execution of the training model on the GPU is only part of the overall workload, with the Extract, 
Transform, Load (ETL) part of the workflow also incurring large expenses for Big Data workloads. ETL 
is usually done by the CPU, after which the data is fed to the GPU. Optimising and tuning the 

parameters that determine data reuse, prefetching, and caching will be explored.  

3.3.2 Big Data Analytics 

The HiBench Suite27 from Intel will be used as a driving use case for Big Data Analytics. This 

benchmark contains nineteen different workloads that represent the spectrum of different Big data 
applications. These benchmarks are supported on multiple Big data frameworks like Spark, 
Hadoop28, Flink29, Kafka,30 and Storm31. Pandas32 is another famous framework used widely. Pandas, 
Apache Spark, and NVIDIA support dataframe like API for relational data analytics.   

 

Big Data Analytics performance depends mainly on efficient data movement and reuse. Tools like 

Apache Spark gained popularity by keeping the data in memory instead of writing to files. 

Optimisation and tuning of parameters that determine memory and storage usage, along with data 
reuse, prefetching, and caching will be explored. For the performance studies, Big data benchmark 

will be used to measure and study the response time for a handful of relational queries.  

3.3.3 Traditional HPC 

Virtual Clinical Trials 

The use case of in-silico clinical studies for spine surgery aims at the development of a simulation 

process chain that supports clinical in-silico studies of bone-implant systems in neurosurgery, 
orthopaedics and osteosynthesis. 

 
26 https://onnx.ai 

27 https://github.com/intel-hadoop/HiBench 

28 Apache Hadoop - https://hadoop.apache.org 

29 Apache Flink — Stateful Computations over Data Streams https://flink.apache.org 

30 Apache Kafka- a distributed streaming platform https://kafka.apache.org 

31 Apache Storm https://storm.apache.org 

32 Pandas- a data analysis library - https://pandas.pydata.org 

 

https://github.com/intel-hadoop/HiBench
https://pandas.pydata.org/
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A simulation process chain is used to analyse and evaluate screw-rod fixation systems for 

instrumented mono- and bisegmental fusion of the lumbar spine. An essential characteristic is that 
the data involved are not only passed on from one component to another, but that various 
recombination and multiple uses of the data in different components take place. The layout of the 

complete process pipeline with its data flow is shown in Figure 4.  

The process starts with clinical CT-image data which in the first place have to be treated by image 
Processing and Filtering techniques to enhance their quality. This has to be done mainly due to that 

fact that classically clinical imaging data are meant to be analysed by the human eye and not by 
image processing or numerical algorithms.  

 

 

Figure 4: Schema of the Virtual Clinical Trial use case pipeline 

 

After image processing in a Geometry Extraction step, the surface geometry of the bone structures to 
be simulated is extracted from the Enhanced Image-Data. The surface geometry is then passed on 

to a Discretization component which reconstructs the triangularization of the surface to ensure 
proper element quality and then applies a volume meshing algorithm to produce a three-

dimensional simulation mesh of the bone structures. This mesh has to be further enhanced by 

additional soft tissue structures like the intervertebral discs, tendons and other cartilage structures. 

This is done based on templates in the Applying Boundary Conditions component. Additionally, 
supports and boundary conditions are applied in this step.  

 

Another essential part of the simulation model is the usage of an inhomogeneous, patient specific 
material model. The basis for this model is a mapping between the bone density given by the voxel 
mesh of the clinical imaging data and the three-dimensional unstructured simulation mesh of the 

bone structures. This mapping is done in the Density Mapping component. After the mapping, each 
element in the simulation mesh holds a density value. Since one aspect of the simulation process 
chain is the quantification of the uncertainty that arises once the mapped density data are used to 

generate orthotropic material data by parametrized transfer functions, the mapped density data are 
passed on to the Probabilistic Mapping component. In this component a probabilistic programming 
approach is used to determine the boundaries for the 95% highest density interval, as well as the 

mode. This means by the data produced in this step, the deterministic model can be transformed 

into three models representing the uncertainty of the material distribution.  
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The integration of the results of the Probabilistic Mapping component into the simulation model is 

also done by the Applying Boundary Conditions component, which finally produces three Enhanced 
Meshed Geometries. These so-called input decks are processed by the Solver component which is 
based on Code_Aster a Finite-Element-Method simulation software package. The resulting 

displacements, stress and strain fields of the bone structures are placed in three separate result files 
that can be processed by visualization or data analytics methodologies. 

Modelling Traditional HPC 

Traditional HPC applications are built on top of standards like MPI for Message passing, OpenMP for 
thread-based parallelism, and OpenACC for GPU acceleration. Applications can also use libraries 

that parallelise and run on different hardware. Performance depends on how the application is 
configured to run. The number of MPI ranks, CPU threads, GPU threads, and possibly numerous 

application parameters may be relevant. For Solvers, performance will be modelled based on the 
size of the matrices and the solver methods in general.  

4 Performance Modeling in Refactoring 

In this section, we present the preliminary results of the performance modeling for deployment 
refactoring.  In the first prototype of the performance models, we focus only on the cloud 

applications.  

 

The individual components of an application can be deployed in different ways using different 

resources (e.g., a small VM and a large VM) and deployment patterns (single node, cluster with load 

balancer, with or without cache, with or without firewall).  We call these deployment possibilities 
(application component) deployment options. A valid selection of deployment options results in a 
valid deployment model variant for the application.  The deployment refactoring requires a model 

that can estimate the impacts of a given deployment option selection on the QoS (Quality of Service) 
metrics such as latency and cost, under different contexts such as different workloads.  We build a 

machine learning based predictive model for this purpose. At design time, we profile the deployment 
variants to collect the data required to build the machine learning model.  At run time, we use the 

monitoring of the running application to collect the data and to update the learned model as 
necessary. The predictive model enables the deployment refactorer to predict any potential 

violations of the application goals, and consequently to find alternative deployment model variants.  

 

We assume that the App Ops Expert has modeled the allowed set of deployment model variants in 
terms of (application component) deployment options and their dependencies. The App Ops Expert 

can use an existing variability modeling technique and tool, such as feature modeling [4].   

 

At design time, we deploy deployment model variants and profile them to collect the performance 

metrics. Our initial focus is on the execution time/latency. The nature of the collected data is 

illustrated in Table 1.  Each deployment model variant consists of a subset of the application 
component deployment options (D1, D2, …).  In the table, 0 means that the corresponding 
deployment option is not used by the deployment model variant, whereas 1 means the opposite. 

The performance metrics are obtained for different workloads.  The collected data are used for 
learning the functions that estimate the impacts (increase or decrease of the metric) of the 
deployment options on performance metrics. The collected data are also used to test the accuracy 

of the learned functions.   
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Application Component Deployment Options Performance Metrics 

D1 D2 D3 D4 D5 .. PM1 PM2 .. 

0 1 1 1 0 .. x1 x2 .. 

1 0 0 1 1 .. y1 y2 .. 

1 1 1 o o ... z1 z2 .. 

.. .. .. .. .. .. .. .. .. 

Table 1: Structure of Observation Records 

A given deployment model variant can behave differently under different workloads (generally, in 
different contexts).  In that case, the result of learning would be a set of equations that estimate the 

impact of deployment option selection in different contexts.  For example, the equations that can 

calculate the impacts of deployment option selection on the performance metric PM1 under three 
different workloads would be: 

   (3) 

 

Each deployment option is assigned a coefficient that is effective only when the deployment option 
is selected (i.e., it is set to “1”). For example, the expected value of PM1 under the workload range  

(x1 < w <=x2) for a deployment selection, where only D1 and D2 are selected can be calculated as 
follows: 

    𝑃𝑀1 =  𝑎2 ∗ 1 − 𝑏2 ∗ 1 +  𝑐2 ∗ 0 = 𝑎2 − 𝑏2 

 

Our approach is inspired by the works on data-driven approach to self-adaptive systems [5-6] and 

data-driven approaches to predicting the performance of cloud applications [7-8]. While the 

approach is not tied to a particular learning algorithm, for the first prototype, we are experimenting 
with M5 model tree algorithm (as in [5]) and multiple linear regression model. 

5 Reconfiguration 

Elasticity is the capability of a system to adapt to workload changes by provisioning or de-
provisioning resources automatically such that at each point in time the available resources match 
the current demand as closely as possible [9].  

 

Several elastic systems for cloud computing have been proposed both in academia and industry. 
Traditionally, solutions usually lack of speed in the adaptation process that relies on slow-to-boot 

virtual machines as resources that need to scale, or because they optimize resource allocation by 
exploiting heavy-weighted combinatorial formulations. Moreover, those systems use a coarse 
granularity of allocation that heavily depends on the pre-configured virtual machines available from 

the cloud provider [10, 11, 12].  
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For these reasons, we present a solution that exploits two lightweight enablers: containers and 

control-theory. Containers can be reconfigured in milliseconds (vs minutes of VMs) [13], while 
control-theoretical planners can compute next allocation in constant time. 

 

Given initial, static, allocations, a set of SLAs and applications deployed within containers, resources 
must be re-allocated at runtime in order to meet unforeseen peaks of workload, divergences from 
the expected performance and failures. For this reason, we equipped each container deployed in the 

nodes with a dedicated control-theoretical planner that produces a continuous, fast and fast-
grained re-configuration of it by changing its allocated resources (e.g., CPU-time). This methodology 

was already applied to microservices [14] and big-data applications [15]. Herein, we describe how 
we extended our work to support machine-learning applications (in inference mode) that can exploit 

not only CPU cores but also GPUs (e.g., TensorFlow applications). The current implementation of 
this approach works within the Cloud; in the future we will investigate the possibility to apply the 
same in HPC. 

 

Since the GPU is the faster and more optimized resource for ML applications, in our approach, firstly 
we let that the workload saturates the GPU and then, if needed, a CPU allocation is enacted in the 

case of possible SLA violations. Assuming that multiple deployed applications can share the same 

resources (CPUs and GPUs) we adopted the following control schema. 

 

GPUs are controlled through an event-based heuristic that employs a priority queue to dispatch 

requests from chosen applications to the available GPUs. Every time a GPUs completes the 
processing of a request, it pops a new one from the queue. The prioritization mechanism could be 
configured by the users; by default, applications with more requests in the queue are preferred 

among the others.  

 

We define the expected speed of answer vSLA  of the system as the inverse of the SLA defined as a 

constraint over the response time. At every control step the speed of answer provided by the GPUs 
vGPU  is computed. As reported in the control schema in Figure 5, if the difference between vSLA and     vGPU 

is greater than 0, this difference becomes the set point voCPU  of  the CPU controller CCPU.   

 

 
Figure 5: Control Schema 

CCPU is implemented as a PID controller [16] with the goal of reducing the error ev computed as the 
difference between voCPU and the actual CPU speed vCPU. To do that it computes the next CPU 

allocation nc  for the target container which is enacted using Docker commands. 

6 Performance results 

This section illustrates how the prototype Infrastructure and Application Performance Model works 
in an HPC cluster and also reports on the measured baseline performance of use case applications.  
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6.1 Performance model on HPC system 

We will use the concepts described in section 3.1 to build a performance model. The HPC 
benchmarks used to characterize the infrastructure performance, are included in a Singularity 

container. The use of a Singularity container will enable portability across HPC and Cloud platforms 

with almost no loss in performance. The HPL, STREAM and b_eff benchmark were taken from the 
HPCC benchmark suite (v1.5)33, while b_eff_io is built from the official source. The container image 
is based on Debian Buster, where we also install MPICH v3.3.1. The exact definition can be found in  

Appendix 1. 

The first iteration of the HPC testbed hosted in USTUTT is intended for experimentation with the 

First Prototype of SODALITE platform and running initial version of the demonstrating use cases, and 

not intended for performance. The testbed has a small scale (only two nodes are available), as 
described in the deliverable D6.2. Hence the initial benchmarks run on the testbed resulted in the 
limited Performance Model, which could not predict the performance scaling of an HPC applications 
accurately. Therefore, we used the Cray XC40 Piz Daint supercomputer at the Swiss National 

Supercomputing Centre (CSCS) to build and validate the performance model. Each node of the 

system is equipped with a CPU Intel Xeon E5-2695 v4 @ 2.10GHz (2 x 18 cores, 64GB DRAM). The 
system features a full Cray's Aries network and a LUSTRE filesystem. We use the following versions 

on Piz Daint : 

● singularity/3.4.2 
● cray-mpich-abi/7.7.1034 

where cray-mpich-abi is the cray build of the mpich-abi compatibility library. 

Figure 6 shows the HPC Benchmarks speed-up values on Piz Daint Supercomputer. The speed-up 
values for each HPC benchmark are evaluated with respect to 1 core performance, except for MPI 

BW where the result on 2 cores is considered as reference (clearly, we need at least two cores for the 
MPI communication). We use a single MPI rank per core. We also report the results of the linear 
fittings 𝑦 = 𝑝0 + 𝑝1𝑥, superimposed for each plot. Note that for the MPI BW we use two linear 
polynomials to describe the low and high core count behaviours of the speed-up, respectively. For 

low core-counts, the communication performance is dominated by the fast intra-node 
communications, therefore it gets worse when we increase the number of involved nodes. This effect 
is compensated by the reduction of the message size exchanged between the MPI processors; 

therefore, the overall performance of the communication becomes better with high core-counts. 

The official suggested values in HPCC benchmark suite are used to run the benchmarks. Then, we use 
these fits to model the HPCG benchmark35 application. HPCG is a high-performance application that 

implements preconditioned conjugate gradient (PCG) method with a local symmetric Gauss-Seidel 
preconditioner. This application represents most common computational kernels and data access 
patterns found in scientific HPC applications. The code is written in C++ and parallelised using MPI 

and OpenMP.  

Figure 7 shows the speed-up of the HPCG application and the results of the combined fit (see section 
3.2, formula (1), for a description of the model). As expected for the HPCG benchmark, the 

performance is dominated by the MEM BW part compared to HPL and MPI BW. We can expect 

improved application performance if the infrastructure memory bandwidth improves. The I/O 
dependency is zero as the application does not do any I/O. Finally, we can use this model to predict 
the performance scaling (formula (2) in section 3.2). For example, at 720 cores (20 nodes), model 

 

33 https://icl.utk.edu/hpcc/ 

34 MPICH ABI Compatibility Initiative https://www.mpich.org/abi 

35 https://www.hpcg-benchmark.org/ 

 

https://icl.utk.edu/hpcc/
https://www.hpcg-benchmark.org/
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predicts application performance of  (338.333 ± 42.746) GFLOP/s, which is well in agreement with 

the measured value of 335.378 GFLOP/s. 

The aforementioned approach and analysis will be applied to derive the Performance Model of the 

SODALITE HPC testbed, when more compute nodes are introduced in the testbed.  

 

 

 
Figure 6: HPC Benchmarks speed-up values on Piz Daint Supercomputer. Speed-up are evaluated with respect to 1 core 

performance, except for MPI BW where the result on 2 cores is considered. Linear fittings (y=p_0+p_1 x) are superimposed for 

each plot. Note that for the MPI BW we use two linear polynomials to describe the low and high core count behaviours of the 
speed-up, respectively 
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Figure 7: HPCG Benchmark speed-up values and combined fit 

6.2 Performance model on Cloud test bed 

One of the main differences between HPC and Cloud is the way the hardware is shared. In HPC, the 
compute and memory are dedicated, whereas the network and storage are shared by applications. 

In Cloud, compute, memory, network and storage are virtualized and are usually shared by 

applications. This causes high variance in application performance. This high variance should be 
modeled for the Cloud. For the cloud, the performance model described in section 3.1 and illustrated 

in section 6.1 will be modified to include performance variation. This will be developed after M12 as 
part of the full application and Infrastructure performance model. 

 

In the next subsections, we describe the demonstrating use cases and report on their measured 

baseline performance on the testbed. 

6.3 Snow UC 

Figure 8 shows the six main components of the Snow UC image processing pipeline as planned for 
the first version. This will be extended further in future releases. 

 
Figure 8: Initial version of the pipeline as a sub-group of the components of the original one 

Two of these components are already been executing in the HPC and Cloud testbeds, while the 
others are still being deployed and not ready to measure the baselines. In this section we will provide 

a first metric of performance for the Skyline extraction and the Panorama Alignment components. 

For the components that were deployed in the Cloud testbed the employed VMs have the following 
configuration (when not otherwise specified): 2vCPUs, 4GB RAM and 40GB Disk space, whereas for 

the HPC component (only model training of the Skyline Extractor), only one compute node with 20 

cores CPU, 128GB RAM and one GPU was used. 
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6.3.1 Skyline Extraction  

The goal of this component is to obtain the landscape skyline of a photograph, i.e., the set of all the 
points that represent the boundary between the terrain slopes and the sky. For this purpose, every 

pixel of the input image is fed to a binary classifier, and only positive edges are retained. The training 

and validation of the classifier is done using a dataset of mountain images, where for each one exists 
an annotation containing the skyline present on it. Once the classifier has been trained it is used on 
a web service whose goal is to take an image as input, execute the model, perform some image post-

processing, and return the skyline mask, which will be later used to perform the panorama 
alignment. 

6.3.1.1 Model training 

For the Skyline Extraction model training, the dataset consisted of 8,856 images annotated with 

skyline, from which 80% was used for training and validation and the remaining 20% for testing. The 
component was trained using a modified version of a well-known computer vision model known as 
LeNet [17], using TensorFlow 1.11. 

The complete training of the Skyline Extraction model takes approximately 7.2 hours in one GPU 
node of the HPC testbed. The training executes multiple epochs and finishes in epoch 20 due to early 
stopping with a test accuracy of 0.955485. Profiling the complete run and studying the performance 

is complex, so instead, a single epoch is profiled and studied to understand the performance, 

 

For a single epoch, the application took 1200 seconds and this time can be further classified as 

shown below in Table 2. 

 

 Application component  Subcomponent  Time in seconds 

 Initialisation time   12 

 Training time  Get next training batch 896 

 Calculate loss 18 

 Training step 29 

 Validation time   233 

Table 2: Skyline extraction training wallclock time profile 

The application spends the bulk of the time getting the next batch of data for training. Using the GPU 

profiler and profiling a single epoch shows that only 32 seconds are spent in the GPU (runtime of 

~1200 seconds), which corresponds to only 3% of the total time. Figure 9 shows the GPU profile of 

Skyline extraction training (single epoch). Kernel dgrad_engine calculates the gradients for back 

propagation. CUDA_memcpy_HtoD represents the time spent in copying data from host to device. 

sgemm and relu represents single precision matrix multiplication and REctifier Linear Unit kernels. 

The full training and GPU kernel profiles clearly indicate data movement as a bottleneck for 

performance.  
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Figure 9: GPU profile of a single epoch of Skyline extraction training 

6.3.1.2 Web component 

The service to make the skyline extraction available was developed in Java with the Spring 
framework, making use also of the OpenCV library for the image processing. To measure its 
processing and response time a small set of 20 images was created. Such images have on average a 

size of 1MB. We measure the time that it takes to send the request and write the result in the file 
system. In this case, the result is a .jpg containing the skyline mask. 

 

 

Total  

Time 

Time Namelookup 

 

Time to  

Connect Time Start Transfer 

Average 1.53s 31.9μs 66.94ms 0.14s 

Table 3: Web component response time 

On average, the component takes 1.5 seconds to process an image of 1MB.  This time can be split 
into different parts of the process. Time Namelookup is the time, in seconds, it took from the start 
until the name resolving was completed. Time to connect is the time, in seconds, it took from the 

start until the TCP connection to the remote host (or proxy) was completed. Finally, we have the 
Time Start Transfer, which is the time, in seconds, it took from the start until the first byte was just 
about to be transferred. This includes all pre-transfer commands and negotiations that are specific 

to the particular protocol(s) involved and also the time the client needed to calculate the result.  In 
this case, this time is about 0.14 seconds. 
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If we detract the time the client needed to prepare the request (0.2s) from the total time it took to 

send, process the request and write the results, we get that the component takes on average 1.3 
seconds. 

6.3.2 Panorama Alignment  

The alignment can be seen as the search for the correct overlap between two cylinders (assuming 
the zero tilt of the photograph): one containing the 360° panorama of the terrain at a given location 
and the other one containing the photo, suitably scaled. It is useful to obtain the Mountain Mask that 

will be the input to the successive components to calculate the Snow Index. 

 

The service to make the panorama extraction was developed in Java with the Spring framework, 
making use also of the OpenCV library for the image processing. To measure its processing and 

response time a small set of 20 images was created. Such images have in average a size of 1MB.  

 

We measure the time that it takes to send the request and write the result in the file system. In this 

case, the result is a json file containing the mountain mask (along with other attributes) that will be 
later used to compute the snow index. 

 

 

Total  

Time 

Time Namelookup 

 

Time to  

Connect Time Start Transfer 

Average 13.25s 37.15μs 66.56ms 0.14s 

Table 4: Panorama Alignment response time 

On average, the component takes 13.2 seconds to process an image of 1MB.  This time can be split 
into different parts of the process. Time Namelookup the time, in seconds, it took from the start until 

the name resolving was completed. Time to connect is the time, in seconds, it took from the start 
until the TCP connect to the remote host (or proxy) was completed. 

Finally, we have the Time Start Transfer, which is the time, in seconds, it took from the start until the 

first byte was just about to be transferred. This includes all pre-transfer commands and negotiations 
that are specific to the particular protocol(s) involved and also the time the client needed to 

calculate the result.  In this case, the time is about 0.14 seconds. 

If we detract the time the client needed to prepare the request (0.2s) from the total time it took to 

send, process the request and write the results, we get that the component takes on average 13 
seconds. 

This component invokes the 360 Panorama generation. At the moment and for testing purposes, it is invoking a POLIMI 
instance of the panorama generator, I think it would be more accurate to actually measure the performance using the 

SODALITE testbed instance of the 360 panorama. 

6.4 Vehicle UC 

Within the Vehicle IoT use case, individuals may, at various times, submit license plate images for 
recognition. These purposes include the initial registration of the vehicle with the mobile app, 

capturing evidence to support insurance claims preparation (such as in the case of a collision), or, 
within a fleet or car sharing scenario, for accessing a vehicle that has been allocated to the individual 
to use. In order to enable these use cases, the accuracy of the detection model is of fundamental 

importance, and, therefore, is something that must be iteratively improved over time. 
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6.4.1. License Plate Recognition 

 
Figure 10: Schema of the license plate detection and detection model training pipelines (Vehicle IoT use case) 

License Plate Recognition itself is carried out via a dedicated microservice, which is backed by an 
ML-based plate detection pipeline using a pre-trained model. The process for this, and the training 

of the detection model are outlined in Figure 10. 

 

 
Figure 11: License Plate identification and extraction 

In the case of the license plate recognition service, an image of the plate is sent to an OpenALPR-

backed36 microservice via a REST API, which, in turn, makes two passes across the image. The first 
pass looks to detect a license plate within the image (using OpenCV37), which is then extracted and 

processed by Tesseract OCR38 in order to return the detected textual results. This process is 

exemplified in Figure 11. 

 

36 Automatic License Plate Recognition https://www.openalpr.com 

37 https://opencv.org 

38 https://github.com/tesseract-ocr/tesseract 

 



Project No 825480. 

D3.3 Prototype for Application and Infrastructure performance models - Public                                                              

Page 27 
© Copyright Beneficiaries of the SODALITE Project 

6.4.1.1. License Plate Detection Pipeline 

Using a trained model, results are grouped into ‘detectable’, ‘partially detectable’, and 
‘undetectable’ images. Detectable images are ones where the text and the image match, with a 

reasonably high confidence level (> 90%). Partially detectable images are ones where a plate has 

been identified and parts of the number string have been correctly identified, but others not (this is 
often as a result of plate orientation, such as when an image is taken from an angle, rather than 
head-on) - confidence levels may be closer to 50-75%. Undetectable images are ones where the 

service is unable to identify a license plate in the image at all, failing to extract the plate and make it 
beyond the first pass detection. 

 

In Table 5 below, baseline measurements have been obtained on a quad-core Intel Xeon E3-1275 v5 

server with 64GB of RAM. These are split between the Detection Time (the time spent identifying the 
existence of a license plate and extracting a cropped section for OCR processing), Processing Time 
(the time spent performing character recognition on the extracted plate and identifying the plate 

number string), Transfer Time (the time spent in transmitting the source image to the service for 

analysis), and the Total Time spent on each of these activities combined. 

 

 Image 
Size 

Total 
Time 

Detection 
Time 

Processing 
Time 

Transfer Time 
(Local) 

Detectable 

Images 

300kB 125ms 83.75ms 17.05ms 24.20ms 

126ms 83.61ms 16.37ms 26.02ms 

1MB 334ms 267.09ms 18.42ms 48.49ms 

1.7MB 420ms 277.42ms 28.01ms 114.57ms 

3.4MB 476ms 260.40ms 26.74ms 188.86ms 

11MB 1,182ms 700.14ms 24.67ms 457.20ms 

Partially 

Detectable 
Images 

100kB 189ms 153.99ms 16.85ms 18.16ms 

Undetectable 
Images 

200kB 222ms 207.62ms - 14.38ms 

300kB 248ms 224.54ms - 23.46ms 

2.2MB 546ms 217.38ms - 328.62ms 

Table 5: License plate recognition times across file sizes 

From Table 5, we can see that most of the time is (as expected) in transferring the image to the 

service (especially in cases of larger file sizes) and in identifying and extracting the plate from the 
image (Detection Time). Once the plate has been extracted, the amount of time to decode the plate 
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string (Processing Time) does not vary significantly. The amount of time spent on detection similarly 

does not fluctuate significantly, regardless of whether the plate is detectable in whole, in part, or not 
at all. 

6.4.1.2. Detection Model Training Pipeline 

Plates that are partially detectable are identified as candidates for improving the OCR detection 
model and are saved off for subsequent retraining (on an opt-in basis, with the end-user’s explicit 
consent) and subsequent re-deployment. In order to produce a new Tesseract OCR training sheet, 

at least 200+ new images should be included, requiring an average processing time of 16-20 hours 
(on a quad-core Intel Xeon E3-1275 v5 server with 64GB of RAM), depending upon image complexity. 

 

Plates that are undetectable highlight a larger problem or shortcoming with the first-pass detector, 

as no plate can be identified within the image. In this case, a much larger range of images and 
processing times are required. For best results, at least 3000+ new images should be included, 

requiring processing time of anywhere from 40-60 hours, depending upon image complexity. 

 

Component Images Required Approximate Training Time 

OCR Training (Plate 

Extraction) 

200+ 16-24 hours 

Plate Detector 3000+ 40-60 hours 

Table 6: License Plate Detection Models, data requirements, and current training times 

As neither of these cases is frequently run (there is no online learning carried out), processing can be 

batched - lending itself well to the increased computational capabilities of HPC systems. Plate 
tagging, however, remains a manual process, and effectively serializes this part of the workload. 

6.5 Clinical UC 

Deliverable D6.2 "Initial Implementation and Evaluation of the SODALITE Platform and Use Cases" 
(Section 4.2) describes the prototype implementation of the Clinical UC, the components of which 

are presented in Figure 12. Due to the higher complexity of the reconstruction and discretization 

steps, the initial version of the segmentation, geometry extraction and discretization steps were 

performed manually, therefore the simulation process chain starts from the Density Mapping 
component. 

 

Figure 12: Schema of the Virtual Clinical Trial use case pipeline 
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The components that were deployed and run on the HPC testbed are Density Mapping, Probabilistic 

Mapping and Code_Aster Solver. The components were encapsulated into the Singularity (v3.4.1) 
containers and based on the ubuntu:18.04 image. All measurements were made in the frontend 
node, which has 20 compute cores, and currently only application wallclocktime is measured. The 

following subsections report on the configuration details and measurements for the deployed 
components. 

6.5.1 Density Mapping 

This component receives three inputs decks with meshed geometries as well as three CT data, and 
then maps density values into each element inside the volume mesh, producing modified input 

decks that are used to generate orthotropic material data. 

 

The implementation of Density Mapping is done in Fortran. It is a sequential process and not 
parallelizable, therefore the configuration cannot be changed for further improvement. Running it 

on the testbed took 122.4  seconds on average. 

6.5.2 Probabilistic Elasticity Mapping 

Probabilistic Mapping receives the output from Density Mapping and computes a probability 

distribution for the elasticity for each element, extracting the low and high bounds and the mode of 

the density interval. It then produces three solver input decks (low, mode, high) for each input deck. 

 

Probabilistic Mapping was implemented in Python and uses mpi4py39 Python library for MPI 

parallelization. We ran the Probabilistic Mapping component over various number of ranks utilizing 
MPI (starting from single rank and exponentially doubling the number of ranks) with the following 
parameters: number of samples is 10000 and number of datapoints of the volume datasets is 8192. 
The Execution (wallclock) time over the number of MPI ranks  for Probabilistic Mapping is shown in 

Error! Reference source not found.. 

 

Number of MPI 

ranks 
1 2 4 8 16 32 64 

Wallclocktime, s 148.66 76.16 43.22 27.73 21.42 46.84 62.60 

Table 7: Execution (wallclock) time over the number of MPI ranks for Probabilistic Mapping 

The results show that with the increase of ranks number, the performance improves (i.e. decrease 

of execution time) until 16 ranks; after that the performance is getting worse. The reason is the CPU 
bound, since the number of ranks exceeds the number of cores on the frontend node, thus the 
execution of the probabilistic mapping should be distributed over multiple physical nodes to further 

gain a speedup. 

6.5.3 Solver 

Receiving input decks from the Probabilistic Mapping, the Solver component uses finite element 

methods to compute a solution for lower and upper bounds and the mode of the highest density 
intervals, producing a solution file for each deck. The Solver is based on Code_Aster software 
package, which in turn is written in Fortran and can be parallelized with MPI. Despite parallelization 

 
39 https://mpi4py.readthedocs.io/en/stable/ 

https://mpi4py.readthedocs.io/en/stable/
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support, the prototype version of this component was run on a single thread, resulting in average 

execution time of 789.17 seconds. 

7 Concluding Remarks 

Application performance depends on multiple factors and modelling the performance will help 

resource experts to better provision the infrastructure and also get maximum performance for their 
application. Applications can be optimised before deployment (static) or at runtime (dynamic). In 
this report, we presented a prototype of Infrastructure and application Performance Model for static 

performance optimisation. We can use this model to predict HPC application performance in a HPC 

or a Cloud based infrastructure. We have shown how a benchmarking-based model can be used to 
accurately predict performance scaling of a standard HPC application. This model will be further 

adapted to model cloud-based infrastructure and improved to also model accelerator-based 
hardware like GPUs.  

 

Moreover, we introduced an approach for the runtime re-configuration of resources for machine 

learning applications deployed in the Cloud that can be executed using both CPU and GPUs. The 
solution is an extension of TensorFlow based on lightweight control theory planners that exploits 
the speed of containers in being re-configured to perform fast and fine-grained vertical scaling of 

resources. This allows us to efficiently fulfil the quality of service requirements over the response 
time. 

 

The deployment refactoring requires the ability to select a particular set of deployment options as 
well as to change the current deployment option selection in order to maintain the performance 
goals of the application under changing workloads. To support this decision making, a model is 

trained to estimate the impacts of a deployment option selection on the performance metrics. This 
model will be used to compare and select alternative deployment variants at runtime, and to guide 
the modifications to the deployment model from the dynamically discovered deployment options.   
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Appendix 1. HPC Benchmarks Singularity Definition File 
Bootstrap: docker 

From: debian:buster 

 

%help 

    This is the container used to run SODALITE (https://www.sodalite.eu/) 

    benchmarks for performance modelling (WP3). 

 

%labels 

    Author cerl@cray.com --  Cray EMEA Research Lab 

    Version v0.1.0 

 

%environment 

    export BINDIR=/workdir/bin 

 

    # Taken MPI parameters 

    export MYRANK=$(${BINDIR}/mpirank | cut -d':' -f 1) 

    export NPROCS=$(${BINDIR}/mpirank | cut -d':' -f 2) 

 

    # Ignore inputs if multiple ranks are recognized 

    if test ${NPROCS} -eq 1; then 

        if test ! -z ${NP+x}; then 

            export NPROCS=${NP} 

            export RUNCMD="mpiexec -np ${NPROCS}" 

        fi 

    fi 

 

%runscript 

    timestamp=${timestamp:-$(date '+%Y%m%d%H%M')} 

    filelabel=${filelabel:-"ranks${NPROCS}"} 

    maindir=${PWD} 

    rundir=${rundir:-${maindir}} 

    if test ${MYRANK} -eq 0; then 

        echo "NPROCS:" ${NPROCS} 

        echo "Label file:" ${filelabel} 

        echo "Rundir:" ${rundir} 

    fi 

 

    cd ${rundir} 

 

    case "${APP}" in 

        hpcc) 

            if test ${MYRANK} -eq 0; then 

                # Delete previous HPCC output 

                rm -f hpccoutf.txt 

                echo "Run:" ${RUNCMD} ${BINDIR}/hpcc 

                test -e $rundir/hpccinf.txt || \ 

cp ${maindir}/hpccinf.txt ${rundir}/hpccinf.txt 

            fi 

            ${RUNCMD} ${BINDIR}/hpcc 

            if test ${MYRANK} -eq 0; then 

                # Rename HPCC output 

                if test -f hpccoutf.txt; then 

                    mv hpccoutf.txt \  

${maindir}/results/${filelabel}_${timestamp}_hpccoutf.txt 

                else 
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                    echo "Exit with error!" 

                    exit 1 

                fi 

            fi 

            ;; 

        beffio) 

            TOTMEM=`free -m | grep Mem | awk '{print $2}'` 

            COREMEM=$(( TOTMEM / $(getconf _NPROCESSORS_ONLN) )) 

            BEFFFLAGS=${BEFFFLAGS:-"${maindir}/beffio_flags.txt"} 

            BEFFIOCMD="-MB ${COREMEM} -MT ${TOTMEM} \ 

$(cat ${BEFFFLAGS}) \ 

-N ${NPROCS} -f ${filelabel}_${timestamp}_b_eff_io" 

            if test ${MYRANK} -eq 0; then 

                echo "Run:" ${RUNCMD} ${BINDIR}/b_eff_io ${BEFFIOCMD} 

            fi 

            ${RUNCMD} ${BINDIR}/b_eff_io ${BEFFIOCMD} 

            if test ${MYRANK} -eq 0; then 

                if test -f ${filelabel}_${timestamp}_b_eff_io.prot \ 

-a -f ${filelabel}_${timestamp}_b_eff_io.sum; then 

                    mv ${filelabel}_${timestamp}_b_eff_io.prot \ 

     ${filelabel}_${timestamp}_b_eff_io.sum ${maindir}/results 

                else 

                    echo "Exit with error!" 

                    exit 1 

                fi 

            fi 

            ;; 

        *) 

            if test ${MYRANK} -eq 0; then 

                echo "Specify an app with APP=<app>, where <app> can be 'hpcc' or 

'beffio'!" 

            fi 

            ;; 

    esac 

 

    cd ${maindir} 

 

%files 

    # Copy ARCH file to compile HPCC 

    # Based on https://github.com/hpc-uk/archer-benchmarks/blob/ 

    #          master/synth/HPCC/Make_arch/Athena/Make.athena_gcc 

    # Create workdir 

    build/Make.Linux /workdir/ 

 

    # Copy C program to check MPI rank 

    build/mpirank.c /workdir 

 

 

 

 

 

 

%post 

    # 

    # Binary directory 

    # 

https://github.com/hpc-uk/archer-benchmarks/blob/
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    export BINDIR=/workdir/bin 

    mkdir -p ${BINDIR} 

 

    # 

    # First install default packages and clean caches 

    # 

    apt-get update && apt-get -y upgrade --no-install-recommends 

    apt-get -y install --no-install-recommends \ 

                       build-essential wget less gfortran procps \ 

                       libopenblas-dev 

 

    apt-get clean && rm -rf /var/lib/apt/lists/* # do not forget to clean! 

 

    # 

    # Move inside build directory 

    # 

    cd /workdir 

 

    # 

    # Install MPICH 

    # 

    export MPICH_VERSION=3.3.1 

    wget -q \ http://www.mpich.org/static/downloads/${MPICH_VERSION}/mpich-

${MPICH_VERSION}.tar.gz 

    tar xf mpich-${MPICH_VERSION}.tar.gz && rm mpich-${MPICH_VERSION}.tar.gz 

    cd mpich-${MPICH_VERSION} 

    ./configure --prefix=/usr/local --disable-static --disable-rpath \ 

   --disable-wrapper-rpath \ 

                --mandir=/usr/share/man --enable-fast=all,O3 

    make -j$(getconf _NPROCESSORS_ONLN) install 

    ldconfig 

    cd .. && rm -rf mpich-${MPICH_VERSION} 

 

    # 

    # Install HPCC (https://icl.cs.utk.edu/hpcc/) 

    # 

    export HPCC_VERSION=1.5.0 

    wget \ 

http://icl.cs.utk.edu/projectsfiles/hpcc/download/hpcc-${HPCC_VERSION}.tar.gz 

    tar xf hpcc-${HPCC_VERSION}.tar.gz && rm hpcc-${HPCC_VERSION}.tar.gz 

    cd hpcc-${HPCC_VERSION} 

    # Move Arch file 

    mv ../Make.Linux hpl/ 

    make arch=Linux 

    cp /workdir/hpcc-${HPCC_VERSION}/hpcc ${BINDIR} 

    cd .. && rm -rf hpcc-${HPCC_VERSION} 

 

 

 

 

 

    # 

    # Install b_eff_io (https://fs.hlrs.de/projects/par/mpi//b_eff_io/) 

    # 

    export BEFFIO_VERSION=2.1 

    wget --no-check-certificat \ 
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 https://fs.hlrs.de/projects/par/mpi//b_eff_io/b_eff_io_v${BEFFIO_VERSION}.tar.gz 

    tar xf b_eff_io_v${BEFFIO_VERSION}.tar.gz && \ 

rm b_eff_io_v${BEFFIO_VERSION}.tar.gz 

    cd b_eff_io 

    mpicc -o ${BINDIR}/b_eff_io b_eff_io.c -lm 

    cp -r eps ${BINDIR}/b_eff_io_eps 

    cd .. && rm -rf b_eff_io 

 

    # 

    # Compile program to get MPI rank 

    # 

    mpicc /workdir/mpirank.c -o ${BINDIR}/mpirank 
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