
SOftware Defined AppLication Infrastructures managemenT and Engineering

Final version of
ontologies and semantic

repository
D3.2

CERTH
31.10.2021

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 825480.

Project No 825480.

Deliverable data

Deliverable Final version of ontologies and semantic repository

Authors

Georgios Meditskos (CERTH),
Zoe Vasileiou (CERTH),
Savvas Tzanakis (CERTH),
Anastasios Karakostas (CERTH),
Stefanos Vrochidis (CERTH),
Xe�eris Vasileios-Rafail (CERTH),
Grigoris Tzionis (CERTH),
Stylianos Andreadis (CERTH),
Dourvas Nikolaos (CERTH),
Stathis Nikolaidis (CERTH),
Jesús Gorroñogoitia (Atos)

Reviewers Elisabetta Di Nitto (POLIMI)
Nejc Bat (XLAB)

Dissemination
level Public

History of
changes

Zoe Vasileiou (CERTH) Outline created 31/08/21

All Initial contribution to
sections 05/09/21

Jesús Gorroñogoitia (Atos) Section 6 and
subsection 7.3 written 15/09/21

All Initial version of the
deliverable finalized 09/10/21

Zoe Vasileiou (CERTH) Sent for internal
review 15/10/21

Zoe Vasileiou (CERTH) Addressing internal
review 26/10/21

Acknowledgement
The work described in this document has been conducted within the Research & Innovation action
SODALITE (project no. 825480), started in February 2019, and co-funded by the European
Commission under the Information and Communication Technologies (ICT) theme of the H2020
framework programme (H2020-ICT-16-2018: So�ware Technologies)

Final version of ontologies and semantic repository – Public Page 2
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

Table of Contents
Executive Summary 7

Glossary 9

List of figures 11

List of Tables 12

1 Introduction 13
1.1 Deliverable goal 13
1.2 Overall objectives of the project 13
1.3 Progress beyond the state of the art and potential impact 15
1.4 Work performed from the beginning of the project 15
1.5 Structure of the Document 16

2 Final SODALITE Conceptual Models 17
2.1 New concepts added to the ontologies 17

2.1.1 Scaling Policies example 21
2.1.2 Topology 24
2.1.3 Resource Model 25
2.1.4 Inputs 25
2.1.5 Outputs 27
2.1.5 Optimization 28
2.1.5 KB architecture 29

2.2 Evaluation of SODALITE Ontologies 31
2.1.1 Assessment 31
2.2.2 Comparison with other ontologies 37

3 Updated Ontology Population and Checking 39

4 Advanced Reasoning services 42

5 SODALITE IDE 43
5.1 Domain Specific Languages 43

5.1.1 AADMs 44
5.1.2 RMs 44
5.1.3 Optimization Models 44
5.1.4 Ansible Models 45
5.1.5 Alerting Rule Models 45

5.2 New and extended features (M18 - M33) 45
5.2.1 Multiview representation of the AADM 45
5.2.2 Extended AADM Deployment Support 49
5.2.3 Deployment Governance View 50
5.2.4 KB Browser view 52
5.2.5 Improved Content Assistance 53

Final version of ontologies and semantic repository – Public Page 3
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

5.2.6 Semantic Validation (Reporting and Quick fixes) 55
5.2.7 AADM Versioning 56
5.2.8 IAM/Secrets Management 57
5.2.9 Image Builder Integration 58
5.2.10 PDS Integration 58

6 Updated Modelling Layer architecture 59

7 Final version of the components 61
7.1 Semantic Reasoner 61

7.1.1 Semantic Reasoning Engine (SRE) 63
7.1.1.1 Advanced Reasoning services - examples 64

Validation 64
Matchmaking and reuse 67
Abstraction DSL 69
Optimization suggestions 70

7.1.2 Semantic Population Engine (SPE) 72
7.1.2.1 Workspaces and Versioning 72

7.1.3 CI/CD Integration 73
7.2 Semantic Knowledge Base 73

7.2.1 RDF Triple Store 73
7.2.2 Domain Models 73
7.2.3 CI/CD Integration 73

7.3 SODALITE IDE 74
7.3.1 Domain Specific Languages 76
7.3.2 New and extended features (M18 - M33) 77
7.3.3 Multiview representation of the AADM 77
7.3.4 Extended AADM Deployment Support. 78
7.3.5 Deployment Governance and KB Browser Views 78
7.3.6 Improved Content Assistance 79
7.3.7 Semantic Validation (Reporting and Quick fixes) 79
7.3.8 AADM Versioning 79
7.3.9 IAM/Secrets Management 79
7.3.10 Image Builder and PDS Integration 79
7.3.11 CI/CD Integration 79

8 Conclusion 80

References 81

Appendix 83
DSL representation 83
Exchange Model 85
Sodalite Meta-model 93
Semantic Reasoner 93

Final version of ontologies and semantic repository – Public Page 4
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

Semantic Reasoning Engine (SRE) 93
Final version of the APIs 93

Semantic Population Engine (SPE) 101
Final version of the APIs 101

RDF Triple Store 104
Domain Models 105

Final version of ontologies and semantic repository – Public Page 5
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

Executive Summary
This deliverable reports on the status of the development, at M33, of the SODALITE Modelling Layer
and the integration of its components with the rest of the platform. The purpose of this deliverable
is to present the final version of the Modelling Layer which has been developed during the second
and the third year of the project. More specifically, the work that has been performed within the
T3.1 “Application Semantic Modelling” and T3.2 “Infrastructure Semantic Modelling” tasks will be
reported. The first version of the Modelling Layer is presented in D3.1[2]. This deliverable
complements D4.2 [3], and D5.2 [24], and the interested reader is encouraged to read those
deliverables for having a full understanding of the whole process. The goal of the Modelling Layer
is the abstraction of the application deployment models. To this end, the Modelling Layer aims at:

● Describing the cloud applications and infrastructures in an abstract way
● Reducing the user effort in describing IaC by providing intelligent services
● Supporting the user through the whole lifetime of the application deployment

For achieving the above goals, the Modelling Layer components have been evolved since M12, and
the progress of the following achievements will be presented in this deliverable:

● Ontologies: The ontologies have been extended to support new TOSCA concepts and the
abstract SODALITE metamodel has been enhanced for adding new metadata. The final
version of the ontologies are presented in this deliverable.

● Semantic Reasoner - Populator: The Semantic Populator populates the KB with AADMs
(Abstract Application Deployment Models) and RMs (Resource Models). It has been
enhanced significantly for mapping the new TOSCA concepts and metadata to the
SODALITE ontologies, and supporting new features such as the versioning of the AADMs
and the workspaces.

● Reasoning layer: The Reasoning layer is responsible for providing context-aware content
assistance to the user and ensuring the consistency of the models that are saved to the KB.
This intelligence is provided to the WP4 (T4.4) through REST APIs presented in this
deliverable.

● IDE: The IDE has been evolved significantly for supporting the user during the whole
process of the app deployment, at design, deployment and runtime. Different SODALITE
roles for app deployment modeling are supported by the adoption of various SODALITE
domain specific languages.

● Integration with other components: The Modelling Layer is central to the architecture
since it is the entry point of the platform as the users use the IDE for managing their
deployments, and also all the other layers (Infrastructure as a Code layer, and Runtime
layer) retrieve, modify and save models from/to the Semantic Knowledge Base (KB). In
particular, the IaC layer retrieves from the Modelling Layer the representation of the AADMs
for producing the TOSCA blueprint and saves new discovered alternative variants and
refactoring the existing AADMs accordingly. Therefore, a significant effort was placed on
the integration of the Modelling Layer with the other layers.

Final version of ontologies and semantic repository – Public Page 6
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

Glossary

Acronym Explanation

AADM Abstract Application Deployment Model

AOE Application Ops Experts

API Application Program Interface

DL Description Logic

DOLCE Descriptive Ontology for Linguistic and Cognitive Engineering

DnS Descriptions and Situations

DSL Domain Specific Language

DUL DOLCE Ultralite

GUI Graphical User Interface

IaaS Infrastructure as a Service

IaC Infrastructure as Code

IDE Integrated Development Environment

IRI Internationalized Resource Identifier

JSON JavaScript Object Notation

KB Knowledge Base

OASIS Organization for the Advancement of Structured Information Standards

ODP Ontology Design Pattern

OWL Web Ontology Language

PaaS Platform as a Service

PoC Proof of Concept

QE Quality Expert

QoS Quality of Service

RDF Resource Description Framework

RDFS Resource Description Framework Schema

RDF4J Resource Description Framework for Java (open source java framework)

RE Resource Expert

REST Representational State Transfer

RM Resource Model

SaaS So�ware as a Service

SPARQL SPARQL Protocol and RDF Query Language

SPE Semantic Population Engine

Final version of ontologies and semantic repository – Public Page 7
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

SRE Semantic Reasoning Engine

TOSCA Topology and Orchestration Specification for Cloud Applications

WP Work Package

Final version of ontologies and semantic repository – Public Page 8
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

List of figures

● Figure 1. SODALITE meta-model (extension of DUL)
● Figure 2. Hierarchy of new TOSCA properties
● Figure 3. Hierarchy of new TOSCA concepts and situations
● Figure 4. Hierarchy of Root with respect to the normative TOSCA policies
● Figure 5. Hierarchy of the TOSCA normative artifact types
● Figure 6. Policy template example of DSL
● Figure 7. Autoscale policy template knowledge graph
● Figure 8. Example of property definition
● Figure 9. Example of trigger definition
● Figure 10. Example policy type
● Figure 11. Example Topology Instance
● Figure 12. Example Resource Model
● Figure 13. Inputs example
● Figure 14. Inputs example knowledge graph
● Figure 15. A node template example that is using the inputs
● Figure 16. Output example
● Figure 17. Output Knowledge Graph
● Figure 18. A node template related with an optimisation DSL script
● Figure 19. Optimization Knowledge Graph
● Figure 20. Graph dataset
● Figure 21. The graphs of the KB
● Figure 22. Excerpt from a Policy Template
● Figure 23. Template example with reference to versioned node
● Figure 24. Text-based representation of AADMs
● Figure 25: Outline tree-based representation of AADMs
● Figure 26: Graphical-based representation of AADMs
● Figure 27: Form-based edition of AADM entities
● Figure 28: AADM deployment wizard
● Figure 29: Deployment Governance View
● Figure 30: Deployment Details View
● Figure 31: Deployment Resume wizard
● Figure 32: KB Browser view
● Figure 33: Content assistance for AADM syntax and structure
● Figure 34: Content assistance for data types
● Figure 35: Content assistance for node types
● Figure 36: Content assistance for requirements
● Figure 37: Content assistance for nodes satisfying requirements
● Figure 38: Semantic validation issue reported in AADM textual editor
● Figure 39: Quick fixes in AADM textual editor
● Figure 40: AADM versioning in save wizard
● Figure 41: IAM configuration
● Figure 42: HPC Secrets configuration
● Figure 43: Image Builder wizard
● Figure 44: PDS wizard
● Figure 45. Updated SODALITE layers general architecture
● Figure 46. Updated Modelling Layer Architecture
● Figure 47. Modelling Layer architecture and its interactions with the other layers

Final version of ontologies and semantic repository – Public Page 9
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

● Figure 48. Code Quality Report for Semantic Reasoner
● Figure 49. SPARQL query detecting Requirement Mismatch
● Figure 50. Capability Mismatch model example
● Figure 51. SPARQL query detecting Capability Mismatch
● Figure 52. Excerpt from the sodalite.nodes.DockerNetwork
● Figure 53. SPARQL query detecting required properties
● Figure 54. A node type with constraints within properties
● Figure 55. SPARQL query returning the constraints
● Figure 56. Node type hierarchy
● Figure 57. Template for which a suitable host is detected
● Figure 58. SPARQL detecting compatible requirements according to the type definition
● Figure 59. SPARQL retrieving the required capability types from a node
● Figure 60. SPARQL retrieving the valid_source_types of node types
● Figure 61. A SPARQL query detecting required requirements
● Figure 62. AI Training node template associated with optimization DSL
● Figure 63. SPARQL query retrieving the capabilities of the node
● Figure 64. SPARQL query retrieving the number of gpus
● Figure 65. Example model using workspaces
● Figure 66: SODALITE IDE plugins’ project structure
● Figure 67: Snippet for AADM DSL grammar
● Figure 68: Sirius design of AADM visual representation

List of Tables

● Table 1. Indicative CQs and SHACL-SPARQL translations
● Table 2. Ontology pitfalls detected by OOPS!
● Table 3. Schema metrics produced by the Ontometrics tool
● Table 4. Base metrics produced by the Ontometrics tool
● Table 5. Comparison of the modelling capabilities of cloud computing ontologies

Final version of ontologies and semantic repository – Public Page 10
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

1 Introduction
With the surge of the adoption of Cloud Computing, more and more IaC languages emerge leading
to the vendor-lockin [1] problem. Many cloud resource management standards have been
proposed for solving this interoperability issue. In such a way, many standards are proposed such
as TOSCA, OCCI and CIMI are among the most known standards; however, those cloud resources
described in different standards, still face interoperability problems as the semantics of the
different IaC languages differ. Therefore, the representation of cloud resources in a
machine-readable format is more indispensable than ever.
As described, in detail, in D3.1 [2], Semantic Web Technologies, and especially the ontologies and
the reasoning mechanisms can achieve this interoperability and additionally an intelligence
support system. Most of the existing cloud computing ontologies are mainly monolithic, and do
not promote reusability, and interoperability. The SODALITE Conceptual model follows an
Ontology Design Pattern (ODP) paradigm for building the Modelling Layer and achieving
abstraction, interoperability, and flexibility. This conceptual model fosters the intelligence of the
Modelling Layer, as advanced reasoning can be performed for matchmaking, validation, reuse, and
context-aware content assistance.
Some of the key objectives of the Modelling Layer were described in D3.1:

● Follows a common, extensible and formal standardised model to describe cloud-related
concepts.

● The information to be shared and managed as interconnected RDF knowledge graphs for
capturing both structural and semantic relationships.

● Provides semantic-driven modelling assistance to the user.
● A centralised management board to be provided to the user in the IDE for having access in

all the phases of the deployment.

1.1 Deliverable goal
The goal of this deliverable is to provide the final version of the Modelling Layer with respect to the
points described above. In particular, this deliverable focuses on the progress of the work with
respect to what was reported in Deliverable D3.1 at the end of the first project year.
Therefore, this deliverable presents the updates that have been made in the Modelling Layer
components that were developed a�er the end of the first year of the project when the initial
deliverable D2.1 [26] was produced, namely, the SODALITE ontologies, the Knowledge Base, the
IDE, the Semantic Reasoner. Also, the integration of the Modelling Layer components with various
components of the other layers will be presented. This deliverable has been developed in parallel
and coherently to WP2, WP4, WP5 and WP6.

1.2 Overall objectives of the project
The main project goals, according to the GA, can be summarized as follows, with respect to how
the current WP reflect on them:

● O1 objective: The key objective is to provide code (application), resource(infrastructure) and
execution semantic abstractions, injected with infrastructure performance abstractions, to
ensure maximum performance of the so-abstracted application and infrastructure when
concretized on specific infrastructure. We build the abstractions as extensions of
standardised approaches, aiming at both machine and human readability.
WP3 perspective: The SODALITE conceptual model is an extensible and reusable model
that captures the knowledge in an abstract way. All the required abstractions by the use
cases have been modelled such as type definitions, template definitions, optimization
models, ansible models etc.

Final version of ontologies and semantic repository – Public Page 11
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

● O2 objective: To increase the performance of the deployed so�ware on target platforms
through static optimisation, using the Infrastructure performance patterns abstractions and
through dynamic optimisation, using the predictive deployment refactoring approach,
building on the run-time available data from the application and the platform.
WP3 perspective: Static optimizations are supported through the MODAK, the SODALITE
Application Optimizer D4.2 [3]; The Modelling layer enables the design of the optimizations
in the IDE, since Optimization DSL is provided, and also suggestions are provided during
the authoring process. For example, in case, an optimization flag is disabled, and according
to the model capabilities, this optimization flag is recommended to be enabled. Regarding
the run-time optimizations, the Knowledge Base enables the discovery of alternative
resources as it is the main storage of all the application and infrastructure components. A
reasoning infrastructure enables the saving of the discovered infrastructure resources by
Platform Discovery Service[3] to the KB. Those resources can be reused by the
Refactorer[20] by matchmaking a suitable resource in order to migrate an application
component.

● O3 objective: To reduce the cost of so�ware development, deployment, management and
adaptation or reconfiguration in the modern infrastructures, using abstraction of the typical
components (e.g. compute, storage, network) and combining them with non-functional
requirements, allowing for an application to target multiple concrete infrastructures.
WP3 perspective:The SODALITE ontologies provide an abstraction layer for representing
both the application and resource models. Those ontologies enable advanced reasoning
services to infer hidden knowledge, and retrieve semantic information to assist the user. In
such a way, SODALITE IDE is providing intelligence to the user through an ontology-based
reasoning engine for guiding the user in the design phase of the deployment models.
These intelligent capabilities lessen the user effort in designing and deploying models.
Additionally, the IDE supports the user through the whole lifecycle of the deployment,
namely design, deployment, and runtime phases.

● O4 objective: To address abstractions, technologies, targeted applications, and
infrastructures holistically, allowing for flexible, reusable, and long term supported so�ware
development stack for modern runtime infrastructures and professional applications.
WP3 perspective: The Modelling Layer is the central point to the SODALITE platform as the
user interacts with the IDE and also the KB contains all the models that are used by many
components of the platform. All the Modelling Layer components have been integrated in
the platform and contributed to a well-integrated platform. Both the IDE and Semantic
Reasoner interact with components of the other SODALITE layers, namely the IaC and
Runtime layers.

● O5 objective: To use and build on existing solutions, starting with community building or
inclusion from day 1.
WP3 perspective: All the Modelling Layer components are open-source. Also, the
SODALITE ontology is based on an open-source upper-level ontology.

● O6 objective: To demonstrate the developed concepts using relevant professional
applications and industries, covering complete so�ware stack.
WP3 perceptive: The Modelling Layer supports all the three use-cases (that cover specific
professional application or industry) of the project for modelling all the concepts needed.

Final version of ontologies and semantic repository – Public Page 12
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

1.3 Progress beyond the state of the art and potential impact
This deliverable is contributing to the progress beyond the state of the art by offering a complete
environment that guides users through all the phases of the deployment. The SODALITE Modelling
layer represents a novel result in the literature because it provides an abstraction layer for
TOSCA-compliant descriptions of applications and resources that enable the smart-editing IDE
features. Also, this abstract representation of the cloud resources allows the other layers, IaC and
runtime to reuse the concepts saved in the Knowledge Base.
As already presented in D3.1, the SODALITE conceptual model promotes this abstraction layer by
adopting the best practices in Ontology Engineering [4]. As such, a novel ontology-based
framework is proposed that captures and interlinks all the information of the cloud-related
components. This information is saved as interconnected RDF Knowledge Graphs[5] in the
Knowledge Base enabling deep inference reasoning to run upon them for advanced validation,
matchmaking etc. The innovative modelling capabilities of the SODALITE ontology were presented
in a conference paper [7]. In the third year of the project, we focused on the following aspects: a)
extending the ontologies to represent also non functional features and new TOSCA concepts, b)
advancing the intelligence provided to the user, and c) enabling the interactions with other layer
components for supporting the user also during the deployment time and runtime. The SODALITE
smart environment for Infrastructure as a Code was presented in a workshop paper [8][9].
Also, we were paying attention to the quality of code so as to be maintainable and extensible and
also to be robust with regards to security. Additionally, we were regularly testing the Modelling
Layer components through the deployment of the SODALITE use cases.

1.4 Work performed from the beginning of the project
During the first year project, we developed an initial version of the components of the Modelling
Layer. A first version of the ontologies were developed covering the major part of the TOSCA
normative types. The saving of the AADMs were supported through the IDE, while Resource Models
were not supported yet. An initial version of the Semantic Reasoner was also developed offering
some basic context-assistance and validation services. Also, the first version of the IDE was
developed.
During the second year, the saving of the Resource models was developed, the ontologies were
extended for supporting non-functional features, and new TOSCA concepts, the IDE was enhanced
with multiple features such as support to new DSL languages (e.g., the optimization DSL),
multiview representation of the models, allowing the images to be built before the deployment
etc. Also, the Semantic Reasoning engine was extended by providing more assistance and
validation cases to the user.
During the final year, we were focusing on finalizing the ontologies by adding more TOSCA
concepts, and adding more metadata such as for supporting the versioning of the AADMs. The
Semantic Reasoning engine has been extended for supporting more advanced validation and
abstraction cases. Also, the semantic populator was extended for enabling the saving of the
discovered TOSCA models by the Platform Discovery Service to the KB, and the refactoring of the
AADMs by the Refactorer. The IDE was enhanced by extending the existing DSLs languages for
supporting new TOSCA concepts and by integrating with various components of all the layers to
give access to the user to the whole deployment lifecycle.

Final version of ontologies and semantic repository – Public Page 13
© Copyright Beneficiaries of the SODALITE Project

https://sonarcloud.io/project/overview?id=SODALITE-EU_semantic-reasoner

Project No 825480.

1.5 Structure of the Document
This deliverable is structured as follows:

● Section 2 presents the ontology extensions for supporting new concepts, provides
knowledge graphs examples with respect to the new concepts and additionally and
explains how the SODALITE Ontology has been evaluated.

● Section 3 presents an example of the intermediate Exchange Model, the lightweight
version of the SODALITE ODP in order to show its main updates.

● Section 4 presents briefly the advanced reasoning services from which the intelligence of
the Modelling Layer derives.

● Section 5 presents the improvements and the new features of the SODALITE IDE.
● Section 6 explains the positioning of the Modelling Layer in the SODALITE architecture and

its evolution during the second and third year.
● Section 7 is a manual associated with the tool implementation that shows the final version

of the SODALITE Modelling Layer components. It has been built to be self-contained as it
could be extracted from the main document. For this reason, the reader may find there
some repetitions compared to the content of the other sections

● Section 8 presents the conclusions.
● Finally, the Appendix provides an example of topology using new concepts (policies,

triggers, outputs etc.) in three different formats, in the DSL, the intermediate Exchange
Model, and in the SODALITE metamodel.

Final version of ontologies and semantic repository – Public Page 14
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

2 Final SODALITE Conceptual Models
In this section, we present the updates that have been applied to the SODALITE conceptual model.
In D3.1, the background for the knowledge representation and ontologies was described, and also
an initial version of the ontology-based semantic abstraction layer was presented that captures
the infrastructure resources and the application components. The former are specified by the
Resource Experts, while the latter by the Application Ops Experts (see D2.3 [10], Section 2.1
“Identified Use Cases”).

The final version of the semantic models of SODALITE includes:
● The SODALITE meta-model which is the formal ontology design pattern that is used for

capturing the information on different levels of abstraction.
● The domain ontology that captures the TOSCA normative types and generally the

vocabulary of TOSCA that will be utilized in the other two modelling layers (tiers), in
SODALITE, specifically the custom resources (Tier 1), and instantiations of the resources
(Tier 2), the application components. More specifically, the domain ontology represents
the Tier 0, the static layer of the SODALITE abstraction layers. The 3-tier approach is
described in the D3.1.

● The optimization ontology is a lightweight ontology used for enabling the semantic
reasoning that is applied on the association between the optimization model and the node
template in order to provide suggestions to the user for potential optimizations.

2.1 New concepts added to the ontologies
The TOSCA domain ontology has been enriched so as the following constructs to be supported in
the Resource Models, and the AADMs:

● Inputs: Input values are o�en used to declare input variables that will be used by
interfaces and operations for passing this information to the operations (scripts) which
need this data. The interfaces are defined within the nodes and are associated with
lifecycle operations including scripts such as starting a database etc. The inputs are
passing values to those scripts such as usernames, and passwords. A topology template in
TOSCA [11][12] defines the structure of a service in the context of a Service Template.

● Outputs: Output values are usually provided for passing information for the state of
templates that have been already deployed.

● Policy types: The non-functional features and Quality of Service (QoS), in TOSCA [12], are
described through policies for an application and its components.
In policy type, it is specified the types of policies that may be used in a service.
All the TOSCA normative policy types have been added to the TOSCA domain ontology (tier
0). For example, some of the above-mentioned types are tosca.policies.Root (all
the policy types derive from), tosca.policies.Placement (governing the
placement of the nodes), tosca.policies.Scaling (governing the scaling of
nodes).

Within a policy type, its properties, its targets, and its triggers are defined. The properties
define the type of the configuration parameters that will be used by the policy. The targets
represent the types of services to which the policies will apply. The triggers define the
conditions that fire the policy. Henceforth, for supporting the policy types in our platform,
various additional concepts have been added to the ontologies such as triggers, targets,
event, condition, and other vocabulary that was needed for supporting the policies
functionality.

Final version of ontologies and semantic repository – Public Page 15
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

● Policies: With policies[11] , we can define the types of requirements that govern the use or
access to the resources and can be expressed separately from the applications. In such a
way, our platform is offering new benefits as we can describe how the AADM reacts to the
changes in runtime. According to the TOSCA specification [12], the policies are split in
three categories: (i) Access Control (ii) Placement (iii) Quality Of Service. For instance, a
QoS policy could be an autoscaling policy, an example [13] is presented in this paper that
uses both TOSCA policy types and templates. Policies are the instances of the policy types
that are used in a service. Within a policy, the configuration parameters (properties)
that the policy takes are defined and the target templates (targets) to which the
policies apply are specified.

● Capabilities/properties: Properties can be assigned within capabilities in a template in
order to assign parameters such as number of cpus, number of gpus, the architecture etc.
Those properties are used for defining the capabilities for a template.

● Optimization: An optimization recipe is specified by an OE that designs the deployment
optimizations as instances of the Optimization Model (OM) DSL. This recipe is linked with
the MODAK (see D4.2) static optimizer. In particular, an application component in the AADM
is associated with an optimization model. Henceforth, the ontologies have been enriched
for accommodating this kind of concept.

● Artifact types and artifacts: An artifact represents something that can be executed, and
TOSCA supports different kinds of artifacts, namely implementation and deployment
artifacts. The artifact types are reusable TOSCA entities that define one or more files that
are used for defining those artifacts that are referenced in the operations of the nodes or
relationships. Those files are used by the orchestrator at the deployment time when
deploying nodes or when calling their interfaces. By representing artifact types, users can
define their own artifact types and implementation artifacts allowing the user to interact
with any cloud computing service (IaaS, SaaS, PaaS). In those types, the type of the file, the
extension of the file (file_ext), the mime_type (mime_type), and its properties are
defined. Additionally, the artifact assignments can be present both in types and templates.

The knowledge graphs of some of the concepts in the above list will be presented in the next
figures.

As it was described in D3.1, the SODALITE meta-model follows an Ontology Design Pattern(ODP)
that extends the core Descriptions and Situations (DnS) ontology pattern that is part of
DOLCE+DnS Ultralite (DUL) [6]. The SODALITE ODP is depicted in Figure 1. SODALITE ODP is a
generic ontology pattern that defines the modelling guidelines to be followed in order to capture
the domain knowledge. The domain ontology is required for providing the necessary vocabulary in
order to capture the relevant knowledge in the application domain. Figure 2 shows some new key
properties, relevant to the concepts described in the above list, that have been added to the
domain ontology and are subproperties of soda:specification. Those properties can be
used in soda:SodaliteDescription instantiations. Figure 3 depicts some new domain
concepts, described in the aforementioned list, that are subclasses of the
soda:SodaliteConcept for being used as instantiations of the SODALITE ODP. Additionally,
the Input and Output structures of TOSCA, in Figure 3, are shown as a subclass of the
soda:SodaliteSituation ; thus they are represented similarly with the node types and
templates.

Final version of ontologies and semantic repository – Public Page 16
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

Figure 1. SODALITE meta-model (extension of DUL)

Figure 2. Hierarchy of new TOSCA properties

Figure 3. Hierarchy of new TOSCA concepts and situations

Also, Figure 4 depicts the TOSCA normative policy types that have been added to the TOSCA
domain ontology (Tier 0). TOSCA employs policies for expressing the non-functional behavior, and
are instantiated from the Policy Types. The TOSCA normative policy types are five, the root
type(tosca.Policies.Root) that the other four inherit (rdfs:subClassOf). Those policy
Types can represent different types of policies[12], such as access control, placement, and QoS.

Final version of ontologies and semantic repository – Public Page 17
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

Figure 4. Hierarchy of Root with respect to the normative TOSCA policy types

Figure 5. depicts the TOSCA normative artifact types that have been added to the TOSCA domain
ontology (Tier 0). The artifact types define the different kinds of files that can be supported. Those
files are used during operations such as for an install or a deployment. All the normative artifact
types inherit the tosca.artifacts.Root. Each type is a soda:SodaliteSituation that
contains a description (soda:SodaliteDescription), but for brevity only the inheritance
relationships are depicted.

Figure 5. Hierarchy of the TOSCA normative artifact types

Based on the modelling paradigm that was described in this section, which is offering extensibility
and interoperability, the ontologies were easily extended for supporting the TOSCA policies. In
order to show the new concepts that have been added to the SODALITE ontologies, a Proof of
Concept (PoC) example for scaling policies will be presented below showing how the policies are
captured as Knowledge Graphs.

2.1.1 Scaling Policies example
An example DSL of a scaling policy template is depicted in Figure 6. This is one of the results of
the collaboration with the RADON project . It is an autoscaling template which has various concept1

assignments (properties, targets, triggers). The properties define which concepts will be

1 RADON project - https://radon-h2020.eu/

Final version of ontologies and semantic repository – Public Page 18
© Copyright Beneficiaries of the SODALITE Project

https://radon-h2020.eu/

Project No 825480.

monitored. The triggers section defines the triggers that would initiate the scaling operation. The
targets section defines to which templates the policy applies.

Example A Policy Template (Tier 2)

Figure 6. Policy template example of DSL

In Figure 7, the knowledge graph of the scaling policy template is depicted. The templates are
captured according to the SODALITE ODP (Figure 1). The autoscale template has as context
(soda:hasContext) a description (soda:SodaliteDescription) which describes all the
concepts. The description has four concepts, two properties (tosca:properties), one trigger
(tosca:triggers) and one target (tosca:targets). The knowledge graph of each concept
will be analysed in Figures 7, 8, 9.

Final version of ontologies and semantic repository – Public Page 19
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

Figure 7. Autoscale policy template knowledge graph

Properties:
The knowledge graph of the properties of the autoscale template is depicted in Figure 8. The
properties are instances of the tosca:Property concept, and each property classifies
(dul:classifies) the property that we want to model. In our case, the max and min size of the
instances are modelled in order to be monitored.

Figure 8. Example of property definition

Triggers:
The knowledge graph of the triggers of the autoscale template is depicted in Figure 9. The trigger
defines when the scaling policy will be initiated. The triggers contain complex nested structures
such as extra conditions about when the policy will be triggered (tosca:condition),
constraints for defining when not firing the trigger, the period (tosca:Period) in which the
conditions to be evaluated. Also, which interface operations will be called
(tosca:call_operation) are referenced within the trigger, and those scripts, performing the
scaling, are defined within the operations of interface types. The triggers are instances of the
tosca:Trigger concept, and all the information that is contained within the trigger, is
captured as instances of soda:SodaliteParameter that classify (dul:classifies) the
corresponding concept. This complex information can be represented because the captured
knowledge is following the SODALITE ODP.

Final version of ontologies and semantic repository – Public Page 20
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

Figure 9. Example of trigger definition

Final version of ontologies and semantic repository – Public Page 21
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

Example B Policy Type (Tier 1)
This is the DSL of the policy type from which the autoscale policy template is instantiated. Since
the knowledge graphs of types have already been presented in D3.1, they are skipped in this
deliverable. In this policy type, it is defined which concepts to be monitored, and some constraints
for their values. From this abstract policy type, the autoscale policy template, described above, is
instantiated. It is worth noting that, by leveraging the OWL2 punning capabilities, the types are
both classes and instances (as they have property assertions for the descriptions). Thus, in such a
way, subsumption hierarchies can be modelled enabling the complex representation of the TOSCA
standard. An example policy type in DSL format is depicted in Figure 10.

Figure 10. Example policy type

2.1.2 Topology
The topology conceptual model captures all the information of the AADM (metadata and
templates). A Topology example is represented as a Knowledge Graph in Figure 11. This
conceptual model has been updated by containing more descriptive information about the
workspace (soda:hasNamespace), the file name of the model (soda:hasName), the DSL text
(soda:hasDSL enabling the browsing of the models in IDE) etc. The full topology policy example is
presented in the Appendix.

Final version of ontologies and semantic repository – Public Page 22
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

Figure 11. Example Topology Instance

2.1.3 Resource Model
A�er the first year of the project, the users can save resource models in the Knowledge Base by
defining custom resources that extend the TOSCA normative types. The Resource Models share the
same conceptual model with the Topology conceptual model. A Resource Model example is
represented as a knowledge graph at Figure 12.

Figure 12. Example Resource Model

2.1.4 Inputs
As it is described in the introduction of the current section, the inputs allow the users to customize
their inputs by not providing hardcoded values but input parameters. The inputs in TOSCA are
used for passing information from the node templates through the inputs to the operation scripts
that are used in the interfaces or generally to the properties of an application. In the inputs, the
user can declare variables and their corresponding values. In Figure 13, an input example is

Final version of ontologies and semantic repository – Public Page 23
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

depicted that is used by a node template in Figure 15. In particular, the flavor name (flavor-name),
the virtual machine’s name (vm-name), and the name of the image (image-name) inputs are
passed to the openstack-vm template through the properties. In Figure 14, it is depicted how the
inputs are captured as knowledge graphs.

Example Input

Figure 13. Inputs example

Figure 14. Inputs example knowledge graph

Final version of ontologies and semantic repository – Public Page 24
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

Node Template

Figure 15. A node template example that is using the inputs of Figure 13.

2.1.5 Outputs
Outputs are used for passing information that might describe the state of the deployed template to
the user. In Figure 16, the ip address (public_ip), in which the compute node workstation has been
provisioned, is provided in the outputs. The knowledge graph of the outputs of Figure 16 is
depicted in Figure 17.

Example Output

Figure 16. Output example

Final version of ontologies and semantic repository – Public Page 25
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

Figure 17. Output Knowledge Graph

2.1.5 Optimization
The optimization recipe that will be used by MODAK optimizer (more details in D4.2) is associated
with a template. The DSL of a node template containing optimization is depicted in Figure 18, and
its corresponding knowledge graph in Figure 19.

Figure 18. A node template related with an optimisation DSL script

Final version of ontologies and semantic repository – Public Page 26
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

Figure 19. Optimization Knowledge Graph

2.1.5 KB architecture
The Knowledge Base is divided into a public workspace and private workspaces. Many users can
share the same private workspace and in such a way a user can reuse resources and application
components of other users. The users have access to a private workspace only when they have the
corresponding permission. The public workspace accommodates all the TOSCA normative types
and all the users have access to the public workspace.

From the implementation view, for supporting the workspaces, we leverage how the graph data
set can be split. Namely, a graph dataset consists of a set of named graphs and the default graph.
A group of statements with a unique name (a URI) is called a ‘named graph’. Instead of using one
monolithic graph, it is desirable to have several multiple graphs so as to assign one workspace to
each named graph. Each private workspace is saved in a different named graph. The public
workspace is contained in the default graph. The end user can extend the specification by saving
resource models and AADMs by creating a new graph or extending an existing graph. As it is
depicted in Figure 20, the KB contains the default graph and multiple named graphs identified by a
URI. For example, the workspace associated with the Snow use case belongs to the
https://www.sodalite.eu/ontologies/workspace/1/snow/ URI. The descriptive information of the
topologies and the resource models are saved in the default graph, while the actual resources and
application components are saved in the named graphs. In Figure 21, it is depicted how the parts
of the models are distributed in the RDF graph dataset through the radon policy AADM example.
The appendix includes the full Radon policy AADM. This AADM is composed of five templates that
belong to the module radon. In Figure 21, we can observe that the templates per se are saved in
the radon named graph, while the TOSCA normative types, the descriptive context of the
AADMs/RMs (user, timestamp, version etc.) are saved in the default graph.

Final version of ontologies and semantic repository – Public Page 27
© Copyright Beneficiaries of the SODALITE Project

https://www.sodalite.eu/ontologies/workspace/1/snow/

Project No 825480.

Figure 20. Graph dataset with one named graph and a default graph

Figure 21. The graphs of the KB

Final version of ontologies and semantic repository – Public Page 28
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

2.2 Evaluation of SODALITE Ontologies
The users have only direct interaction with the IDE for designing their models. The ontologies are
the basis on which the Intelligence of the Modelling layer about designing IaC relies. In this section,
we present how the ontologies have been evaluated from different perspectives. Namely, the
consistency and the overall quality of the ontology were assessed by two well-known online tools
that will be introduced in the next subsections, while the structure of the ontology is validated
against some competency questions that are based on the use-cases.

2.1.1 Assessment

Indicative Competency Questions
We have defined a number of Competency Questions (CQs) for validating the ontologies by
ensuring that they capture the semantics according to the SODALITE use-cases.
Table 1 reports on the competency questions that drive the development of the SODALITE
ontological framework and their corresponding validation rule expressed in the SHACL[14]
constraint language.

Competency
Question

SHACL constraints

Does each AADM
contain at least one
template?

ex:AADMShape
a sh:NodeShape ;
sh:severity sh:fatalError ;
sh:targetClass soda:AbstractApplicationDeployment ;
sh:sparql [
sh:message "AADM contains no template" ;
sh:select """

SELECT distinct $this {
$this a soda:AbstractApplicationDeployment .
FILTER NOT EXISTS {

$this DUL:isSettingFor ?template.
}

} """;
] .

Final version of ontologies and semantic repository – Public Page 29
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

Does each RM contain
at least one type?

ex:RMShape
a sh:NodeShape ;
sh:severity sh:fatalError ;
sh:targetClass soda:ResourceModel ;
sh:sparql [

sh:message "RM contains no type" ;
sh:select """

SELECT distinct $this {
$this a soda:ResourceModel .
FILTER NOT EXISTS {
$this DUL:isSettingFor ?node.

}
} """;

] .

Does each AADM
contain the required
metadata?

ex:AADMMetadataShape
a sh:NodeShape ;
sh:severity sh:fatalError ;
sh:targetClass
soda:AbstractApplicationDeployment ;
sh:sparql [
sh:message "AADM does not contain metadata";

sh:select """
SELECT distinct $this ?time ?user ?name

{
$this a
soda:AbstractApplicationDeployment.
FILTER NOT EXISTS {
$this soda:createdAt ?time .

$this soda:createdBy ?user .
$this soda:hasName ?name .
}

} group by $this ?time ?user ?name""";
] .

Is each type associated
with at least one
concept?

ex:TypeFullShape
a sh:NodeShape ;
sh:severity sh:fatalError ;
sh:targetClass soda:SodaliteSituation ;
sh:sparql [

sh:message "Type contains no description" ;
sh:select """

SELECT distinct $this {
?RM a soda:ResourceModel .
?RM soda:includesType $this.
FILTER NOT EXISTS {

Final version of ontologies and semantic repository – Public Page 30
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

$this soda:hasContext ?context .
}

} """;
] .

Is each template
associated with at least
one concept?

ex:TemplateFullShape
a sh:NodeShape ;
sh:severity sh:fatalError ;
sh:targetClass soda:SodaliteSituation ;
sh:sparql [

sh:message "Template contains no description" ;
sh:select """

SELECT distinct $this {
?AADM a soda:AbstractApplicationDeployment .
?AADM soda:includesTemplate $this.
FILTER NOT EXISTS {

$this soda:hasContext ?context .
} """;

] .

Does each requirement
include a node, and/or
a capability and/or a
relationship?

ex:RequirementAssignmentShape
a sh:NodeShape ;
sh:severity sh:fatalError ;
sh:targetClass soda:SodaliteSituation ;
sh:sparql [

sh:message "Each requirement should include
assignments only for node, capability, relationship and
occurrences " ;

sh:select """select distinct ?v ?r_a ?r_i
where {

$this soda:hasContext/tosca:requirements ?r .
?r DUL:classifies ?r_a.
?r DUL:hasParameter

[DUL:classifies ?r_i; DUL:hasRegion ?v] .
FILTER NOT EXISTS {
FILTER(strends(str(?r_i), "node")
|| strends(str(?r_i), "capability")
|| strends(str(?r_i), "relationship")
|| strends(str(?r_i), "occurrences"))

}
}""";

].

Final version of ontologies and semantic repository – Public Page 31
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

Is each
So�wareComponent
template hosted in a
node?

ex:SoftwareComponentShape
a sh:NodeShape ;
sh:severity sh:fatalError ;
sh:targetClass soda:SodaliteSituation ;
sh:sparql [

sh:message "A software component should always be
hosted on a compute node" ;
sh:select """select distinct ?host {
FILTER NOT EXISTS {
$this a soda:SodaliteSituation ;
a tosca:tosca.nodes.SoftwareComponent;
(soda:hasContext/tosca:requirements
/tosca:hasObjectValue)* ?host .
?host a tosca:tosca.nodes.Compute.

}
}""";

].

Does for each property
that takes its value
from an input, the
corresponding input is
defined?

ex:PropertyInputShape
a sh:NodeShape ;
sh:severity sh:fatalError ;
sh:targetClass tosca:Property ;
sh:sparql [

sh:message "If a property gets value from an input,
that input should be present in the topology" ;

sh:select """SELECT ?inputClass ?inputValue {
#check properties getting value from input
?topology soda:includesTemplate ?template.
?template soda:hasContext/tosca:properties
$this .
$this DUL:hasParameter ?param .
?param DUL:classifies ?propClass .
FILTER(strends(str(?propClass), "get_input")).
?param tosca:hasDataValue ?inputValue .

#Check inputs
FILTER NOT EXISTS {
?topology soda:includesInput/soda:hasContext/
tosca:input/DUL:classifies ?inputClass.

FILTER(strends(str(?inputClass), ?inputValue))
}

}""";
].

Table 1. Indicative CQs and SHACL-SPARQL translations

Final version of ontologies and semantic repository – Public Page 32
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

Quality Checking
We used the online tool OOPS! (OntOlogy Pitfall Scanner) [15] for detecting the most common2

pitfalls in ontologies.
The pitfalls detected by OOPS are split into three categories:

A. Critical : It is crucial to correct the pitfall. Otherwise, it could affect the consistency and the
reasoning of the ontology.

B. Important : Though not critical for ontology function, it is important to correct this type of
pitfall.

C. Minor : It is not a problem, but by correcting it we will improve the ontology.

Table 2 shows the pitfalls detected for the SODALITE ontology. Some pitfalls were also detected for
the DOLCE imported ontology, but since this is an ontology that the SODALITE imports, we include
only the SODALITE ontology pitfalls. No critical pitfall was detected for the SODALITE ontologies.

No Pitfall Importance Results

1 Missing annotations: This pitfall
consists in creating an ontology
element and failing to provide human
readable annotations attached to it.
Consequently, ontology elements lack
annotation properties that label them

Minor 107 cases

2 Missing domain or range in
properties: The domain or range (or
both) of a property (relationships and
attributes) is defined by stating more
than one rdfs:domain or rdfs:range
statements.

Important 25 cases

3 Creating a property chain with just
one property: The OWL 2 construct
owl:propertyChainAxiom allows a
property to be defined as the
composition of several properties.

Minor 1 case

4 Inverse relationships not explicitly
declared: This pitfall appears when
any relationship (except for those that
are defined as symmetric properties
using owl:SymmetricProperty) does
not have an inverse relationship
(owl:inverseOf) defined within the
ontology.

Minor 24 cases

5 Equivalent Classes not explicitly
declared: This pitfall consists in
missing the definition of equivalent
classes (owl:equivalentClass) in case
of duplicated concepts.

Important 3 cases

6 Untyped class: An ontology element Important 2 cases

2 http://oops.linkeddata.es/

Final version of ontologies and semantic repository – Public Page 33
© Copyright Beneficiaries of the SODALITE Project

http://oops.linkeddata.es/

Project No 825480.

is used as a class without having been
explicitly declared as such using the
primitives owl:Class or rdfs:Class.

Table 2. Ontology pitfalls detected by OOPS!.

Evaluation of the structure
Ontometrics [16] provides an online platform for ontology metrics calculation. It provides a web3

interface for uploading the ontologies in RDF/XML format. An extension of this tool is presented in
[17], where the ontometrics is presented as Ontology Metrics as a Service, and most other tools
are not usable anymore, and are mainly outdated.

We submitted the SODALITE ontology to the Ontometrics online platform for getting some
advanced ontology metrics. In Table 3, and Table 4, a subset of the metrics calculated by
Ontometrics is presented.
The results are divided into two sections, the Base Metrics, and the Schema Metrics. The Base
Metrics are mainly about the count of properties, classes and other concepts so as the quantity of
ontology elements to be measured. The DL expressivity, included in this section, indicates which
variant of Description Logics is used. SRIN(D) indicates that it is an ontology with transitive,4

inversive properties, cardinality restrictions and limited complex role axioms. The Schema Metrics
are about addressing design issues in the ontology such as the richness, inheritance, and the ratio.
From those metrics that measure the richness of the ontology, it is concluded that the SODALITE
ontology is an ontology that provides high domain coverage. It is worth to note the inheritance
richness has a high value showing that the ontology can capture subsumption hierarchies that
govern in the TOSCA metamodel.

Schema
Metrics

Attribute richness 0.14

Inheritance richness 1.45

Relationship richness 0.37

Axiom/class ratio 61.756

Class/relation ratio 0.4397

Table 3. Schema metrics produced by the Ontometrics tool

4 https://handwiki.org/wiki/Description_logic

3 https://ontometrics.informatik.uni-rostock.de/

Final version of ontologies and semantic repository – Public Page 34
© Copyright Beneficiaries of the SODALITE Project

https://handwiki.org/wiki/Description_logic
https://ontometrics.informatik.uni-rostock.de/

Project No 825480.

Base
Metrics

Axioms 12166

Class count 197

Object property count 129

Data property count 24

Properties count 153

DL expressivity SRIN(D)

SubClassOf axioms count 283

Equivalent classes axioms count 10

Disjoint classes axioms count 26

SubObjectPropertyOf axioms count 70

Inverse object properties axioms count 55

SubPropertyChainOf axioms count 1

Table 4. Base metrics produced by the Ontometrics tool

2.2.2 Comparison with other ontologies
Our SODALITE ontology is based on the TOSCA standard since it offers interoperability. Also, TOSCA
permits you to create your own custom types allowing, in such a way, to model any cloud model
definition, namely XaaS. Additionally, the ontologies capture both the functional and
non-functional requirements. The functional requirements are captured through properties,
requirements and other concepts, and the non-functional requirements are captured through the
policies. Notwithstanding, there is a surge in modelling cloud environments in ontologies, little
focus has been given on building an expandable and modular ontology that can represent complex
concepts such as the TOSCA standard. As analyzed in D3.1, our SODALITE ontology leverages the
best practices in Ontology Engineering, namely the Ontology Design Patterns, the expressiveness
of OWL2. In this subsection, we will compare the modelling capabilities of the SODALITE ontology
with other ontologies in the cloud computing domain.

A description of a cloud service is composed of both functional and non-functional features. The
functional features represent tasks that make the cloud service functional as storage, network,
host etc. The non-functional features represent the quality of the aforementioned tasks such as
scaling, cost and QoS properties. Also, there are three types of cloud computing: IaaS, SaaS and
PaaS. The current cloud computing ontologies cover some types/one type of the cloud computing,
and partially the functional and non-functional features. Also, it is essential, an ontology not to be

Final version of ontologies and semantic repository – Public Page 35
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

monolithic, but expandable, being able to represent many layers in a modular and reusable
manner. A comparison of the most important cloud computing ontologies, based on the
aforementioned aspects, has been performed, and its results are depicted in Table 5.

The CoCoon [18] is an OWL2 ontology that describes IaaS services by focusing on non-functional
features. Only the prices and QoS characteristics are modelled, thus the non-functional features
are partially captured.
The Cloud FNF [19] is a unified ontology that represents both functional and non-functional
features in all types of cloud services; despite this ontology covers many concepts, it defines all the
concepts in classes explicitly without following any design pattern for offering flexibility.
The TOSCA ontology [20] is designed to fill the gap between the structural aspect of the TOSCA and
the domain of applications, however, the structural relationships are captured rather than an
abstracted model. As this ontology represents the TOSCA standard, it models all the types of cloud
services and captures the non-functional features through the TOSCA policies.
The mOSAIC [21] project defines a cloud ontology capturing all types of cloud services (IaaS, SaaS,
PaaS) and both functional and non-functional features; However, it does not represent an abstract
model. The non functional features include various concepts such as scalability, availability, QoS,
Performance.
The PaaSport [22] ontology defines an ontology that captures PaaS cloud services. This ontology is
modular and expandable by using the same upper level ontology as the SODALITE ontology,
namely the DnS ontology. Also, some of the OASIS standards were used for designing the ontology.
In [23], a three standard ontology is proposed used within a semantic framework for promoting
interoperability across IaaS cloud resources. The framework aims at representing a unified model
for representing three different well-known standards (TOSCA, CIMI, and OCCI) and the
transformation between them. The representation focuses only on the functional features. This
ontology enables interoperability by supporting three different standards; however, it is not based
on an ODP for promoting the expandability.

Ontology IaaS SaaS PaaS Functional
features

Non-function
al features

Expandability

Mosaic Y Y Y Y Y N

CloudFNF Y Y Y Y Y N

TOSCA Y Y Y Y Y N

PaaSport N N Y N N Y

CoCoon Y N N Y N N

Three
standards
ontology

Y N N Y P N

SODALITE Y Y Y Y Y Y

Table 5. Comparison of the modelling capabilities of cloud computing ontologies
Y= Yes, N = No, P = Partially

Final version of ontologies and semantic repository – Public Page 36
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

3 Updated Ontology Population and Checking
As it was described in D3.1, the intermediate Exchange Model is a lightweight version of the
SODALITE ODP and was created for hiding the complexity of the KB conceptual model. WP3 is
responsible for mapping this exchange model to the SODALITE ontologies, and checking the
consistency of the KB in terms of the native OWL2 semantics. The user authors their models in the
SODALITE DSL language, and the IDE sends them in the exchange format to the SPE module. The
SPE module that offers all the mapping services for mapping the DSL models to the ontologies.
The mapping services have been significantly enhanced for mapping all the new concepts and
kinds of models. In this section, we will provide two examples containing various new concepts
that have been introduced in the exchange model.

Policy template Example
In Figure 22, an excerpt from a policy template in DSL is shown with two new concepts that were
introduced, the targets and the triggers.

Figure 22. Excerpt from a Policy Template

The representation of the above template in the exchange format (Turtle syntax) is as follows:5

:PolicyTemplate_3
rdf:type exchange:Template ;
exchange:name "autoscale" ;
exchange:type 'radon/radon.policies.scaling.AutoScale' ;
exchange:targets :Parameter_26 ;
exchange:triggers :Trigger_1 ;

.
:Parameter_26
rdf:type exchange:Parameter ;
exchange:listValue 'radon/openstack_vm' ;

.
:Trigger_1
rdf:type exchange:Trigger ;
exchange:name "radon.triggers.scaling" ;
exchange:description 'A trigger for autoscaling' ;
exchange:hasParameter :Parameter_1 ;

5 https://en.wikipedia.org/wiki/Turtle_(syntax)

Final version of ontologies and semantic repository – Public Page 37
© Copyright Beneficiaries of the SODALITE Project

https://en.wikipedia.org/wiki/Turtle_(syntax)

Project No 825480.

exchange:hasParameter :Parameter_5 ;
.

:Parameter_1
rdf:type exchange:Parameter ;
exchange:name "event" ;
exchange:value 'auto_scale_trigger' ;

.
:Parameter_2
rdf:type exchange:Parameter ;
exchange:name "node" ;
exchange:value 'radon/openstack_vm' ;

.

:Parameter_5
rdf:type exchange:Parameter ;
exchange:name "target_filter" ;
exchange:hasParameter :Parameter_2 ;

.

Versioning
As it is mentioned in subsection 7.1.2.1, versioning is supported in the SODALITE platform
so that the users are able to define different versions per each AADM. As such, each AADM
can refer to versioned templates saved in other AADMs. For example, in Figure 23, the
snow-my-sql template is hosted in a snow-docker-host component of version 1.0 that is
saved in an AADM with version 1.0 in the snow module.

Figure 23. Template example with reference to versioned node

The representation of the above template in the exchange format (Turtle syntax) is as follows:

:Template_1
rdf:type exchange:Template ;
exchange:name "snow-mysql" ;
exchange:type 'docker/sodalite.nodes.DockerizedComponent' ;
exchange:requirements :Requirement_1 ;

.
:Parameter_1
rdf:type exchange:Parameter ;
exchange:name "node" ;
exchange:value 'snow/snow-docker-host@v1.0' ;

Final version of ontologies and semantic repository – Public Page 38
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

.

:Requirement_1
rdf:type exchange:Requirement ;
exchange:name "host" ;
exchange:hasParameter :Parameter_1 ;

.

Final version of ontologies and semantic repository – Public Page 39
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

4 Advanced Reasoning services
This section analyzes the intelligent services provided to the IDE user based on the strong
inference capabilities offered by the KB for uncovering information out of the existing relations.
The models are saved in the KB as RDF interconnected graphs capturing all the structures and the
relationships in a formal structure that enable the retrieval and the reuse of the knowledge in an
unambiguous manner. Those services include context-aware content search, reuse, matchmaking,
validation for detecting inconsistencies, and abstraction of the model.

1. Context-aware content search
The modellers can get suggestions for auto-completing their models with knowledge that
is already saved in KB, for instance:

● Property, capability, interface, requirement, attribute, operation and trigger names
can be proposed in template assignments according to its corresponding type
definition.

● All the workspaces that are available
● Optimizations

2. Matchmaking and reuse
All the resources and application nodes are saved in KB fostering the reuse as there is a
central point with all the resources and nodes that can be referenced in other models,
significantly reducing the amount of work needed by the user.

● Matching and reuse nodes that can satisfy requirement assignments of a template.
For instance, virtual machines that can serve as a host of an application,
dependent components such as a database, or network to which the application
will be connected.

● Getting templates that are saved in specific workspaces.

3. Validation
Validation is a crucial part of the smart reasoning processes by minimizing the IaC errors
during the design process and obviating the detection of those errors during the
deployment time. Henceforth, the modellers save time and effort. Validation is based on:

● Constraints of properties
● Property definitions
● Requirement definitions

4. Abstraction of DSL
One of the most fundamental kinds of smartness in the SODALITE platform is the
abstracted DSL. Information can be omitted in the model, and the intelligent reasoning
services will autofill the model. Precisely, the user can omit, for instance, where an
application can be hosted, which database will be used, or to which network be connected.
During the design time, the reasoner can detect which required or optional requirements
are missing, and inform the user which templates can satisfy those requirements by a
suggestion (for optional requirement) or an error (for mandatory requirement). During the
deployment time, the model is concretized by the reasoner when a required/optional
requirement is missing.

Final version of ontologies and semantic repository – Public Page 40
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

5. Optimization suggestions
Application performance is statically optimized by MODAK (D4.2). MODAK is enabled when
an Optimization DSL (D3.4) is provided and associated with an AADM. Within the
optimization DSL, the user can choose the configuration of the application before the
deployment so as to achieve better performance. Cloud and High Performance computing
is executed on an architecture consisting of diverse execution platforms that make it
complex for the user to harness the power of the architecture by selecting the optimal
settings of the application. With ontological reasoning, based on the capabilities that are
already declared on the AADM, the optimal settings of the application can be suggested to
the user.

5 SODALITE IDE
In the reporting period, a number of IDE features have been either extended or newly
implemented. In the following, a functional description of these features is provided.

5.1 Domain Specific Languages
The IDE enables different SODALITE roles in the specification of infrastructure resources and the
topology of the deployment of their applications, by adopting SODALITE domain specific
languages:

● Resource DSL: adopted by Resource Experts (REs) for the specification of types of resources
in heterogeneous infrastructures, such as Cloud, HPC or Edge.

● Abstract Application Deployment DSL: adopted by Application Ops Experts (AoEs) for the
specification of application deployment topologies.

● Optimization DSL: adopted by the Quality Experts (QEs) for the specification of strategies
for the optimization application components deployed as Artificial Intelligence (AI) - kind,
Cloud-kind or HPC-kind components.

● Ansible DSL: adopted by either REs or AoEs for the specification of the implementation of
operations associated to the interface life-cycle of both infrastructure resources and
application components.

● Alerting Rule DSL: adopted by QEs for the specification of rules that govern the triggering
of alerts upon the detection of conditions on monitored deployed applications.

Model instances of these metamodels are created by SODALITE roles through the IDE:
● Resource models (RMs) are instance models of the Resource DSL that contain types of

infrastructure resources,
● Abstract Application deployment models (AADMs) are instance models of the Abstract

Application Deployment DSL, containing the deployment topology of an application,
● Optimization models (OMs) are instances of the Optimization DSL, containing

optimizations for application components deployed for target execution environments,
● Ansible models (AMs) are instances of the Ansible DSL, containing the implementation of

operations for the life-cycle of application components,
● Alerting rule models (ARMs) are instances of the Alerting Rule DSL, containing the rules that

govern the triggering of alerts upon the detection of monitoring conditions in deployed
application components.

Resource DSL, Abstract Application Deployment DSL and Optimization DSL were initially
implemented in the previous reporting period and reported in D3.1. In this reporting period,
Resource DSL and Abstract Application Deployment DSL have been largely improved. Optimization

Final version of ontologies and semantic repository – Public Page 41
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

DSL, Ansible DSL and Alerting Rule DSL have been designed and implemented during this
reporting period. In the following we describe the main new characteristics of these DSLs

5.1.1 AADMs
The Abstract Application Deployment DSL has been extended since last M18 specification with a
number of features:

● Modules: applications can be defined within a module (i.e. namespace) to avoid name
collision between components defined for multiple applications stored in the KB. Similarly,
AADMs can import modules existing in the KB, so that the resources defined within those
imported modules get available for reuse therein.

● Policies: TOSCA based policies can be also defined and associated to application
components

● Inputs/outputs: the inputs required by the application and the outputs it produces can also
be declared

AADMs reuse define infrastructure types declared within RMs as well as infrastructure resource
instances available in the KB. The Abstract Application Deployment DSL enables AoEs to focus on
the specification of an application’s components and its deployment topology, while relying on
infrastructure’s resource types defined elsewhere by REs (and stored in the KB for reuse).

5.1.2 RMs
The Resource DSL has been extended since last M18 specification with a number of features:

● Modules: resources can be defined within a module to avoid name collision between
resources defined for multiple infrastructures stored in the KB. Similarly, RMs can import
modules existing in the KB, so that the resources defined within those imported modules
get available for reuse therein.

● Types: specification of other types are now supported, including data, artifacts,
capabilities, interfaces, relationships and policies.

The Resource DSL enables REs to focus on the specification of infrastructure resource types in RMs.
They can also specialize or reference other infrastructure resource types available in the KB. This
separation of modeling concerns between application components (in AADMs) and reusable
infrastructure resources (in RMs) largely simplifies the modeling process and enables modelling
the specialization of AoE and RE roles.

5.1.3 Optimization Models
The Optimization DSL was created based on the optimization specification provided in D4.2. An OM
specifies the:

● kind of application to optimize (e.g. AI_Training, HPC, etc),
● optimization build configuration, declaring the type of CPU or accelerator,
● autotuning configuration, and the
● optimization configuration for the kind of application to optimize, including (application

kind specific):
○ application kind configuration,
○ associated data
○ runtime frameworks for application kind (e.g. TensorFlow or Keras for AI_Training

kind)
Optimization models can be bound to AADM for the optimization of concrete application
components.

Final version of ontologies and semantic repository – Public Page 42
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

5.1.4 Ansible Models
The IDE also supports the specification of the operation associated with resources in an RM/AADM.
This specification is supported by a simple DSL from which Ansible blueprints are automatically
generated. An initial version of this DSL, which we call Ansible DSL, has been reported in D4.2
released at M24. A new version is being consolidated and will be reported in D4.3. This work, in
fact, is at the intersection between WP3 and WP4.

5.1.5 Alerting Rule Models
The Alerting Rule DSL was created based on Prometheus PromQL specification . This language6

enables QEs to define conditions around monitoring metrics that, when held for some given
duration , an alert with some given associated data should be triggered, and dispatched to7 8

registered observers (e.g. refactoring). Each alerting rule model consists of one or more rules,
organised in groups. Each rule consists of an expression, formalized in PromQL, which describes
the condition, expressed as a boolean-evaluated expression, that has to be held during a given
time duration (expressed in the for attribute) to trigger the alert. The expression consists of a
combination of monitoring metrics, processed by functions, aggregation functions and filters. The
severity label attribute specifies the severity associated with the triggered alert, and it is
interpreted by the observer that captures it. Additional data to be shipped within the alert can be
encoded in one or more annotations.
Alerting rule models can be registered in the monitoring system from the IDE.

5.2 New and extended features (M18 - M33)
During this reporting period, a number of features have been improved and other new ones
implemented. In the following, a functional description of these features is provided.

5.2.1 Multiview representation of the AADM
Primary intention of SODALITE Abstract Application Deployment DSL is to support AoEs in the
specification of their complex application deployment topologies, maximizing their modeling
productivity. To address this high modelling productivity, a textual based AASM DSL edition was
conceived (see Figure 24). This approach offers high flexibility and productivity on one side, but on
the other side, textual based edition requires high specialization on the underlying DSL notation
and semantics, and lacks adequate expressivity for communication.

8 This data is also specified by the rule designer, and may include concrete monitoring data to ship within the
alert.

7 This duration is specified by the rule designer as part of the rule specification

6 https://prometheus.io/docs/prometheus/latest/querying/basics/

Final version of ontologies and semantic repository – Public Page 43
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

Figure 24. Text-based representation of AADMs

To address these limitations in textual edition, SODALITE IDE automatically generates two visual
representations of textual representation, while the user is editing the textual model:

● Tree-based outline representation (see Figure 25). This read-only representation displays
the main AADM elements in a tree-based widget, offering an in-a-glimpse representation of
the AADM. This outline is synchronized with the textual editor, so changes in the editor are
immediately reflected in the outline. Moreover, by selecting one element in the outline, the
corresponding element is selected in the textual editor, and vice-versa. This representation
is particularly useful for looking for concrete components of a large and complex
application.

Final version of ontologies and semantic repository – Public Page 44
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

Figure 25: Outline tree-based representation of AADMs

● Canvas-based visual representation of AADMs (see Figure 26). This representation shows
AADM entities represented as blocks (with different shape and color depending on their
kind) connected to each other according to the associations defined in the DSL. This
representation is editable, so pre-existing entities can be edited through their associated
form in properties view (see Figure 27). Moreover, new entities, such as components (i.e.
node types) can be inserted in the model by selecting them from the editor’s palette (see
right-side panel in Figure 26) and dropping them into the canvas. Textual and graphical
representations are synchronized upon saving, so modifications in one representation are
reflected in the another. When this visual representation is selected, the outline view offers
a thumbnail visualization of the entire AADM visual representation, which can be used to
frame the visual canvas in the part of the AADM the user is interested in.

The combination of outline tree-based representation and canvas-based visual representation of
AADMs largely improve the expressivity for communication of the IDE. This is particularly helpful
for large and complex app deployment topologies. The visual editor is also offering a content
assistance in the associated form-based editors that is similar to the one supported by the textual
editor (see section Improved Content Assistance below) .

Final version of ontologies and semantic repository – Public Page 45
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

Figure 26: Graphical-based representation of AADMs

Figure 27: Form-based edition of AADM entities

Final version of ontologies and semantic repository – Public Page 46
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

5.2.2 Extended AADM Deployment Support
The deployment of AADMs has been largely improved since the last reporting period, both in terms
of the IDE wizard-based assistance and reporting, as well as on the backend end-to-end
deployment process. AADM deployment wizard (see Figure 28) can be triggered from the
contextual menu of the selected AADM in the Project Explorer view.

Figure 28: AADM deployment wizard

This wizard prompts AoEs to provide mandatory fields such as a deployment name and values for
inputs declared within the AADM. Optionally, AoEs can specify the number of workers to use for
parallel deployment (see D5.2) and check whether or not the AADM should be completed by the KB
Reasoner, in case the AADM is abstract as it does not resolve all component requirements. If

Final version of ontologies and semantic repository – Public Page 47
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

marked, KB tries to resolve missing requirements with resources registered in the KB. If the
complete resolution is not possible, the user is notified and the deployment process is cancelled.
Another optional feature is the possibility to associate an ImageBuilder descriptor to build the
images required by the AADM deployment (see D5.2) before this one takes place.
In terms of the completion of the backend deployment process, this can be extended to include all
these steps:

● The AADM is saved into the KB. During this step semantic validation is conducted. If errors
are detected, they are reported back to the user and the deployment is cancelled.

● A JSON representation of the AADM is retrieved from the KB and sent to the IaCBuilder for
blueprint generation.

● The Orchestrator is requested to deploy the AADM from the generated blueprint. This
process concludes when the orchestrator reports to the IDE the final status. If deployment
fails the user is notified and the deployment aborted. If it succeeds, the deployment
process continues.

● The Monitoring is notified to register the dashboards associated with this deployment.
● The Refactoring is also notified to register this deployment for supervision.

A�er a successful deployment the user is notified, and deployment details are available a�er
refreshing the Deployment Governance view.

5.2.3 Deployment Governance View
This view (see Figure 29) enables AoEs to browse and manage their deployed applications. This
view shows the complete list of active deployments grouped by blueprint (i.e. the application
deployment snapshot). AoEs can refresh the view a�er triggering new deployments by using the
view top level le� toolbar, or by using a similar contextual popup menu for any row selected in the
view table. For each selected deployment, AoEs can either resume them (in case of failed or
undeploy applications) or undeploy them (in case of successfully deployed ones).

Figure 29: Deployment Governance View

AoEs can also inspect the details of one deployment by double clicking on them. This opens a
detailed representation of the deployment in a new (see Figure 30). This view offers details of the
deployment, such as:

● Unique identifiers for the deployment and associated blueprint
● State of deployment and allocated instances
● The endpoints for monitoring dashboards associated with this deployment. By clicking on

these endpoints, they are opened into the default system browser, where the AoEs can
inspects the application’s component runtime behavior

● Input values provided to the application deployment
● Output values provided by the Orchestrator

Final version of ontologies and semantic repository – Public Page 48
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

● Log output provided by the Orchestrator during the deployment. By double clicking on it, a
popup dialog shows the last log lines9

Figure 30: Deployment Details View

AoEs can also select a failed or undeployed deployment to resume it (from last failing node or from
scratch, respectively), by selecting the corresponding menu entry in the top le� view toolbar or
contextual popup menu. Then, a wizard (see Figure 31) prompts the AoEs for input values for
resuming the deployment and the number of workers for parallel deployment). Similarly, AoEs can
request as well to undeploy a successfully deployed application.

9 Up to the last 1500 lines are displayed and not all them due to limitations in the IDE graphical subsystem

Final version of ontologies and semantic repository – Public Page 49
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

Figure 31: Deployment Resume wizard

5.2.4 KB Browser view
Different REs and AOEs can contribute to the common, shareable KB with RMs and AADMS
describing infrastructure resource types and instances that could be reused by others. These
models can be authored either by individuals or by collaborative teams. Therefore, the models
stored in the KB should be accessible for all those who have read permissions for the modules
those models were declared in. To browse, retrieve or delete models stored in the KB, the IDE
offers the KB Browser view (see Figure 32).

Figure 32: KB Browser view

Final version of ontologies and semantic repository – Public Page 50
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

This view shows a tree-based representation of the KB content, organized by model kind (RMs,
AADMs) and the nested modules (e.g. docker, openstack, etc). Only models in modules for which
the user has read permissions in IAM are included in the view. This KB content can be refreshed
from the refresh KB button in the top-le� toolbar, or from the refresh KB contextual popup menu
associated with any entry in the tree. For each selected model, this popup menu permits the user
to retrieve the model into her workspace or delete it from the KB. Similar functionality is available
for complete modules. In this latter case, all models in the module are retrieved into the selected
target folder within the workspace, or deleted, respectively. Users can only delete models for which
they have write permissions associated with the module in her IAM configuration. A retrieved
model can be opened, from the Project Explorer view, into the associated SODALITE editor for
inspection and further edition.

5.2.5 Improved Content Assistance

Context-aware intelligent context assistance has been largely improved for AADM edition and
supported as well for RM edition. As the authoring of both RMs and AADMs could be complex and
prone to error for REs and AoEs not quite familiarized with the TOSCA specification, edition
assistance will facilitate the creation of those models. Content assistance must be context-aware so
that it is only advised on the syntax or content that fits into a concrete edition insertion point.
Depending on this point, the syntactic structure of the model is suggested to the user, showing the
elements permitted by the DSL grammar at this point. See Figure 33 for an example of syntactic
structure content suggested to the user in AADMs.

Figure 33: Content assistance for AADM syntax and structure

At another edition insertion point, content assistance can suggest content that can be either
retrieved by searching the model, and/or by requiring the KB. The model itself is searched for
entities defined therein that fit into the insertion point. Similarly other entities stored in the KB
that fit into that point can be retrieved by requesting the KB reasoner, which provides a number of
APIs for complex semantic queries. These queries can search for:

● modules stored in the KB for importing,
● inputs defined in the model,
● data types, node types, relationship types, interface types, (see Figure 34 and Figure 35)
● properties, attributes, requirements, capabilities, etc. of a given node type (see Figure 36),
● node templates that can satisfy a given requirement (see Figure 37),
● file system implementations and dependencies of operations of interfaces, etc.

Final version of ontologies and semantic repository – Public Page 51
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

Figure 34: Content assistance for data types

Figure 35: Content assistance for node types

Figure 36: Content assistance for requirements

Final version of ontologies and semantic repository – Public Page 52
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

Figure 37: Content assistance for nodes satisfying requirements

When content assistance is requested by the user, a drop-down combo box is unrolled, showing all
suggestions, ordered alphabetically. The user can navigate through the list using the vertical scroll
bar or the cursor arrows. The list can also be filtered by typing, so that only suggestions matching
the typed string are displayed. If the user accepts one selected suggestion, it is inserted at the
cursor. In case the suggestion contains additional information, this is displayed in another window
next to the one showing the suggestions.

5.2.6 Semantic Validation (Reporting and Quick fixes)

Semantic validation has been largely improved since M18 release. When the user saves a model
(either an AADM or a RM) into the KB, the KB Reasoner parses the model and conducts a semantic
validation process that checks for the semantic consistency of the model. In case validation errors
are detected, the saving process is aborted and the user gets reported with the list of found errors.
If no errors are detected, the KB Reasoner conducts a number of additional validation checks
searching for recommendations. KB Reasoner also relies on the Defects Predictor (D4.2) for
additional suggestions. Both KB-based recommendations and Defects-Predictor-based
recommendations are reported (as previous errors) to the user.
As a result of the process that saves a AADM or RM into the KB, the IDE may obtain a list of
semantica validation issues (e.g. errors, recommendations and suggestions), all of them associated
with a concrete path within the model. If so, the IDE displays them all to the user in the model
editor, at the point described by the issue’s path (see Figure 38).
In some cases, the KB Reasoner can propose suggestions to fix detected errors or
recommendations. In so, the IDE offers the user to apply those suggestions as quick fixes. The user
can click on one of those quick fixes to apply the associated suggestion into the model. For
instance, the user can select a quick fix to create a requirement for an application component (e.g.
node template) (see Figure 39)

Final version of ontologies and semantic repository – Public Page 53
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

Figure 38: Semantic validation issue reported in AADM textual editor

Figure 39: Quick fixes in AADM textual editor

5.2.7 AADM Versioning
IDE and KB support the versioning of AADMs, as AoEs may need to maintain multiple evolving
versions of their applications and components. For this reason, when AADMs are saved into the KB,
the IDE wizard (see Figure 40) prompts AoEs to set an optional version label or to retrieve an
existing one.

Final version of ontologies and semantic repository – Public Page 54
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

Figure 40: AADM versioning in save wizard

Similarly, the KB Browser view shows the different versions stored in the KB for an existing AADM
(see Figure 32). Moreover, In content assistance, multiple versions of available resource instances
(declared in different versions of AADMs) are suggested to the user, if available.

5.2.8 IAM/Secrets Management
The communication between the IDE and the SODALITE backend services (e.g. KB, Orchestrator,
etc) is restricted to registered authorized users, by adopting the SODALITE IAM framework [D2.3].
Therefore, the IDE user must configure her IAM account in the SODALITE User Account preference
page (see Figure 41).

Figure 41: IAM configuration

Final version of ontologies and semantic repository – Public Page 55
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

Similarly, the secrets required to access HPC infrastructures must be stored in the SODALITE Vault
by using the Secrets preference page (see Figure 42). Using this page, AoEs can add their secrets for
each HPC infrastructure they need to deploy applications into. Secrets are stored in Vault.

Figure 42: HPC Secrets configuration

5.2.9 Image Builder Integration
Before deploying applications that require specific containers, their images must be available in
the image registry. In case of AoE specific images, they need to be built and registered before any
application that allocates container instances of such images is deployed. The IDE permits AoEs or
REs to request Image Builder (D4.2) to build images by providing an image descriptor (see Figure
43)

Figure 43: Image Builder wizard

5.2.10 PDS Integration
Infrastructure resources can be discovered by the Platform Discovery Service (PDS) (D4.2) for
specific kinds. The IDE also permits REs to request, on demand, to PDS to discover the resources of
an infrastructure kind (see Figure 44). The wizard prompts the user to provide a PDS descriptor file
that configures the discovery process, a namespace (e.g. module in IDE terminology) where to
associate discovered resources with, and the platform type (from those supported by PDS).

Final version of ontologies and semantic repository – Public Page 56
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

Figure 44: PDS wizard

6 Updated Modelling Layer architecture
The initial architecture of the Modelling Layer was initially defined in D2.1 and further detailed in
D3.1, D2.2 [27] and D2.3. This section describes the updates that have been made since then.
Figure 45 shows the updated high-level SODALITE General Architecture by layers where there were
limited changes. Figure 46 shows the Modelling Layer architecture where significant changes were
done a�er the First Year of the project. All those changes have already been reported in D2.3.
During the development phase, new and updated interactions with various components have been
added for solving integration issues and adding new functionality to the SODALITE platform.
Regarding the Modelling Layer, the following changes have been added:

● Aan interaction with the Defect Predictor for presenting to the users detected anti-patterns
and bugs in the topology (more details in D4.2).

● Additional DSL editors and languages have been added to the IDE for targeting different
modeling roles and supporting separation of modeling concerns. In particular, new DSL
editors have been developed for authoring Ansible Models, Resource Models, and
Optimization Models.

● IDE interacts with new APIs for giving visibility and access to the user in the deployment
and runtime phase. Additionally, the user can call the Platform Discovery Service,
described in D4.2, for discovering resource models and saving them in the KB.

Also, the Modelling Layer components have been enhanced with Security for making the
framework more safe and appealing to the users. Specifically, the Modelling Layer has been
integrated with the Security APIs that have been introduced in the second year of the project. The
IDE and the Semantic Reasoner use the Identity and Access API (IAM) for authentication and
authorization of the requests, and only the IDE uses the Secret Management API (Vault Service) for
securely handling secret storage.

Final version of ontologies and semantic repository – Public Page 57
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

Figure 45. Updated SODALITE layers general architecture

Figure 46. Updated Modelling Layer Architecture

Final version of ontologies and semantic repository – Public Page 58
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

7 Final version of the components
In this section, the final version of the Modelling Layer components will be shown.
In Figure 47, the Modelling Layer components are depicted with their internal interactions and
their external interactions with the other two SODALITE layers, the IaC layer and the Runtime
Layer. It is a different figure than Figure 46 , so as to group and highlight the interactions with the
other two layers. The IDE interacts with the Semantic Reasoner either for saving a model (exchange
TTL- input) or for getting other information such as context assistance (url parameters - input). As it
is shown from the interactions, the IDE interacts with various components of all the layers in order
to enable the user to manage the process of application deployment. Also, the Semantic Reasoner
interacts with new components, namely the Platform Discovery Service, the Defect Predictor and
the Refactorer. Also, all the interactions have been secured by getting and validating secrets
through the Secret Vault and the IAM services.

Figure 47. Modelling Layer architecture and its interactions with the other layer

7.1 Semantic Reasoner
The Semantic Reasoner is responsible for uncovering hidden knowledge through the strong

inference capabilities of the Knowledge Base. It is a service that serves as an interface between the
KB and the rest of the components. It is a central point on the platform, as it is used by
components of all the layers of the platform, the Modelling layer, the IaC layer and the Runtime
Layer. Namely:

● IDE has an intensive interaction with the Semantic Reasoner for getting access to the
Intelligent services

Final version of ontologies and semantic repository – Public Page 59
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

● The Defect predictor communicates with the Semantic Reasoner for getting access to the
models in the KB.

● The IaC builder
● The Platform Discovery Service that discovers TOSCA Resource Models, sends those

models to the Semantic Reasoner for saving them to the KB and making them available to
the modellers.

● The Refactorer communicates with the Semantic Reasoner and the KB for discovering new
deployment variants, and then saving the modified model to the KB.

Semantic Reasoner uses external services for IAM [Keycloak] to perform user authentication and
authorization getting a token as an input.

● Semantic Reasoning Engine (SRE)
The Reasoning Engine guarantees the consistency of the RDF Knowledge Graphs in terms
of native OWL2 semantics in the OWL2 RL dialect. It provides most services that provide
intelligence to the IDE user. Those services implementing custom reasoning logic are
implemented in T4.4 - Analytics and Semantic Decision Support. An initial version was
presented in D3.1, and a significantly updated version is presented in this deliverable.

● Semantic Population Engine (SPE)
The population engine implements the custom population logic of the KB, for example, by
mapping the DSL concepts sent by IDE in exchange TTL format to the SODALITE
abstraction model. The mapping services were significantly extended for:

1. mapping Resource Models, and additional new concepts such as policy types,
triggers, data types etc.

2. mapping new concepts in the AADMs such as outputs, inputs, policies etc.
3. mapping TOSCA to ontologies. This part is used both by the Platform Discovery

Service and the Refactorer. This mapping service enables PDS to save TOSCA
resources in the KB. Also, the Refactorer uses those mapping back-end services for
saving the refactored models to the KB.

Code Quality
This module is written in Java, and it is integrated in SonarCloud for quality assessment and
obtained the following quality score : 0 bugs, 0 vulnerabilities, 0 Security Hotspots, 84.5% code
coverage, 758 code smells and 2.1% code duplications. The Sonarcloud results for the Semantic
Reasoner are displayed in SonarCloud Dashboard. In Figure 48, the quality results for the Semantic
Reasoner are depicted.

Final version of ontologies and semantic repository – Public Page 60
© Copyright Beneficiaries of the SODALITE Project

https://sonarcloud.io/dashboard?id=SODALITE-EU_semantic-reasoner

Project No 825480.

Figure 48. Code Quality Report for Semantic Reasoner

7.1.1 Semantic Reasoning Engine (SRE)
During the second and third year of the project, the existing REST API endpoints, that assist the
modellers, were enhanced, and additional APIs were developed. This functionality has been
developed under T4.4 for providing semantic decision support to the user. Some of the main
functionalities that were developed:

● Enable the KB browser view in the IDE by providing services for getting and deleting
models.

● Context assistance for getting the available workspaces in the KB, the available types(data,
capability, node etc.), templates, operations, nodes that can satisfy requirements.

● Return the Resource Models in json format for enabling the IDE to display the DSL of the
models discovered by the Platform Discovery Service.

The final version of this component along with its APIs are documented in the Appendix.

Final version of ontologies and semantic repository – Public Page 61
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

7.1.1.1 Advanced Reasoning services - examples

Validation

1. Topology validation
There are errors in the topology of an application that are difficult to be manually

detected since the application components depend on inter-node relationships. Thus, it is
crucial, at the design time, to ensure that the TOSCA topology does not contain errors, and
all the relationships between the nodes are valid. We followed the validity conditions
defined in the Sommelier tool [25], an open-source validator for TOSCA application
topologies. All the TOSCA elements that are forming a relationship are checked, namely
the source (Requirements of a node), the relationship itself, and its target (a node or a
capability of a node).

We will show two examples, one for the requirement validation, and one for the
capability validation. Regarding the requirement validation, one simple validation is
depicted in Figure 49 through a SPARQL query. The requirement assignment names in a
template should be present in the node type hierarchy of the template. One more complex
validation is about additional checks for capabilities. More precisely, when a requirement
assignment is instead only indicating the target node template (without indicating any
of its capabilities), it must be checked whether such node template is offering at least one
type-compatible capability. In Figure 50, we can see an example of the snow-demo
template that has as a network the snow/snow-docker-network whose type
(snow.nodes.DockerNetwork) offers a capability of a type - tosca.nodes.Root, that is not
subclass of the requirements/network/capability = tosca.capabilities.Network
denoted in the sodalite.nodes.DockerizedComponent. In Figure 51, a SPARQL query is
depicted that detects the capability mismatch.

Figure 49. SPARQL query detecting Requirement Mismatch

Final version of ontologies and semantic repository – Public Page 62
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

Figure 50. Capability Mismatch model example

Figure 51. SPARQL query detecting Capability Mismatch

2. Property/Attribute Validation
In the type schema, it is optional to be defined if a property is required to be assigned to a
template by the required key. If there is a type with a property that has required = true, and
there is no default value, then all instances of this type, namely templates, should have
assignment for this property. If not, the Semantic Reasoner throws the corresponding error
to the IDE user. In Figure 52, a node type that has a required property is depicted. In Figure
53, a SPARQL detecting the required properties with no default values and not assigned to
a template is depicted.

Final version of ontologies and semantic repository – Public Page 63
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

Figure 52. Excerpt from the sodalite.nodes.DockerNetwork

Figure 53. SPARQL query detecting required properties
3. Constraint property validation

A constraint clause might be optionally present in the property definition of the type
defining the allowed values that can be assigned in the corresponding template property.
The constraints can be as simple as a list of valid values or as complex as the length of
custom types. For example, in Figure 54, the constraints for the ports property is the
minimum number of assigned openstack/sodalite.datatypes.OpenStack.SecurityRule
objects. In Figure 55, the SPARQL query returns the constraint for the properties that have
entry_schema. If an instance of the openstack/sodalite.nodes.OpenStack.SecurityRules has
no openstack/sodalite.datatypes.OpenStack.SecurityRule objects assigned to the ports
property, an error is thrown as the min_length is 2.

Figure 54. A node type with constraints within properties

Final version of ontologies and semantic repository – Public Page 64
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

Figure 55. SPARQL query returning the constraints

Matchmaking and reuse
Nodes can be detected that satisfy a specific requirement. The check for the requirement
definition does not suffice, but more complex checks are needed for the capabilities offered. This
will be presented through an example. In Figure 57, the node template for which a suitable
requirement host is detected. In Figure 56, some node types are depicted. The
sodalite.nodes.DockerizedComponent type is the type from which the snow-my-sql is instantiated.
This type inherits the tosca.nodes.So�wareComponent which has as a
requirement/host/node the tosca.nodes.Compute type. So all the node templates that are
instances of tosca.nodes.Compute can host the snow-my-sql (Step 1). In addition to
tosca.nodes.Compute, other types of templates can also serve as a host for snow-my-sql. The
tosca.nodes.So�wareComponent has requirements/host/capability=
tosca.capabilities.Compute. The sodalite.nodes.DockerHost has capabilities/host/type =
tosca.capabilities.Compute which is the same type denoted within the requirements of the
tosca.nodes.So�wareComponent (Step 2), and has valid_source_types =
docker/sodalite.nodes.DockerizedComponent (Step 3). So both instances of tosca.nodes.Compute
and docker/sodalite.nodes.DockerHost types can serve as a host for the snow-my-sql template.
In Figure 57, the snow-mysql template is depicted, for which we are searching a valid requirement
host node, and in this figure the snow/docker-host@v1 is added as a suitable example host of type
sodalite.nodes.DockerHost. In Figure 58, the Step 1 is depicted, the SPARQL query retrieves the type
of templates that can serve as a host from the type definition (requirements/host/node) of
the template. In Figure 59, the Step 2 is depicted, the types that offer a capability with the same
type (e.g. tosca.capabilities.Compute) as in the definition of the type of the template are detected
through a SPARQL query. Finally, in Figure 60, the Step 3 is depicted, the valid_source_types of the
matching types of Step 2 are retrieved, and if the type of our template (snow-mysql) is subclass of
the valid_source_types, then those types from Step 2 are suitable hosts for the snow-mysql.

Final version of ontologies and semantic repository – Public Page 65
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

Figure 56. Node type hierarchy

Figure 57. Template for which a suitable host is detected

Figure 58. SPARQL detecting compatible requirements according to the type definition

Final version of ontologies and semantic repository – Public Page 66
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

Figure 59. SPARQL retrieving the required capability types from a node definition

Figure 60. SPARQL retrieving the valid_source_types of node types that offer specific
capability type (cap_type)

Abstraction DSL
Requirements can totally be omitted in the AADM, and the Semantic Reasoner can handle the
current situation. Required requirements are those which have no occurrences in the type10

definition or a minimum value of 1. If a required requirement is missing at the design time, the
Semantic Reasoner throws an error and suggests suitable nodes. If a required requirement is
missing at the deployment time, the Semantic Reasoner autofills the missing requirements in the
model. In Figure 61, a SPARQL is depicted that detects the required requirements that are missing
in a template according to the type definition. If an optional requirement is missing (occurrences
with min = 0), a suggestion is sent during the design time, and the requirement is concretized by
the reasoner during the deployment time.

10

https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/os/TOSCA-Simple-Profile-YAML-v1.3-os.
html#_Toc26969448

Final version of ontologies and semantic repository – Public Page 67
© Copyright Beneficiaries of the SODALITE Project

https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/os/TOSCA-Simple-Profile-YAML-v1.3-os.html#_Toc26969448
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/os/TOSCA-Simple-Profile-YAML-v1.3-os.html#_Toc26969448

Project No 825480.

Figure 61. A SPARQL query detecting required requirements

Optimization suggestions
MODAK is enabled when an Optimization DSL (D3.4) is provided and associated with an AADM. In
Figure 62, the optimization-skyline-extractor, which is an ai training application, is depicted as
associated with an optimization DSL, the ai_training.tensorflow. The optimization-skyline-extractor
is hosted in the optimization-vm which has as capabilities num_gpus = 1. Since the number of GPUs
is greater than zero, if the optimization DSL does not have the XLA compiler enabled for the
Tensorflow framework, the Semantic Reasoner returns a suggestion for enabling the XLA compiler.
Figure 63 shows a SPARQL query for retrieving the capabilities of the host of a template. Since the
host can be nested in many levels, thus the UNION in the query. Then, a�er the capabilities are
retrieved, the SPARQL query, in the Figure 64, is executed for retrieving the exact number of gpus.

Final version of ontologies and semantic repository – Public Page 68
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

Figure 62. AI Training node template associated with optimization DSL

Figure 63. SPARQL query retrieving the capabilities of the node where a template is hosted

Final version of ontologies and semantic repository – Public Page 69
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

Figure 64. SPARQL query retrieving the number of gpus of a capability

7.1.2 Semantic Population Engine (SPE)
As already mentioned in the introduction of this section, the Semantic Population Engine has been
significantly updated since the first year. Saving Resource Models, mapping from TOSCA to
ontologies that is used by the Platform Discovery Service, mapping services that are used by the
Refactorer for saving refactored AADMs to the KB, and mapping of additional concepts (policies,
output etc.) to ontologies are some of the most significant extensions.
The mapping services were updated in order to:

● support versioning of the AADMs.
● support workspaces.
● provide authentication of the user. Only users having read/write permission to specific

workspace can access a resource. For example, a user with no write permission to the
docker workspace cannot save a Resource Model in this specific workspace.

● save the DSL to the KB for enabling the KB Browser view IDE feature.
● save metadata in the KB such as the model’s file name.
● convert new structures such as policies, inputs, outputs, optimizations, tosca models into

the SODALITE knowledge graphs.
The final version of this component along with its APIs are documented in the Appendix.

7.1.2.1 Workspaces and Versioning
The user can save the models in a workspace that can be private or shared with other users.
This workspace support enables the users to work as teams and reuse models and resources
among them. As it is depicted in Figure 65, a model denotes the workspace to which belongs e.g.
snow, and the workspaces to be reused are imported. Also, we can notice the reference to private
workspaces with the slash such as docker/sodalite.nodes.RegistryCertificate. If there is no prefix in
a reference, then the global space is searched. Description about how the KB represents the
workspaces is described in 2.1.5 section.

Final version of ontologies and semantic repository – Public Page 70
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

Figure 65. Example model using workspaces

Also, the users can save different versions for the same aadm. The versioning mechanism can
enable the Refactorer’s work, developed in WP5, for saving the modified AADM in a different
version from the original model.

7.1.3 CI/CD Integration
Like for the other SODALITE components, the process of deploying the Semantic Reasoner has
been automated with the main CI/CD integration in SODALITE Jenkins .11

7.2 Semantic Knowledge Base

7.2.1 RDF Triple Store
Knowledge base has been tuned for better performance. More specifically, the owl:sameas
(property to create an equivalence class between nodes of an RDF graph) has been disabled since
significant improvement was shown in the READ and DELETE operations. Also, we configured the
Java heap memory allocated to the graphdb to be approximately 2/3 of the heap memory (flag
-Xmx).

More technical details are described in the Appendix.

7.2.2 Domain Models
This module contains all the SODALITE ontologies. The technical details are described in the
Appendix.

7.2.3 CI/CD Integration
Like for the other SODALITE components, the process of deploying the Knowledge Base with its
updated domain ontologies has been automated with the main CI/CD integration in SODALITE
Jenkins .12

12 https://jenkins.sodalite.eu

11 https://jenkins.sodalite.eu

Final version of ontologies and semantic repository – Public Page 71
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

7.3 SODALITE IDE
The SODALITE IDE is implemented as a set of plugins for the Eclipse IDE. The code of these plugins
is available in the GitHub repository: https://github.com/SODALITE-EU/ide under the path:
dsl/org.sodalite.IDE.parent (see Figure 66).
For each supported DSL (e.g. AADM, RM, optimization model, Ansible model, Alerting Rule model)
there are four associated plugin projects:

● org.sodalite.dsl.<DSL_NAME>: this project defines the DSL grammar, and provides
implementation for textual serialization (e.g. to the Turtle serialization required by the KB),
textual formatting (how the DSL is visualized in the textual editor),

● org.sodalite.dsl.<DSL_NAME>.ide: this helper plugin supports the configuration of the DSL
editores into the Eclipse IDE.

● org.sodalite.dsl.<DSL_NAME>.ui: this plugin supports different Eclipse UI features of the
DSL editor, including support for content-assistance, notification of semantic errors and
support for quick fixes in editor, implementation of the outline view. This plugin has been
also used for other interactions with the Eclipse UI, hosting the implementation of DSL
related menus and associated wizards, implementation for the integration of the backend
processes (e.g. create AADM, save AADM or RM, deploy AADM, build images, invoke PDS).

● org.sodalite.dsl.<DSL_NAME>. feature: this plugin groups all DSL associated plugins into a
common Eclipse IDE installable feature.

Final version of ontologies and semantic repository – Public Page 72
© Copyright Beneficiaries of the SODALITE Project

https://github.com/SODALITE-EU/ide

Project No 825480.

Figure 66: SODALITE IDE plugins’ project structure

SODALITE DSL and associated plugin implementation is based on XText framework (see D5.1 for13

an SoTA analysis of this framework and the rationale for using it).

Other projects provides implementation for other features of the SODALITE IDE:
● org.sodalite.dsl.AADM.design: this plugin provides the implementation for the AADM

graphical representation and edition, based on canvas and forms. The implementation is
based on Sirius framework (see D5.1 for an SoTA analysis of this framework and the14

rationale for using it).

14 https://www.eclipse.org/sirius/

13 https://www.eclipse.org/Xtext/

Final version of ontologies and semantic repository – Public Page 73
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

● org.sodalite.dsl.kb_reasoner_client: this project centralizes the communications of the IDE
with the SODALITE backend components (e.g. KB Reasoner, Orchestrator, etc.) by sending
requests through their exposed REST APIs, and processing their JSON responses. This
plugin relies on Spring Framework Boot APIs for REST, and Jackson Databind and15 16

Google GSon for JSON processing.17

● org.sodalite.dsl.preferences: this plugin implements Eclipse preference pages for the
configuration of the AIM security and secrets, and the configuration of the endpoints of the
SODALITE backend services.

● org.sodalite.ide.feature: this plugin configures the entire bundle of features that constitute
the SODALITE IDE.

● org.sodalite.IDE.repository: this plugin configures the IDE update site content, that
facilitates the installation of the SODALITE IDE.

● org.sodalite.ide.ui: this plugin provides additional Eclipse UI features for the SODALITE IDE,
including the KB Browser view and the Deployment Governance view.

The following sections provide additional technical implementation details for the main SODALITE
IDE features.

7.3.1 Domain Specific Languages
As aforementioned, SODALITE DSLs are implemented as XText grammars. The grammar (see Figure
67) describes the syntax and grammatical rules of the DSL entities. SODALITE DSLs exploit the
inheritance relationship of XText grammars, so that AADM DSL extends the RM DSL and imports (i.e.
uses) the Optimization DSL.

Figure 67: Snippet for AADM DSL grammar
From the DSL grammar, XText tools are used to generate default textual editors for the SODALITE
IDE. Some of the textual edition features (e.g. context assistance, textual formatting, code

17 https://github.com/google/gson

16 https://github.com/FasterXML/jackson

15 https://spring.io/projects/spring-boot

Final version of ontologies and semantic repository – Public Page 74
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

serialization, etc.) are further extended by the SODALITE IDE development team and reported in
following sections.

7.3.2 New and extended features (M18 - M33)
The following describes the technical implementation of the main SODALITE IDE features extended
or developed during the reporting period.

7.3.3 Multiview representation of the AADM
Textual representation of AADM DSL (and other DSLs) is automatically created by XText out of the
grammar definition. Specialized textual formatting is implemented by the SODALITE team in class
AADMFormatter of project org.sodalite.dsl.AADM (similar formatting has been implemented for
RMs). Outline representation from textual one is generated by class AADMLabelProvider of project
org.sodalite.dsl.AADM.ui. Turtle serialization for sending models to the KB are supported by the
class AADMGenerator of project org.sodalite.dsl.AADM(similar classes for other DSLs). Most of those
classes are implemented using XTend language (i.e. a dialect of Java).18

The visual representation, which offers a canvas based editable representation of the AADM,
combined with editable forms for entity configuration, has been implemented using Sirius
framework. Almost every aspect of the visual representation (including canvas notation, forms,
and palette with edition tools) is declared in the AADM.odesign Sirius descriptor (see Figure 68).
Sirius offers a visual tool for creating this descriptor. It declares the visual elements in the canvas,
their associated toolbars (in palette) for element creation, and their associated forms in the
properties view for element configuration. The entire code for this visual representation is
automatically created by Sirious out of this descriptor.
Specialized Java code for content assistance associated to the field of the forms associated to
entities of the graphical representation or for entity creation (from the palette) has been encoded
in classes Services and KBReasonerProxy of the org.sodalite.dsl.AADM.design project. These helper
classes are associated with visual forms in the odesign descriptor, and invoked when the user
selects particular entities in the canvas or create new ones.
The synchronization between textual and graphical representations is automatically managed by
both XText and Sirius frameworks, a�er some configuration. The correct formatting of AADM in the
textual editor a�er changes propagated from the visual editor is managed by the aforementioned
AADMFormatter class.

18 https://www.eclipse.org/xtend/

Final version of ontologies and semantic repository – Public Page 75
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

Figure 68: Sirius design of AADM visual representation

7.3.4 Extended AADM Deployment Support.
The extended AADM deployment feature consists of the deployment wizard, implemented in the
package org.sodalite.dsl.ui.wizards.deployment of the project org.sodalite.dsl.AADM.ui, and of the
deployment process itself, implemented in the class AADMBackendProxy. The wizard
implementation uses Eclipse JFace and SWT frameworks. The AADMBackendProxy relies on19 20

org.sodalite.dsl.kb_reasoner_client plugin for communication with the backend services that are
supporting the deployment process.

7.3.5 Deployment Governance and KB Browser Views
These views, as for the SODALITE IDE wizards, have been implemented using JFace and SWT
frameworks. The Deployment Governance view implementation is located in the
org.sodalite.ide.ui.views.deployment package and the KB Browser view in the
org.sodalite.ide.ui.views.deployment package, of the org.sodalite.ide.ui project. These views
interact with the backend Orchestrator and KB Reasoner, respectively, through the proxy
framework implemented in project org.sodalite.dsl.kb_reasoner_client.

20 https://www.eclipse.org/swt/

19 https://wiki.eclipse.org/JFace

Final version of ontologies and semantic repository – Public Page 76
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

7.3.6 Improved Content Assistance
Context-aware content assistance for AADM and RM textual editors is implemented by customizing
the default XText content assistance inXTend classes AADMProposalProvider and
RMProposalProvider, of org.sodalite.dsl.AADM.ui and org.sodalite.dsl.RM.ui projects, respectively.
Similar content assistance for Alerting Rule models is provided in the AlertingProposalProvider
XTend class of org.sodalite.dsl.alerting.ui project. These content providers interact with the
backend KB Reasoner, through the proxy framework implemented in
org.sodalite.dsl.kb_reasoner_client project.

7.3.7 Semantic Validation (Reporting and Quick fixes)
Semantic validation is implemented as part of the process that saves AADMs and RMs into the KB.
It is implemented in the AADMBackendProxy and RMBackendProxy classes of the
org.sodalite.dsl.AADM.ui and org.sodalite.dsl.RM.ui projects, respectively. Quick fixes for AADM are
implemented by extending the default XText implementation in the AADMQuickfixProvider Xtend
class of org.sodalite.dsl.AADM.ui project.

7.3.8 AADM Versioning
AADM Versioning is implemented as part of the process that saves AADMs into the KB. This is
managed by the AADM saving wizard and associated backend process, but also by the KB Browser
view (see below section). The wizard for saving AADMs is implemented in the
org.sodalite.sdl.ui.wizards.saveaadm package of project org.sodalite.dsl.AADM.ui project. The
process for saving AADMs is implemented in the AADMBackendProxy class of the
org.sodalite.dsl.AADM.ui project.

7.3.9 IAM/Secrets Management
IAM-based communications from the IDE to the backend is managed by the proxy framework
implemented in org.sodalite.dsl.kb_reasoner_client project. It gets from Keycloak a token for the
user registered within the IDE. This token is used in any IDE-backend communication. The
configuration of the IAM credentials and the management of the user’s secrets stored in the Vault
are supported through Eclipse preferences pages, which are implemented in the
org.sodalite.dsl.ui.preferences and org.sodalite.dsl.ui.preferences.hpc_secrets packages of the
org.sodalite.dsl.preferences project. The org.sodalite.dsl.kb_reasoner_client proxy cares for getting
the KeyCloak token and manages the IAM-secured interactions with the backend services.

7.3.10 Image Builder and PDS Integration
These two features provide wizards that are implemented, by adopting JFace and SWT
frameworks, in the org.sodalite.dsl.ui.wizards.buildimages and org.sodalite.dsl.ui.wizards.pds
packages of the project org.sodalite.dsl. AADM.ui project, respectively. Their respective backend
processes are implemented in the AADMBackendProxy class.

7.3.11 CI/CD Integration
Like for the other SODALITE components, the process for building the IDE and providing its Eclipse
update site from where users can install a local standalone IDE instance, have been automated
with the main CI/CD integration in SODALITE Jenkins . The IDE update site is automatically21

updated a�er any commit to the master branch of the Sodalite repository .22

22 https://github.com/SODALITE-EU/ide

21 https://jenkins.sodalite.eu

Final version of ontologies and semantic repository – Public Page 77
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

8 Conclusion
This deliverable has reported on the final release (M33) of the SODALITE Modelling Layer, by
emphasizing on the main new features that have been added since the initial release reported in
D3.1, and also reporting the progress on the existing features. The work reported is relevant to T3.1
“Application Semantic Modelling” and T3.2 “Infrastructure Semantic Modelling”. The final version
of the conceptual model was presented with all the new concepts that have been added. Also, the
updated Semantic Reasoner has been presented that now provides new advanced reasoning
services that foster the simplification of the model, the validation, the matchmaking, the reuse,
and the context-aware content assistance. This module also provides the Semantic Populator that
has been updated significantly for supporting new TOSCA concepts, the workspaces, the
versioning of the AADMs, and for enabling components from other layers to save and matchmake
models and resources in the Knowledge Base. The IDE has significantly improved since the M18
release, by offering new DSLs and editors, wizards and views for supporting different modeling
roles through the whole lifecycle of the deployment process.
Next steps include a PoC implementation of the IDE as a SaaS, and some subtle extensions in the
reasoning services as part of WP4/T4.4 - Analytics and Semantic Decision Support task.

Final version of ontologies and semantic repository – Public Page 78
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

References
[1] J. Opara-Martins, R. Sahandi and F.Tian,”Critical analysis of vendor lock-in and its impact on
cloud computing migration: a business perspective”, Journal of Cloud Computing, vol. 5, 2016.
[2] D3.1, First version of ontologies and the semantic repository, SODALITE Technical
Deliverable 2020.
[3] D4.2, IaC Management - Intermediate version, SODALITE Technical Deliverable 2020.
[4] T. Tudorache, “Ontology engineering: Current state, challenges, and future directions”,
Semantic Web – Interoperability, Usability, Applicability an IOS Press Journal , vol. 11, no. 1,
pp. 125-138, 2019.
[5] D. Fensel, U. Şimşek, K. Angele, E. Huaman, E. Kärle, O. Panasiuk, I. Toma, J. Umbrich, A. Wahler.
(2020). Knowledge Graphs: Methodology, Tools and Selected Use Cases.
[6] A. Gangemi and P. Mika, “Understanding the Semantic Web through Descriptions and
Situations,” in Proceedings of ODBASE03 Conference , Springer, Berlin, Heidelberg, pp. 689–706,
2003.
[7] G.Meditskos, Z.Vasileiou, A.Karakostas, S.Vrochidis, I.Kompatsiaris, “A Pattern-based Semantic
Li�ing of Cloud and HPC Applications using OWL 2 Meta-modelling”, 4th Special Session on High
Performance Services Computing and Internet Technologies, 2020.
[8] Jesús Gorroñogoitia, Zoe Vasileiou, Emilio Imperiali, Indika Kumara, Dragan Radolović and
Georgios Meditskos, “A Smart Development Environment for Infrastructure as Code”, CEUR
Workshop Proceedings , 2021
[9] E. Di Nitto et al., "An Approach to Support Automated Deployment of Applications on
Heterogeneous Cloud-HPC Infrastructures," 2020 22nd International Symposium on Symbolic and
Numeric Algorithms for Scientific Computing (SYNASC), pp. 133-140 2020.
[10] D2.3, Requirements, KPIs, evaluation plan and architecture - final version, SODALITE
Technical Deliverable 2021.
[11] J.Soldani and P.Wang, “TOSCA in a nutshell: Promises and perspectives”, Service-Oriented and
Cloud Computing, vol. 8745, pp. 171-186, 2014.
[12] TOSCA Simple Yaml profile
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/os/TOSCA-Simple-Profile-YAM
L-v1.3-os.html#_Toc26969496
[13] M. Cankar, A.Luzar, and D.Tamburri, “Auto-scaling Using TOSCA Infrastructure as Code”, In book
So�ware Architecture, 14th European Conference, ECSA 2020 Tracks and Workshops, pp. 260-268,
2020.
[14] Knublauch, H., Kontokostas, D.: Shapes Constraint Language (SHACL). W3C Proposed
Recommendation, June 2017
[15] M. Poveda-Villalón, A. Gómez-Pérez, & M.C. Suárez-Figueroa. OOPS! (OntOlogy Pitfall
Scanner!): An on-line tool for ontology evaluation. International Journal on Semantic Web and
Information Systems (IJSWIS), vol. 10(2), pp. 7-34, 2014.
[16] Lantow, B., “OntoMetrics: Putting Metrics into Use for Ontology Evaluation “, pp. 186-191, 2016
[17] Reiz, A.; Dibowski, H.; Sandkuhl, K. & Lantow, B., “ Ontology Metrics as a Service (OMaaS)”,
12th International Conference on Knowledge Engineering and Ontology Development, pp.
250-257, 2020.
[18] Zhang, Qian and Haller, Armin and Wang, Qing, CoCoOn: Cloud Computing Ontology for IaaS
Price and Performance Comparison, in book “The Semantic Web – ISWC 2019”, pp. 325-341, 2019.
[19] al-sayed, Mustafa and Omara, Fatma, “CloudFNF: An ontology structure for functional and
non-functional features of cloud services”, Journal of Parallel and Distributed Computing, 2020
[20] B.Martino, A.Esposito, S. Nacchia, S. Maisto, U. Breitenbücher, “An Ontology for OASIS

Final version of ontologies and semantic repository – Public Page 79
© Copyright Beneficiaries of the SODALITE Project

https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/os/TOSCA-Simple-Profile-YAML-v1.3-os.html#_Toc26969496
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/os/TOSCA-Simple-Profile-YAML-v1.3-os.html#_Toc26969496

Project No 825480.

TOSCA”, Advances in Intelligent Systems and Computing , vol. 1150, pp. 709-719, Springer
2020.
[21] F.Moscato, R. Aversa, Di Martino, B., Fortiş, T. and Munteanu, V., “An Analysis of mOSAIC
ontology for Cloud Resources annotation.”, Federated Conference on Computer Science and
Information Systems, pp. 973-980, 2011
[22] N. Bassiliades, M. Symeonidis, G. Meditskos, E. Kontopoulos, P. Gouvas, and I. Vlahavas,
“PaaSport Semantic Model: An Ontology for a Platform-as-a-Service Semantically Interoperable
Marketplace”, in Data and Knowledge Engineering , vol. 113, pp. 81-115,
Elsevier, 2018.
[23] k. Yongsiriwit, Sellami M. and Gaaloul W., “A Semantic Framework Supporting Cloud Resource
Descriptions Interoperability”, IEEE 9th International Conference on Cloud Computing, 2016, pp.
585-592
[24] D5.2, Application deployment and dynamic runtime - intermediate version. SODALITE
Technical Deliverable 2021.
[25] A. Brogi, A. Di Tommaso, J. Soldani, “Sommelier: A Tool for Validating TOSCA Application
Topologies”, In book: Model-Driven Engineering and So�ware Development, July 2018
[26] D2.1 Requirements, KPIs, evaluation plan and architecture - first version, SODALITE Technical
Deliverable 2020.
[27] D2.2 Requirements, KPIs, evaluation plan and architecture - intermediate version, SODALITE
Technical Deliverable 2020.

Final version of ontologies and semantic repository – Public Page 80
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

Appendix
In this section, we present the radon AADM example that was presented in Chapter 2.
In particular, the DSL syntax, the intermediate exchange format and the final SODALITE
meta-model definition are presented.

DSL representation

module: radon

import: docker
import: hpc

inputs:
flavor-name:

type: string
vm-name:

type: string
image-name:

type: string
default: "image_name"

node_templates:
workstation:

type: tosca.nodes.Compute
description: "workstation description"
attributes:

private_address: "localhost"
public_address: "localhost"

openstack_vm:
type: radon/radon.nodes.OpenStack.VM
properties:

name: get_input: vm-name
image: get_input: image-name
flavor: get_input: flavor-name
network: 'provider_64_net'
key_name: 'my_key'

requirements:
host:

node: radon/workstation

policies:

Final version of ontologies and semantic repository – Public Page 81
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

scale_down:
type: radon/radon.policies.scaling.ScaleDown
description: "scale down policy description"
properties:

cpu_upper_bound: 90
adjustment: 1

scale_up:
type: radon/radon.policies.scaling.ScaleUp
properties:

cpu_upper_bound: 90
adjustment: 1

autoscale:
type: radon/radon.policies.scaling.AutoScale
properties:

min_size: 3
max_size: 7

targets: [radon/openstack_vm]
triggers:

radon.triggers.scaling:
description: 'A trigger for autoscaling'
event: 'auto_scale_trigger'
schedule:

start_time: "2020-04-08 21:59:40"
end_time: "2022-04-08 21:59:50"

target_filter:
node: radon/openstack_vm
requirement: radon/openstack_vm.host
capability: tosca.nodes.Compute.host

condition:
constraint:

not:
and:

available_instances:[greater_than:
42]

available_space:[greater_than:1000]
period: '60 sec'
evaluations: 2
method: 'average'

action:
call_operation:

operation:
radon/radon.interfaces.scaling.AutoScale.retrieve_info

call_operation:

Final version of ontologies and semantic repository – Public Page 82
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

operation:

radon/radon.interfaces.scaling.AutoScale.autoscale

outputs:
public_ip:

type: string
description: 'The public IP of the provisioned VM'
value: get_attribute:

entity: radon/workstation
attribute: radon/workstation.public_address

Exchange Model

baseURI: https://www.sodalite.eu/ontologies/exchange/radon/
imports: https://www.sodalite.eu/ontologies/exchange/

@prefix : <https://www.sodalite.eu/ontologies/exchange/radon/> .
@prefix exchange: <https://www.sodalite.eu/ontologies/exchange/> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

:
rdf:type owl:Ontology ;
owl:imports exchange: ;
owl:versionInfo "Created by the SODALITE IDE" ;

.

:AADM_1
rdf:type exchange:AADM ;
exchange:userId "27827d44-0f6c-11ea-8d71-362b9e155667" ;

.
:Parameter_29

rdf:type exchange:Parameter ;
exchange:name "attribute" ;
exchange:value 'radon/workstation.public_address' ;

.
:Parameter_30

rdf:type exchange:Parameter ;
exchange:name "entity" ;
exchange:value 'radon/workstation' ;

.
:Parameter_28

Final version of ontologies and semantic repository – Public Page 83
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

rdf:type exchange:Parameter ;
exchange:name "get_attribute" ;
exchange:hasParameter :Parameter_29 ;
exchange:hasParameter :Parameter_30 ;

.
:Parameter_26

rdf:type exchange:Parameter ;
exchange:name "type" ;
exchange:value 'string' ;

.
:Parameter_27

rdf:type exchange:Parameter ;
exchange:name "value" ;
exchange:hasParameter :Parameter_28 ;

.
:Output_1

rdf:type exchange:Output ;
exchange:name "public_ip" ;
exchange:hasParameter :Parameter_26 ;
exchange:description 'The public IP of the provisioned VM' ;
exchange:hasParameter :Parameter_27 ;

.
:Parameter_28

rdf:type exchange:Parameter ;
exchange:name "type" ;
exchange:value 'string' ;

.

:Input_1
rdf:type exchange:Input ;
exchange:name "flavor-name" ;
exchange:hasParameter :Parameter_28 ;

.

:Parameter_29
rdf:type exchange:Parameter ;
exchange:name "type" ;
exchange:value 'string' ;

.
:Input_2

rdf:type exchange:Input ;
exchange:name "vm-name" ;
exchange:hasParameter :Parameter_29 ;

.
:Parameter_30

rdf:type exchange:Parameter ;

Final version of ontologies and semantic repository – Public Page 84
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

exchange:name "type" ;
exchange:value 'string' ;

.
:Parameter_31

rdf:type exchange:Parameter ;
exchange:name "default" ;
exchange:value 'image-name' ;

.
:Input_3

rdf:type exchange:Input ;
exchange:name "image-name" ;
exchange:hasParameter :Parameter_30 ;
exchange:hasParameter :Parameter_31 ;

.
:Property_1

rdf:type exchange:Property ;
exchange:name "name" ;
exchange:value "HostVM" ;

.
:Property_2

rdf:type exchange:Property ;
exchange:name "image" ;
exchange:value "centos7" ;

.
:Property_3

rdf:type exchange:Property ;
exchange:name "flavor" ;
exchange:value "m1.xsmall" ;

.
:Property_4

rdf:type exchange:Property ;
exchange:name "network" ;
exchange:value "provider_64_net" ;

.
:Property_5

rdf:type exchange:Property ;
exchange:name "key_name" ;
exchange:value "my_key" ;

.
:Property_6

rdf:type exchange:Property ;
exchange:name "cpu_upper_bound" ;
exchange:value "10" ;

.
:Property_7

rdf:type exchange:Property ;

Final version of ontologies and semantic repository – Public Page 85
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

exchange:name "adjustment" ;
exchange:value "1" ;

.
:Property_8

rdf:type exchange:Property ;
exchange:name "cpu_upper_bound" ;
exchange:value "90" ;

.
:Property_9

rdf:type exchange:Property ;
exchange:name "adjustment" ;
exchange:value "-1" ;

.
:Property_10

rdf:type exchange:Property ;
exchange:name "min_size" ;
exchange:value "3" ;

.
:Property_11

rdf:type exchange:Property ;
exchange:name "max_size" ;
exchange:value "10" ;

.
:Parameter_1

rdf:type exchange:Parameter ;
exchange:name "event" ;
exchange:value 'auto_scale_trigger' ;

.
:Parameter_2

rdf:type exchange:Parameter ;
exchange:name "node" ;
exchange:value 'radon/openstack_vm' ;

.
:Parameter_3

rdf:type exchange:Parameter ;
exchange:name "requirement" ;
exchange:value 'radon/openstack_vm.host' ;

.
:Parameter_4

rdf:type exchange:Parameter ;
exchange:name "capability" ;
exchange:value 'radon/openstack_vm.host' ;

.
:Parameter_5

rdf:type exchange:Parameter ;
exchange:name "target_filter" ;

Final version of ontologies and semantic repository – Public Page 86
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

exchange:hasParameter :Parameter_2 ;
exchange:hasParameter :Parameter_3 ;
exchange:hasParameter :Parameter_4 ;

.
:Parameter_6

rdf:type exchange:Parameter ;
exchange:name "greater_than" ;
exchange:value "42" ;

.
:Parameter_7

rdf:type exchange:Parameter ;
exchange:name "available_instances" ;
exchange:hasParameter :Parameter_6 ;

.
:Parameter_8

rdf:type exchange:Parameter ;
exchange:name "greater_than" ;
exchange:value "1000" ;

.
:Parameter_9

rdf:type exchange:Parameter ;
exchange:name "available_space" ;
exchange:hasParameter :Parameter_8 ;

.
:Parameter_10

rdf:type exchange:Parameter ;
exchange:name "and" ;
exchange:hasParameter :Parameter_7 ;
exchange:hasParameter :Parameter_9 ;

.
:Parameter_11

rdf:type exchange:Parameter ;
exchange:name "not" ;
exchange:hasParameter :Parameter_10 ;

.
:Parameter_12

rdf:type exchange:Parameter ;
exchange:name "constraint" ;
exchange:hasParameter :Parameter_11 ;

.
:Parameter_13

rdf:type exchange:Parameter ;
exchange:name "period" ;
exchange:value '60 sec' ;

.
:Parameter_14

Final version of ontologies and semantic repository – Public Page 87
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

rdf:type exchange:Parameter ;
exchange:name "evaluations" ;
exchange:value 2 ;

.
:Parameter_15

rdf:type exchange:Parameter ;
exchange:name "method" ;
exchange:value 'average' ;

.
:Parameter_16

rdf:type exchange:Parameter ;
exchange:name "condition" ;
exchange:hasParameter :Parameter_12 ;
exchange:hasParameter :Parameter_13 ;
exchange:hasParameter :Parameter_14 ;
exchange:hasParameter :Parameter_15 ;

.
:Parameter_17

rdf:type exchange:Parameter ;
exchange:name "operation”;
exchange:value
'radon/radon.interfaces.scaling.AutoScale.retrieve_info' ;

.
:Parameter_18

rdf:type exchange:Parameter ;
exchange:name "inputs" ;

.
:Parameter_19

rdf:type exchange:Parameter ;
exchange:name "call_operation" ;
exchange:hasParameter :Parameter_17 ;
exchange:hasParameter :Parameter_18 ;

.
:Parameter_20

rdf:type exchange:Parameter ;
exchange:name "action" ;
exchange:hasParameter :Parameter_19 ;

.
:Parameter_21

rdf:type exchange:Parameter ;
exchange:name "operation";

exchange:value
'radon/radon.interfaces.scaling.AutoScale.autoscale' ;
.
:Parameter_22

rdf:type exchange:Parameter ;

Final version of ontologies and semantic repository – Public Page 88
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

exchange:name "inputs" ;
.
:Parameter_23

rdf:type exchange:Parameter ;
exchange:name "call_operation" ;
exchange:hasParameter :Parameter_21 ;
exchange:hasParameter :Parameter_22 ;

.
:Parameter_24

rdf:type exchange:Parameter ;
exchange:name "action" ;
exchange:hasParameter :Parameter_23 ;

.

:Trigger_1
rdf:type exchange:Trigger ;
exchange:name "radon.triggers.scaling" ;
exchange:description 'A trigger for autoscaling' ;
exchange:hasParameter :Parameter_1 ;
exchange:hasParameter :Parameter_5 ;
exchange:hasParameter :Parameter_16 ;
exchange:hasParameter :Parameter_20 ;
exchange:hasParameter :Parameter_24 ;
.

:Attribute_1
rdf:type exchange:Attribute ;
exchange:name "private_address" ;
exchange:value "localhost" ;

.
:Attribute_2

rdf:type exchange:Attribute ;
exchange:name "public_address" ;
exchange:value "localhost" ;

.
:Parameter_25

rdf:type exchange:Parameter ;
exchange:name "node" ;
exchange:value 'radon/workstation' ;

.
:Requirement_1

rdf:type exchange:Requirement ;
exchange:name "host" ;
exchange:hasParameter :Parameter_25 ;

.
:Template_1

rdf:type exchange:Template ;

Final version of ontologies and semantic repository – Public Page 89
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

exchange:name "workstation" ;
exchange:type 'tosca.nodes.Compute' ;
exchange:attributes :Attribute_1 ;
exchange:attributes :Attribute_2 ;

.
:Template_2

rdf:type exchange:Template ;
exchange:name "openstack_vm" ;
exchange:type 'radon/radon.nodes.OpenStack.VM' ;
exchange:properties :Property_1 ;
exchange:properties :Property_2 ;
exchange:properties :Property_3 ;
exchange:properties :Property_4 ;
exchange:properties :Property_5 ;
exchange:requirements :Requirement_1 ;

.
:PolicyTemplate_1

rdf:type exchange:Template ;
exchange:name "scale_down" ;
exchange:type 'radon/radon.policies.scaling.ScaleDown' ;
exchange:properties :Property_6 ;
exchange:properties :Property_7 ;

.
:PolicyTemplate_2

rdf:type exchange:Template ;
exchange:name "scale_up" ;
exchange:type 'radon/radon.policies.scaling.ScaleUp' ;
exchange:properties :Property_8 ;
exchange:properties :Property_9 ;

.
:Parameter_26

rdf:type exchange:Parameter ;
exchange:listValue 'radon/openstack_vm' ;

.
:PolicyTemplate_3

rdf:type exchange:Template ;
exchange:name "autoscale" ;
exchange:type 'radon/radon.policies.scaling.AutoScale' ;
exchange:properties :Property_10 ;
exchange:properties :Property_11 ;
exchange:targets :Parameter_26 ;
exchange:triggers :Trigger_1 ;

.

Final version of ontologies and semantic repository – Public Page 90
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

Sodalite Meta-model
The AADM example in the turtle format can be found here.

Semantic Reasoner

Semantic Reasoning Engine (SRE)
During the second and third year of the project, the existing REST API endpoints, that assist the
modellers, were enhanced, and additional APIs were developed for improving the
recommendation and validation services.

So�ware Dependencies
● Java 11 or newer
● Jersey web services 2.32
● Graph DB 9.7.0 or newer
● Docker engine 19.03 or newer
● RDF4J v3.0.0
● Tomcat 9

Requirements
● OWL2 reasoning to be supported
● The interface to access the semantic repository to be provided
● The reasoning infrastructure for custom rule-based logic to be provided.

Composed Of
The REST API and the reasoning infrastructure by interfacing with the GraphDB reasoning engine.
Roles that interact with the component (i.e. AOE, RE, QE)
No direct interaction with the user.

Depends on
The Semantic Reasoning Engine depends on the Semantic Knowledge Base.

Docker image
https://hub.docker.com/r/sodaliteh2020/semantic_web

Repositories
https://github.com/SODALITE-EU/semantic-reasoner

Final version of the APIs
Many APIs are using the template parameter. The template = false is set by the IDE since the
concepts from the type definitions are retrieved for assisting the user when authoring the
templates. The template=true is sent when the reasoner calls the APIs for building the aadm json
that will be used by the IaC builder for creating the blueprint.

Security has been added to all the APIs for making the framework more solid and safe for the user,
thus all the APIs have been enhanced with the token parameter. Also, the parameters in bold
express that they are required.

Final version of ontologies and semantic repository – Public Page 91
© Copyright Beneficiaries of the SODALITE Project

https://github.com/SODALITE-EU/semantic-models/blob/master/ontology%20definitions/examples/M33/policyAADMExample.ttl
https://hub.docker.com/r/sodaliteh2020/semantic_web
https://github.com/SODALITE-EU/semantic-reasoner

Project No 825480.

ΚΒ browser view
Τhose APIs enable the KB browser view in the IDE
GET /model(resource, namespace, uri, version, token)
When a resource and a namespace are given, the model to which the resource belongs is returned.
When a uri is provided, the specific model is returned, and if a version is also provided, the
versioned model is returned.
Example:resource=snow-docker-host,
namespace=https://www.sodalite.eu/ontologies/workspace/1/snow/
Get the model in which a specific resource is contained

{

"data": [

{

"uri":

"https://www.sodalite.eu/ontologies/workspace/1/bk4u2bgdn6upi9p5pb9b21gfg5/AADM_ogrckmjo34j

tv3",

"createdBy":

"https://www.sodalite.eu/ontologies/workspace/1/bk4u2bgdn6upi9p5pb9",

"createdAt": "2021-09-28T15:31:45.282+03:00",

"dsl": "DSL text",

"name": "snow.aadm.ttl"

}

]

}

GET /models(type, namespace, token)
The IDE users can get all the application and resource models (type=AADM|RM) in a specific
workspace (namespace). If no namespace is given the global models are returned.
Example: type = RM, namespace = https://www.sodalite.eu/ontologies/workspace/1/openstack/
All the resource models to the openstack workspace are returned.
{

"data": [

{

"uri":

"https://www.sodalite.eu/ontologies/workspace/1/thhkbhvrg6ajr9hgj7ekkm1hqd/RM_hmhf4

l4kl81gcjpsrbrk3lubq5",

"createdBy":

"https://www.sodalite.eu/ontologies/workspace/1/thhkbhvrg6ajr9hgj7ekkm1hqd/27827d44

-0f6c-11ea-8d71-362b9e155667",

"createdAt": "2021-08-31T14:08:15.841+03:00",

"dsl": "\"DSL\"",

"name": "\"openstack_vm.rm\"",

"description": "specification of resources for Openstack VM"

}]

}

Final version of ontologies and semantic repository – Public Page 92
© Copyright Beneficiaries of the SODALITE Project

https://www.sodalite.eu/ontologies/workspace/1/bk4u2bgdn6upi9p5pb9b21gfg5/AADM_ogrckmjo34jtv3
https://www.sodalite.eu/ontologies/workspace/1/bk4u2bgdn6upi9p5pb9b21gfg5/AADM_ogrckmjo34jtv3
https://www.sodalite.eu/ontologies/
https://www.sodalite.eu/ontologies/workspace/1/openstack/
https://www.sodalite.eu/ontologies/workspace/1/thhkbhvrg6ajr9hgj7ekkm1hqd/RM_hmhf4l4kl81gcjpsrbrk3lubq5
https://www.sodalite.eu/ontologies/workspace/1/thhkbhvrg6ajr9hgj7ekkm1hqd/RM_hmhf4l4kl81gcjpsrbrk3lubq5
https://www.sodalite.eu/ontologies/workspace/1/thhkbhvrg6ajr9hgj7ekkm1hqd/27827d44-0f6c-11ea-8d71-362b9e155667
https://www.sodalite.eu/ontologies/workspace/1/thhkbhvrg6ajr9hgj7ekkm1hqd/27827d44-0f6c-11ea-8d71-362b9e155667

Project No 825480.

DELETE /delete(uri, version, hard, token)
This API is called from the IDE for deleting a model. When only the uri is sent, the specific model
gets deleted. When the uri, the version and hard = false are given, then the specific versioned
model gets deleted. When the uri, and hard = true are given, then all the versions of an AADM
model are deleted.
Example: Uri=<an aadm uri>
{

"success": {

"text": "Successfully deleted the model"

}

}

Context-assistance and reuse
GET /namespaces
This API is called by the IDE for returning all the workspaces in the KB.
Example:
In this example, the docker, openstack, snow, radon, test, batch, and hpc are the private
workspaces in the KB. The uri of each workspace is returned since each workspace in the KB is
saved as a named graph identified by a URI.
{

"data": [

"https://www.sodalite.eu/ontologies/workspace/1/docker/",

"https://www.sodalite.eu/ontologies/workspace/1/openstack/",

"https://www.sodalite.eu/ontologies/workspace/1/snow/",

"https://www.sodalite.eu/ontologies/workspace/1/radon/",

"https://www.sodalite.eu/ontologies/workspace/1/test/",

"https://www.sodalite.eu/ontologies/workspace/1/batch/",

"https://www.sodalite.eu/ontologies/workspace/1/hpc/"

]

}

GET /types(type, imports, token)
This API returns all the types saved in the KB in the global workspace and the private workspaces
(imports). The type can get the following values: capability, data, node, relationship, interface,
policy. The type represents what kind of nodes should be returned.
Example: imports=docker , type=node
All the node types in the global and docker workspaces are returned.

{

"data": [

{

Final version of ontologies and semantic repository – Public Page 93
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

"https://www.sodalite.eu/ontologies/workspace/1/docker/sodalite.nodes.DockerVolume": {

"label": "sodalite.nodes.DockerVolume",

"type": {

"https://www.sodalite.eu/ontologies/tosca/tosca.nodes.SoftwareComponent":

{

"label": "tosca.nodes.SoftwareComponent"

}

},

"namespace": "https://www.sodalite.eu/ontologies/workspace/1/docker/"

}

},

…]

GET /templates(imports, token)
All the templates in workspaces denoted in the imports parameter are returned.
Example: imports = snow
In this example, all the templates saved in the snow workspace are returned. For brevity, only the
snow-docker-volume-masks is included in the json message.

{

"data": [

{

"https://www.sodalite.eu/ontologies/workspace/1/snow/v1.0/snow-docker-volume-masks": {

"label": "snow-docker-volume-masks",

"type": {

"https://www.sodalite.eu/ontologies/workspace/1/docker/sodalite.nodes.DockerVolume": {

"label": "sodalite.nodes.DockerVolume",

"namespace":

"https://www.sodalite.eu/ontologies/workspace/1/docker/"

}

},

"namespace": "https://www.sodalite.eu/ontologies/workspace/1/snow/",

"version": "v1.0"

}

},...

]

}

Final version of ontologies and semantic repository – Public Page 94
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

The following APIs have been described in D3.1, and just included here for showing that
authentication was included (token). The template = false is set by the IDE since the concepts from
the type definitions are retrieved for assisting the user when authoring the templates. The
template=true when the reasoner calls all the below APIs for building the aadm json that will be
used by the IaC builder for creating the blueprint.
GET /attributes(resource, template, token)
GET /capabilities(resource, template, token)
GET /properties(resource, template, token)
GET /interfaces(resource, template, token)
GET /requirements(resource, template, token)

GET /operations(resource, template, token)
This API is working as the above APIs (attributes, properties etc.). All the relevant operations of an
interface type are returned for informing the user while adding operations in a template. The
template is a boolean parameter, if true operations of a template are returned, if false operations of
a type are returned.
Example: resource=tosca.interfaces.node.lifecycle.Standard
All the operations in a TOSCA normative interface type are returned.
{

"data": [

{

"https://www.sodalite.eu/ontologies/tosca/create": {

"description": "Standard lifecycle create operation",

"definedIn":

"https://www.sodalite.eu/ontologies/tosca/tosca.interfaces.node.lifecycle.Standard"

}

},

…]

GET /operationsFromNamespaces(imports, token)
This API returns the operations from interface types for a given workspaces in the imports
parameter.
Example: All the operations in the global workspace are returned.
{

"data": [

{

"https://www.sodalite.eu/ontologies/tosca/add_source": {

"description": "operation to notify the target node of a source node which

is now available via a relationship.",

"definedIn":

"https://www.sodalite.eu/ontologies/tosca/tosca.interfaces.relationship.Configure"

}

Final version of ontologies and semantic repository – Public Page 95
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

},

…

]

}

GET /prop-attr-names(resource, element, token)
It returns the names of properties or attributes of a template. This data helps the user to complete
the get_attribute, and get_property within the interfaces of a template.
Example: element = prop, resource = snow/snow-vm
All the properties of the snow-vm are returned
{

"data": [

"https://www.sodalite.eu/ontologies/workspace/1/openstack/security_groups",

"https://www.sodalite.eu/ontologies/workspace/1/openstack/username",

"https://www.sodalite.eu/ontologies/tosca/name",

"https://www.sodalite.eu/ontologies/workspace/1/openstack/key_name"

...

]

}

GET /valid-requirement-nodes(requirement, nodeType, imports, token)
This API was presented in D3.1. In this deliverable, an improved version of this API is presented.
Returns nodes that satisfy a certain requirement, when defining a node template of type
nodeType. Since the subsumption hierarchy can include more than one requirement definition,
the lowest in the hierarchy is picked. Then, the nodes of this specific type are returned.
{

"data": [

{

"https://www.sodalite.eu/ontologies/workspace/1/snow/snow-vm": {

"label": "snow-vm",

...

}

},

{

"https://www.sodalite.eu/ontologies/workspace/1/snow/snow-docker-host":

{

"label": "snow-docker-host",

...

}

}

]

Final version of ontologies and semantic repository – Public Page 96
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

}

GET /valid-requirement-nodes-type(requirement, nodeType, imports, token)
This API was presented in D3.1. In this deliverable, an improved version of this API is presented.
Additional to the requirement/node, the requirement/capability is taken into account for matching
nodes that can satisfy the specific requirement.
explain
Example:
requirement=host
nodeType=docker%2Fsodalite.nodes.DockerizedComponent
imports=docker
{

"data": [

{

"https://www.sodalite.eu/ontologies/tosca/tosca.nodes.Compute": {

"label": "tosca.nodes.Compute"

}

},

{

"https://www.sodalite.eu/ontologies/workspace/1/docker/sodalite.nodes.DockerHost":

{

"label": "sodalite.nodes.DockerHost",

"namespace": "https://www.sodalite.eu/ontologies/workspace/1/docker/"

}

}

]

}

GET /is-subclass-of(nodeTypes, superNodeType, token)
It returns a list of the types in the nodeTypes that are subclasses of the superNodeType. In such a
way, the types that are not subclasses of superNodeType are filtered out.

Example: nodeTypes=openstack/sodalite.nodes.OpenStack.VM, tosca.nodes.Compute
superNodeType=tosca.nodes.Compute
The given nodeTypes are subclasses of the superNodeType.

{

"data": [

"tosca.nodes.Compute",

Final version of ontologies and semantic repository – Public Page 97
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

"openstack/sodalite.nodes.OpenStack.VM"

]

}

GET /capability-from-requirement(resource, requirement, template, token)
It returns the capabilities of a template/type that are assigned within a requirement/node of the
template/type.

Example: resource=docker/sodalite.nodes.DockerizedComponent
requirement=network
template=false
In this example, the requirement/network/node of the docker/sodalite.nodes.DockerizedComponent
type is the sodalite.nodes.DockerNetwork type, and this API returns its capabilities, in which case is
the network.

{

"data": [

{

"https://www.sodalite.eu/ontologies/workspace/1/docker/network": {"definedIn":

"https://www.sodalite.eu/ontologies/workspace/1/docker/sodalite.nodes.DockerNetwork",

"specification": {

"type": {

"https://www.sodalite.eu/ontologies/tosca/tosca.capabilities.Network": {

"label": "tosca.capabilities.Network"

}

},

"valid_source_types": [

"https://www.sodalite.eu/ontologies/workspace/1/docker/sodalite.nodes.DockerizedComponent"

]

}

}

}

]

GET /testReasoner
An API for checking that all the components are up and communicating with each other, namely
the Semantic Reasoner, the Defect predictor (D4.2), and the KB.
Response
Successfully connected to both defect predictor and graph-db

Final version of ontologies and semantic repository – Public Page 98
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

GET /rm(rmIRI, token)
The json of a resource model is returned. This API is used by the IDE for creating the DSL of the
models that are saved by the Platform Discovery Service (D4.2). In such a way, the Resource
Expert’s work gets enabled as the discovered models are rendered in the IDE.

GET /aadm(aadmIRI, version, refactorer, token)
This API has been described in D3.1. It returns the AADM JSON that will be used by WP4 for
building the blueprint. Two new variables were added: the version and the refactorer. The version
represents a specific version of a model. refactorer = false when this API is called by the IaC builder.
refactorer = true when called by the Refactorer [D5.1?] , since the Refactorer does not need the
resources definition in the json, but only the aadm information. The Refactorer needs the aadm
json for checking if any modification can be applied in the model.

Semantic Population Engine (SPE)
The Semantic Population Engine has been significantly updated since the first year for mapping
new concepts to the Ontologies, and for enabling other external components to retrieve and save
from/to the KB.

So�ware Dependencies
● RDF4J v3.0.0
● Java 11 or newer

Requirements
The application/infrastructure models to be expressed in TOSCA or exchange ttl format.

Composed Of
Mapping services of:

● The RDF-based exchange model on the SODALITE ODP (exchange model mapper)
● The TOSCA model on the RDF-based exchange model (Step 1) that is transformed to the

SODALITE ODP (Step 2). At Step 2, the TOSCA mapper uses the exchange model mapper.

Roles that interact with the component (i.e. AOE, RE, QE)
There is no direct interaction with a user.

Depends on
The Semantic Population Engine depends on the Semantic Knowledge Base.

Docker image
https://hub.docker.com/r/sodaliteh2020/semantic_web

Repositories
https://github.com/SODALITE-EU/semantic-reasoner

Final version of ontologies and semantic repository – Public Page 99
© Copyright Beneficiaries of the SODALITE Project

https://hub.docker.com/r/sodaliteh2020/semantic_web
https://github.com/SODALITE-EU/semantic-reasoner

Project No 825480.

Final version of the APIs
POST /saveAADM(aadmTTL, aadmURI, aadmDSL, complete, namespace, name, version, token)
This API was presented in D3.1. An improved version of this API is presented in this deliverable. The
IDE sends a request to this API for saving an AADM by sending various parameters. One of them is
the aadmTTL which contains the model in a lightweight version of the SODALITE ODP, the
exchange ttl. The aadmURI represents the identifier that the user can optionally define, otherwise
a random aadmURI is created by the Semantic populator. The complete flag, when disabled,
potential omissions in the aadm are returned as error/suggestions depending if the omissions are
required or not. The complete flag, when enabled, no error or suggestions are returned to the user
for the omissions, but the Semantic Reasoner itself autofills the model. The namespace parameter
represents the name of the workspace where the model will be saved, if no namespace is given,
the model is saved in the global workspace. The version can optionally be given for saving a
versioned model. The Semantic Population Engine, that translates the exchange model into the
conceptual model of SODALITE and populates the KB, has been significantly updated for
supporting new TOSCA constructs, the workspaces and the versioning of the aadm.
Example:
aadmTTL=<aadm exchange TTL>, aadmDSL=<aadm in DSL>, complete = false, namespace=snow,
name=snow.aadm

{

"suggestions": [],

"uri":

"https://www.sodalite.eu/ontologies/workspace/1/76o42nobs2m283sa9pavaah0ug/AADM_csacl260pqn

p9",

"version": "",

"modifications": []

}

POST /optimizations(aadmTTL, aadmURI, aadmDSL, complete, namespace, name, version,
token)
This API is responsible for saving a model that contains at least one template associated with an
optimization DSL and returning suggestions related to optimizations. According to the capabilities
offered by the host of the optimized application, suggestions for the optimizations are returned to
the user. It takes the same parameters with the /saveAADM API. The only difference is that
optimizations are checked for potential suggestions.

Example: aadmTTL=<aadmTTL>, aadmDSL=<aadmDSL>, namespace=optimization,
name=optimization.aadm
In this example, since the num_gpus found in the optimisation DSL is greater than zero, it is
proposed the glow be enabled.

"templates_optimizations": [
{

"type": "OptimizationMismatch",
"info": {

"path": "{\"app_type-ai_training\":{\"ai_framework-pytorch\":{}}}",

Final version of ontologies and semantic repository – Public Page 100
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

"context":
"https://www.sodalite.eu/ontologies/workspace/1/c9nsheajclsa0lv7hbc17jmka0/skyline_extractor",

"description": "\"false\" (given value) != \"true\" (expected value)",
"value": "{\"glow\":true}"

}
}

POST /saveRM(rmTTL, rmURI, rmDSL, namespace, name, token)
This is a new API that saves a Resource Model to the KB. The rmTTL contains the model in the
exchange ttl format. If the rmURI is not provided, a random URI is created for identifying the model.
The rmDSL is sent for the model to be displayed in the IDE when retrieved. The namespace
contains the name of the workspace where the model will be stored. The name contains the file
name of the model.

Example: rmTTL=<rm exchange ttl>, rmDSL=<rm in DSL>, namespace=kube,
name=kube_cluster.rm
In this example, we see that the response contains one warning regarding a bug detected by the
Defect Predictor [D4.1], and the uri identifying the model.
{

"warnings": [

{

"type": "HardcodedSecret",

"info": {

"name": "username",

"context": "sodalite.nodes.Kubernetes.Cluster",

"description": "The password or user name is hardcoded",

"element_type": "Property"

}

}

],

"uri":

"https://www.sodalite.eu/ontologies/workspace/1/bjp5v3qrfbagomfj6c2rr4vj2s/RM_3hch4qq2j24pk

61ill7ourker8"

}

POST /saveTOSCA(modelTOSCA, aadmURI, rmURI, rmNamespace, aadmNamespace, rmName,
aadmName)
This is a new API that is called by the Platform Discovery Service (D4.2) for saving discovered
TOSCA Resources such as virtual machines, docker hosts etc. The Semantic Population Engine
transforms the TOSCA model to Java objects, the Java objects to the exchange TTL, and then the
exchangeTTL to the SODALITE ontologies. modelTOSCA can include both a resource model and an
AADM. The aadmURI and rmURI can be optionally given otherwise the Semantic Population
produces a random URI. The rmNamespace indicates to which workspace the resource model is
saved, if not given the model is saved in the global workspace. The aadmNamespace indicates to
which workspace the AADM is saved, if not given the model is saved in the global workspace. The

Final version of ontologies and semantic repository – Public Page 101
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

rmName and aadmName will be optionally given for identifying the name of the resource model
file, and the aadm file. Finally, the backend services performing the transformation from the java
objects to exchange ttl are used by the Refactorer - D5.2(17) for saving the refactored models to the
KB.

Example: modelTOSCA=<TOSCA models>, rmNamespace=test, aadmNamespace=test,
rmName=test.rm, aadmName=test.aadm
An example with a TOSCA model with both a RM and an AADM that is called by the PDS for being
saved in the KB. The response returns the uri identifiers of both the models.

{

"aadmuri":

"https://www.sodalite.eu/ontologies/workspace/1/o85g3odqf54e7plqk9dlapf9v9/AADM_n06

f8rk4fjrf2uia87k0dvd4ib",

"rmuri":

"https://www.sodalite.eu/ontologies/workspace/1/ls1tkbisvk5t5p3fhrtkh1uohc/RM_7mc4j

f40iufe7equo7esbpq0ph"

}

RDF Triple Store

So�ware Dependencies
● RDF4J v3.0.0
● Java 11 or newer
● GraphDB 9.7.0
● Windows 10

Requirements
● To allow remote access (HTTP protocol)
● To support storing, querying, management of Structured Data
● To support existing Semantic Web standards (RDF, OWL2, SPARQL)
● To provide a SPARQL endpoint.
● To support native RDF/OWL2 RL Reasoning

Composed Of
GraphDB (third-party so�ware) is used as the underlying RDF triple store of SODALITE.

Roles that interact with the component (i.e. AOE, RE, QE)
There is no direct interaction with a user.

Depends on
N/A

Final version of ontologies and semantic repository – Public Page 102
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

Docker image
https://hub.docker.com/r/sodaliteh2020/graph_db

Repositories
It is a third-party standalone component. There is no repository.

Domain Models
So�ware Dependencies

● N/A

Requirements
● The necessary knowledge structures and vocabularies to be provided for modelling RMs

and AADMs.

Composed Of
RDF graphs in different formats (e.g. Turtle, RDF/XML)

Roles that interact with the component (i.e. AOE, RE, QE)
N/A

Depends on
N/A

Repositories
https://github.com/SODALITE-EU/semantic-models

Final version of ontologies and semantic repository – Public Page 103
© Copyright Beneficiaries of the SODALITE Project

https://hub.docker.com/r/sodaliteh2020/graph_db
https://github.com/SODALITE-EU/semantic-models

