C’ Sodalite

SOftware Defined AppLication Infrastructures managemenT and Engineering

Guidelines for
Contributors to the
SODALITE Framework

D2.4

POLIMI
31/01/2020

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 825480.

SN Project No 825480.

‘¥ Sodalite

Deliverable data
Deliverable D2.4 - Guidelines for Contributors to the SODALITE Framework
Luciano Baresi (POLIMI),
Elisabetta Di Nitto (POLIMI),
Authors Kamil Tokmakov (USTUTT),
Anastasios Karakostas (CERTH),
Stefanos Vrochidis (CERTH),
Dragan Radolovi¢ (XLAB)
Reviewers Georgios Meditskos (CERTH),
Indika Kumara (UVT)
Dissemination Public
level
Name Change Date
First complete version - 15/01/2020
Document
History of Final version . modified and 31/01/2020
changes improved based
on internal review
New final version
New final version after project 31/07/2020
review
Acknowledgement

The work described in this document has been conducted within the Research & Innovation action
SODALITE (project no. 825480), started in February 2019, and co-funded by the European
Commission under the Information and Communication Technologies (ICT) theme of the H2020

framework programme (H2020-1CT-16-2018: Software Technologies)

D2.4 - Guidelines for Contributors to the SODALITE Framework - Public

© Copyright Beneficiaries of the SODALITE Project

Page 1

4 .
{ } Project No 825480. ’SOdallte

Table of Contents

1. Introduction 6
2. The Bazaar Approach as Driving Guidelines for Contribution 7
3. SODALITE Architecture and the geography of the SODALITE open source repositories 8

3.1. The SODALITE Modeling Layer
3.2. The SODALITE Infrastructure as a Code Layer

3.3. The SODALITE Runtime Layer 11
4, General organization of repositories 14
5. Licenses 14
6. Roles and Responsibilities 15
7. SODALITE development flow 16
8. Guidelines for external contributors 17

8.1. Types of contributions 17

8.2. How to contribute 17
9. Guidelines for software and release management 21
10. Conclusions 23
References 24
D2.4 - Guidelines for Contributors to the SODALITE Framework - Public Page 2

© Copyright Beneficiaries of the SODALITE Project

{H*} Project No 825480. ? SOdalite

List Of Images
s Fi SODALITE high | hi £ D2.1)
m Figure 2. The development flow
s Fi 3 Possibl ‘ ibuti he SODALITE proj
a Fi + pull kil

D2.4 - Guidelines for Contributors to the SODALITE Framework - Public Page 3
© Copyright Beneficiaries of the SODALITE Project

{H*} Project No 825480. ? SOdalite

List Of Tables

D2.4 - Guidelines for Contributors to the SODALITE Framework - Public Page 4
© Copyright Beneficiaries of the SODALITE Project

{***} Project No 825480. ? SOdalite

Executive Summary

This deliverable presents the structure of the SODALITE organization on GitHub
(https://github.com/SODALITE-EU) and the open source repositories adopted for the development
of the SODALITE components. Moreover, it introduces external contributors to the rules and steps
to be followed to participate in the SODALITE effort. As highlighted in the deliverable, the project is
seeking contributions at various levels, ranging from using the offered tools to highlighting bugs
and extension possibilities to contributing to the code of a specific component. This deliverable is
an important element of the SODALITE documentation and will be evolved based on the
development of the project.

D2.4 - Guidelines for Contributors to the SODALITE Framework - Public Page 5
© Copyright Beneficiaries of the SODALITE Project

https://github.com/SODALITE-EU

94 .
{ } Project No 825480. ’SOdallte

1. Introduction

SODALITE exploits an open-source approach to let developers meet users and allow the latter to
contribute to the solutions carried out by the project. To this end, this document sets some rules
and guidelines on how contributors can support the development of the SODALITE platform, how
the SODALITE software is organized in various related open source repositories, and the practical
procedures to be used to propose changes and to see them accepted by the SODALITE team.
Consistently to these goals, this document provides a centralized and detailed presentation of how
SODALITE aims to create, maintain, and manage the open-source communities behind the project.
Version and configuration management in SODALITE is heavily based on GitHub. The project plans
to adopt all the tools it offers besides version management; GitHub will also be used for tracking
issues and requests.

The document provides the inspiring motivations for the choices presented in the document, along
with the organization and rules adopted in the project. Section 2 provides some high-level
guidelines to frame open-source communities and possible contributions. Section 3 summarises
the architecture of the SODALITE framework, presents its organization in three layers and provides
a short description of each SODALITE component together with the adopted technologies and the
link to the corresponding GitHub repository. Section 4 clarifies how the repositories are structured.
Section 5 presents the adopted license scheme. Section 6 defines the possible roles within the
SODALITE contributing team. Section 7 defines the SODALITE internal development workflow,
Section 8 provides some high-level guidelines for external contributors, Section 9 defines the
high-level rules for software and release management within the consortium. Finally, Section 10
concludes this deliverable.

D2.4 - Guidelines for Contributors to the SODALITE Framework - Public Page 6
© Copyright Beneficiaries of the SODALITE Project

{'**} Project No 825480. /’ SOdalite

2. The Bazaar Approach as Driving Guidelines for Contribution

When one thinks of organizing an open source community, first of all, s/he must define a
framework. To this end, Raymond [1] confronts two different approaches:

e The Cathedral model provides a more hierarchical solution where the source code is
available at each software release. While the code developed within releases is only
available to a limited group of developers (GNU Emacs and GCC are used as examples)

e The Bazaar model supports a more cooperative approach where the code is developed all
together over the Internet. Linux Torvalds is presented as the inventor of this approach.

SODALITE aims to exploit the latter model. This approach is a bottom-up solution that privileges
developers and users over managers and owners. The former is a more typical top-down approach,
which emphasizes the role of management, and it is often the solution used by corporations. In
contrast, the power of open-source projects comes from the contributors (the bases), who are in
charge of deciding, shaping, implementing, and selecting. The key essence of open-source projects
originates from the “collective intelligence” of developers and users, that is, from the community
behind the project. Roles are not usually predefined, as with standard projects, but come from the
community: key developers are also users, and leaders are often the developers who contribute
most of the ideas and the code.

The creation of a proper community is thus key for the success of SODALITE as an open-source
project. The first step towards it is that potential contributors become involved. As suggested by
Peters and Ruff [2], a potential user must start skimming through the documentation and
communication channels (e.g., mailing lists, forums, slack channels, repositories, and others) to
know more, understand, and become familiar with the project and its participation modes. This is
functional to joining the community. The next step is that the new member is supposed to spend
time reading and studying how the project is organized and how the community works. The
obvious consideration is that one must learn norms and expectations before being able to
contribute. The more members understand, the more appropriate, and probably well-received,
their contributions will be. Before any concrete contribution, however, it is key that the members
become familiar with the governance behind the community: who makes decisions about the
different types of contributions and how those decisions are made.

The last suggestion is to start small. If one starts fixing a small bug or document, can easily
become familiar with processes and rules and correct mistakes as needed. The first contributions
should not be on critical paths to avoid creating bottlenecks or additional problems. The higher the
expertise becomes, the more critical and complex proposed contributions can be.

As said above, the actual contribution process varies from project to project. Some projects have
rules and guidelines for everything: from coding style to formatting, and from bug/ticket
numbering conventions to release dates. Some projects only accept contributions after signing a
contributor agreement, others only require that patches are posted on dedicated mailing lists or
simply as pull requests.

Submitting a contribution is only one side of the coin. The contributor must always remain
available for clarifications, changes, and answers to feedback. The aim is to clarify how things work
and why a specific solution was adopted, but also to improve or modify the contribution. These
requests can be tough, and they should always come in the spirit of making the contribution better
and of improving the overall quality of the project.

In a genuine open-source community, any comment or criticism must always be positive and there
is no need of being defensive. A contribution may require different rounds of resubmission and
feedback before being accepted, and in some cases the outcome could be negative. It is nothing
personal, there could be many reasons why the contribution gets rejected. It is always a way to
learn and understand more about the project, to help improve it, and to conceive better possible
contributions in the future. It is also true that if a contribution is accepted, then it must be
maintained for a long period.

D2.4 - Guidelines for Contributors to the SODALITE Framework - Public Page 7
© Copyright Beneficiaries of the SODALITE Project

4 .
{ } Project No 825480. ’SOdallte

3. SODALITE Architecture and the geography of the SODALITE open
source repositories

The SODALITE platform is roughly organized in three layers (see Figure 1): Modeling Layer,
Infrastructure as Code Layer, and Runtime Layer. Each layer is further decomposed into a number
of different elements. Such decomposition has been initially defined in Deliverable D2.1 [3] and is
evolving based on the current understanding gathered by all project partners.

The SODALITE software and team is organized around these three layers and is made available to
external contributors through GitHub (github.com). In particular, we have created the
SODALITE-EU organization (https://github.com/SODALITE-EU) which, at the time of writing,
features three teams of committers, one for each layer of the architecture, and various
repositories, one for each subcomponent or group of strictly interrelated subcomponents. The
organization also maintains an additional repository which includes the overall documentation of
the project. In the following subsections we provide a short overview of the various layers of the
SODALITE architecture, we identify the components that are part of each layer and the

corresponding repositories.
SODALITE General Architecture

_ SODALITE Modeling Layer

- i = T - TTe -l
.- Semeﬁntlc — M ~ _
- ReaspnerAPl _ - , N ~ . ~~
.7 | -~ use ,use * use = .use R
- ~ - ~

- L7 ! N ~ ~
1
1

Kubernetes

OpenStack

ImageRegistryAPI Deployment
PreparationAPI

Figure 1. SODALITE high level architecture (from D2.1)

3.1. The SODALITE Modeling Layer

The Modeling Layer offers the tools to support all modeling activities by the SODALITE users. Its
elements are the IDE offering smart editing features enhanced with suggestions that are generated,
in a context-based fashion, by the Semantic Reasoner. This last component is reasoning on an
extensible ontology, the Semantic Knowledge Base, that includes the main concepts needed to
model a deployment configuration for a complex application. The following table lists these three
components together with the main technologies they are based on and the GitHub repositories
thatinclude their code.

Table 1. Components of the Modeling Layer and corresponding repositories

Component Main used technologies GitHub repository

D2.4 - Guidelines for Contributors to the SODALITE Framework - Public Page 8
© Copyright Beneficiaries of the SODALITE Project

https://github.com/SODALITE-EU

Project No 825480.

¥ Sodalite

SODALITE IDE: The

Programming language(s): Java,

needed to model an application
deployment
License: Apache2

development environment Xtend ODALITE-EU/ide
offered to users. It supports DBMS technology: Eclipse workspace

modeling using the SODALITE | (fjlesystem)

Domain Specific Language Middleware: Spring 10

(DSL) UI/UX technology: Eclipse, REST API

License: Apache2

Semantic Reasoner) Programming language(s): Java https://github.com/S
(Knowledge Base Service - DBMS technology: RDF triple store ODALITE-EU/semanti
KBS): The component (GraphDB) c-reasoner
supporting semantic reasoning | Middleware: Apache Tomcat

over the knowledge base UI/UX technology: N/A

License: Apache2

Semantic Knowledge Base Programming language(s): RDF/OWL 2 | https://github.com/S
(KB): The ontology that DBMS technology: RDF triple store ODALITE-EU/semanti
describes the main concepts (GraphDB) c-models

Middleware: N/A
Ul/UX technology: N/A

3.2. The SODALITE Infrastructure as a Code Layer

The Infrastructure as a Code Layer is in charge of transforming an Abstract Deployment Model built
using the modeling layer into an executable blueprint and a set of related artifacts (configuration
scripts and execution container images). It also includes tools that identify and detect
anti-patterns to be avoided as well as mechanisms to optimize the deployment of an application
based on its characteristics. More specifically, this layer includes the subcomponents described in

the following table.

Table 2. Components of the Infrastructure as a Code Layer and corresponding repositories

Component Main used technologies GitHub repository

Abstract Model Parser: It Programming language(s): https://github.com/SODALITE
parses an abstract deployment | jaya, Python _EU/iac- int-bui

model and generates the DBMS technology: N/A

corresponding abstract syntax | middleware: N/A

tree UI/UX technology: REST API

License: Apache2

1aC Blueprint Builder: Starting | Programming language(s): https://github.com/SODALITE
from the output provided by Java, Python -EU/iac- int-bui

the Abstract Model Parser, this | DBMS technology: N/A

generates a TOSCA blueprint Middleware: N/A

License: Apache2 Ul/UX technology: REST API

Runtime Image Builder: It Programming language(s): | https://github.com/SODALITE
generates application Python, Ansible -EU/image-builder
component images ready to be | DBMS technology: SQLite

executed Middleware: xOpera, Docker,

License: Apache2 Singularity

D2.4 - Guidelines for Contributors to the SODALITE Framework - Public
© Copyright Beneficiaries of the SODALITE Project

Page 9

https://github.com/SODALITE-EU/ide
https://github.com/SODALITE-EU/ide
https://github.com/SODALITE-EU/semantic-reasoner
https://github.com/SODALITE-EU/semantic-reasoner
https://github.com/SODALITE-EU/semantic-reasoner
https://github.com/SODALITE-EU/semantic-models
https://github.com/SODALITE-EU/semantic-models
https://github.com/SODALITE-EU/semantic-models
https://github.com/SODALITE-EU/iac-blueprint-builder
https://github.com/SODALITE-EU/iac-blueprint-builder
https://github.com/SODALITE-EU/iac-blueprint-builder
https://github.com/SODALITE-EU/iac-blueprint-builder
https://github.com/SODALITE-EU/image-builder
https://github.com/SODALITE-EU/image-builder

Project No 825480.

¥ Sodalite

UI/UX technology: REST API

Concrete Image Builder: Programming language(s): | https://github.com/SODALITE
Concrete Image Builder builds | python, Ansible -EU/image-builder
the image adjusting it to the DBMS technology: N/A
execution platform and handles| mjddleware: xOpera, Docker,
specificimplementation Singularity
regarding configuration, UI/UX technology: AP
deployment or monitoring
License: Apache2
build a performance-wise Python -EU/application-optimisation
improved version of an DBMS technology: N/A
application for a given target | Middleware: Dockerhost
platform based on the engine, Singularity engine
optimisation options selected | yjjux technology: REST AP
License: Apache2
laC Verifier: Acts as afacade to | programming language(s): https://github.com/SODALITE
the Topology Verifier and Java and Python -EU/verification
Provisioning Workflow Verifier, | pgms technology: N/A
and coordinates the processes | middleware: Web Server
application deployment REST API
topology and provisioning
workflow
License: Apache2
e . . i : https://github.com/SODALITE
Verification Model Builder: Programming language(s) .
This component builds the Java and Python -EU/verification
pon . DBMS technology: RDF triple
models required to verify the
deployment model and its store (GraphDB8)
ployme Middleware: RDF triple store
provisioning workflow (GraphDB)
License: Apache2 Ul/UX technology: N/A
Topology Verifier: This Programming language(s): | https://github.com/SODALITE
component verifies the Java and Python -EU/verification
constraints over the structures | pgMs technology: N/A
of the TOSCA blueprints and Middleware: N/A
Ansible playbooks Ul/UX technology: N/A
License: Apache2
Provisioning Workflow Programming language(s): https://github.com/SODALITE
Verifier: It verifies the Java and Python -EU/verification

constraints over the
deployment (provisioning)
workflow of the application
using one of the widely used
techniques for verifying
workflows such as Petri Net
License: Apache2

DBMS technology: N/A
Middleware: CPN Tools
UI/UX technology: N/A

D2.4 - Guidelines for Contributors to the SODALITE Framework - Public

© Copyright Beneficiaries of the SODALITE Project

Page 10

https://github.com/SODALITE-EU/image-builder
https://github.com/SODALITE-EU/image-builder
https://github.com/SODALITE-EU/application-optimisation
https://github.com/SODALITE-EU/application-optimisation
https://github.com/SODALITE-EU/verification
https://github.com/SODALITE-EU/verification
https://github.com/SODALITE-EU/verification
https://github.com/SODALITE-EU/verification
https://github.com/SODALITE-EU/verification
https://github.com/SODALITE-EU/verification
https://github.com/SODALITE-EU/verification
https://github.com/SODALITE-EU/verification

Project No 825480.

¥ Sodalite

Bug Predictor and Fixer: It Programming language(s): | https://github.com/SODALITE
detects smells in TOSCA and Java and Python -EU/defect-prediction
Ansible playbooks and suggests | DBMS technology: N/A
corrections or fixes for each Middleware: Web Server
smell Ul/UX technology: Swagger
License: Apache2 REST API
Predictive Model Builder: This | Programming language(s): https://github.com/SODALITE
component uses a rule-based | Java and Python -EU/defect-prediction
model for detecting DBMS technology: RDF triple
implementation and security store (GraphDB)
smells in Ansible playbooks and | Middleware: RDF triple store
TOSCA blueprints (GraphDB)
License: Apache2 UI/UX technology: N/A
l1aC Quality Assessor: it Programming language(s): https://github.com/SODALITE
includes the tool to calculate Java and Python -EU/iac- ity-
the software quality metrics for | DBMS technology: N/A
TOSCA and Ansible artifacts Middleware: N/A
License: Apache2 UI/UX technology: N/A
Image Registry: It stores the Programmlpg language(s): h.tlp.&.l,[thhu_b.mm,LS_O_DALJlE
images after their generation Python, Ansible -EU/iac:management
. DBMS technology: N/A
by the Runtime and Concrete .
. Middleware: Dockerhost
Image Builder .
License: Apache2 engine
Ul/UX technology: N/A
Examples of laC code and Programming language(s): | https://github.com/SODALITE
images: This is not a software | TosCA, Ansible -EU/iac-management
component, but ratheraset of | ppMs technology: N/A
laC code examples that are Middleware: Dockerhost
developed to provide examples | gngine
to the users of the SODALITE UI/UX technology: N/A
platform
License: Apache2

3.3. The SODALITE Runtime Layer

The Runtime Layer is in charge of orchestrating, monitoring and reconfiguring the execution of a
complex application even when it exploits multiple execution environments (Cloud, HPC, GPUs).
The following table describes each sub-component of this layer and links to the corresponding
GitHub repository. Most of the sub-components highlighted here extend and/or integrate
pre-existing open source components. These are included as submodules in the corresponding

repositories.

Table 3. Components of the Runtime Layer and corresponding repositories

Component

Main used technologies

GitHub repository

Orchestrator -> xOpera: This is
a pre-existing lightweight

Programming language(s):

https://github.com/SODALITE

D2.4 - Guidelines for Contributors to the SODALITE Framework - Public

© Copyright Beneficiaries of the SODALITE Project

Page 11

https://github.com/SODALITE-EU/defect-prediction
https://github.com/SODALITE-EU/defect-prediction
https://github.com/SODALITE-EU/defect-prediction
https://github.com/SODALITE-EU/defect-prediction
https://github.com/SODALITE-EU/iac-quality-framework
https://github.com/SODALITE-EU/iac-quality-framework
https://github.com/SODALITE-EU/iac-management
https://github.com/SODALITE-EU/iac-management
https://github.com/SODALITE-EU/iac-management
https://github.com/SODALITE-EU/iac-management
https://github.com/SODALITE-EU/orchestrator

Project No 825480.

¥ Sodalite

TOSCA compliant orchestrator | TosCA, Ansible, Python _EU/orchestrator
that executes infrastructure DBMS technology: N/A includes the following
provisioning and deployment | middleware: OpenStack repository as submodule
of applications and blueprints | yjjux technology: RESTAPI | https://github.com/xlab-si/xo
produced in SODALITE. pera-opera
License: Apache2
Orchestrator -> ALDE: This Programming language(s): https://github.com/SODALITE
component includes the drivers | Python -EU/orchestrator
that enable the usage of xOpera| DBMS technology: SQLite
within SODALITE. Middleware: Flask
License: Apache2 UI/UX technology: REST API
xOpera REST API - includes Programming language(s): https://github.com/SODALITE
xOpera REST APl interface with | Python - -rest-api
persistence, session DBMS technology: Postgres
management, status of Middleware: Flask
deployment, history of Ul/UX technology: REST API
deployment, documented with
swagger
Programming language(s): https://github.com/SODALITE
Monitoring -> IPMI Exporter: | Go -EU/ipmi-exporter
This includes custom exporter | DBMS technology:
files that enable to get the ElasticSearch, OrientDB
power consumption of physical | Middleware: Prometheus,
nodes Grafana, Skydive
License: Apache2 UI/UX technology: REST API,
WebUI
Monitoring -> Skydive Programming language(s): | https://github.com/SODALITE
Exporter: The Skydive Flow Go -EU/monitoring-system
Exporter is a pre-existing tool | pgMs technology: includes the following
that provides a framework for | g(asticSearch, OrientDB repository as submodule:
building pipelines which extract| mjddleware: Prometheus, | -//githul skydive-
flows from the Skydive Analyzer| Grafana, Skydive : kudive-flow-
(via it WebSocket API), process | yjjuxX technology: REST API,
them and send the results WebUI
upstream.
License: Apache2
Monitoring configuration Programming language(s): | https://github.com/SODALITE
files: This includes TOSCA, Ansible, Prometheus | -EU/monitoring-system
configuration files used for the | configuration files (YAML)
current Prometheus Middleware: Prometheus,
deployment Grafana, Skydive
License: Apache2
LRE Exporter: It is a Programming language(s): hj:ip_s.Mthhub.mmLSQDALJlE
Go - -lre-
Prometheus exporter that X
. . . Middleware: Prometheus
provides monitoring metrics at UI/UX technology: REST AP|

D2.4 - Guidelines for Contributors to the SODALITE Framework - Public

© Copyright Beneficiaries of the SODALITE Project

Page 12

https://github.com/SODALITE-EU/orchestrator
https://github.com/xlab-si/xopera-opera
https://github.com/xlab-si/xopera-opera
https://github.com/SODALITE-EU/orchestrator
https://github.com/SODALITE-EU/orchestrator
https://github.com/SODALITE-EU/xopera-rest-api
https://github.com/SODALITE-EU/xopera-rest-api
https://github.com/SODALITE-EU/ipmi-exporter
https://github.com/SODALITE-EU/ipmi-exporter
https://github.com/SODALITE-EU/monitoring-system
https://github.com/SODALITE-EU/monitoring-system
https://github.com/skydive-project/skydive-flow-exporter
https://github.com/skydive-project/skydive-flow-exporter
https://github.com/SODALITE-EU/monitoring-system
https://github.com/SODALITE-EU/monitoring-system
https://github.com/SODALITE-EU/monitoring-lre-agent
https://github.com/SODALITE-EU/monitoring-lre-agent

Project No 825480.

‘¥ Sodalite

the level of the Light-weight

Runtime Environment (LRE).

License: Apache2

HPC Exporter: Itis a Programming language(s):

Prometheus that provides Go -EU/hpc-exporter

monitoring metrics of the Middleware: Prometheus

execution of applications on an | Ul/UX technology: REST API

HPC environment.

License: Apache2

Deployment Refactorer: Programming language(s): | https://github.com/SODALITE
Includes rule-based and Java, MySQL, Redis, Python -EU/refactoring-ml
machine-learning based Middleware: Web Server, Rule

approaches to refactoring the Engine, Redis, Varnish

deployment model of an Ul/UX technology: Swagger

application at runtime REST API

License: Apache2

Node Manager: Includes Programming language(s): https://github.com/SODALITE
control-theory based Python -EU/refactoring-ct
approaches to managing the DBMS technology: N/A

resources in the nodesin a Middleware: TensorFlow,

deployment model Spark, Kubernetes

License: Apache2 UI/UX technology: N/A

Refactoring Option Programming language(s): https://github.com/SODALITE
Discoverer: Includes Java and Python - ing-option-di
semantic-matching capabilities | DBMS technology: RDF triple | erer

for locating the new store (GraphDB)

deployment options and Middleware: RDF triple store

resources (GraphDB)

License: Apache2 UI/UX technology: N/A

D2.4 - Guidelines for Contributors to the SODALITE Framework - Public

© Copyright Beneficiaries of the SODALITE Project

Page 13

https://github.com/SODALITE-EU/hpc-exporter
https://github.com/SODALITE-EU/hpc-exporter
https://github.com/SODALITE-EU/refactoring-ml
https://github.com/SODALITE-EU/refactoring-ml
https://github.com/SODALITE-EU/refactoring-ct
https://github.com/SODALITE-EU/refactoring-ct
https://github.com/SODALITE-EU/refactoring-option-discoverer
https://github.com/SODALITE-EU/refactoring-option-discoverer
https://github.com/SODALITE-EU/refactoring-option-discoverer

> .
{***} Project No 825480. ’ SOdallte

4. General organization of repositories

Each repository provides the source code associated with the corresponding component, any
infrastructural code and configuration files needed to compile it, deploy it, and make it work, the
test suites currently available and executed on the software, known open issues and bugs, and its
public APIs, as openAPI [4] specification. Thus, we envision the organization of the SODALITE
repositories as follows:

|- Repository X
|-- documentation

|---- public APIs (openAPI)

|-- source code

|---- unit tests

|-- infrastructural code (any script needed to compile, deploy, execute the code)
|-- integration tests (tests to check the integration of component X)

|-- open issues/bugs: link to an issue tracking system or to a document

The only exception to this rule is the semantic-model repository which does not include source
code but only ontology definitions (text files). As such, it shows the following simplified structure:

|- semantic-models

|-- documentation

|-- ontology definitions

|-- open issues/bugs: link to an issue tracking system or to a document

The project-wide documentation is made available on a dedicated repository

(: - ject-wide- ion) that features the following
structure:

Sodalite ---project-wide documentation
|- general rules and roles
|- docker images (through a link to Docker Hub)
|- integration tests
|- infrastructural code
|--any script needed to compile the whole SODALITE framework
|--any script needed to compile partial solutions (design and runtime frameworks)
|-- uml

Within this structure, we will include the open-source LICENSE [5] associated with each repository
(at the time of writing, all components under development feature an Apache 2 license), the
README that represents the instruction manual that welcomes new community members to the
project, the CONTRIBUTING document that helps people contribute to the project (essentially this
deliverable and defines what one can do), the CODE_OF_CONDUCT that sets ground rules for
participants’ behavior and helps facilitate a friendly environment (i.e., how to contribute). The
project will also have additional documentation, such as tutorials or walkthroughs.

5. Licenses

All the components of the SODALITE framework have been currently released by using the Apache
2 license scheme. Additional license models might be used and integrated in the project in the next
phases.

D2.4 - Guidelines for Contributors to the SODALITE Framework - Public Page 14
© Copyright Beneficiaries of the SODALITE Project

https://github.com/SODALITE-EU/project-wide-documentation

& .
Project No 825480. ’ SOdallte

6. Roles and Responsibilities
For each repository, SODALITE identifies five main roles:

A project leader is in charge of the final decisions and is supposed to mitigate and manage
inconsistencies and different views.

An artefact leader is responsible for making final decisions about features, releases, and
any other activity related to the specific artefact. This role is usually played by a
representative of the partners that contributed/developed the artefact but could also be
played by two/three people, mainly from different partners, if the size and importance of
the artefact call for a small committee.

Committers are those who have contributed to the repository and are considered reliable
and responsible enough to be allowed to commit directly to all or some parts of the
project, rather than having to submit to an artefact leader for review. Contributions from
committers are still subject to review by project leaders and may be reverted if there are
concerns.

Contributors are those who contribute with code, documentation and other
enhancements. These contributions are usually subject to a review from an experienced
committer and the artefact leader before they are included.

Users give the project a purpose and help it evolve. These valuable members of the
community can provide feedback about features, bug reports and more.

A strong, vibrant, and diverse community is important to the success of open source communities.
All of the people in the roles listed above are key to the SODALITE community, in general, and to
the different sub-communities, organized around the different artefacts in particular.

D2.4 - Guidelines for Contributors to the SODALITE Framework - Public Page 15
© Copyright Beneficiaries of the SODALITE Project

4 .
{ } Project No 825480. ’SOdallte

7. SODALITE development flow

X

SODALITE
Developer

(1) Submits code
changes
{(pull request)

SODALITE

2) Cod i :
(2) Code review Repository

DevCloud
(3) Triggers (6) Updates
CI/CcD repository
after approval
(4) Runs
tests
CI/CD > | Ccomponents
(Jenkins) < testing

= (5) Tests b
passed

(7) Deploys

SODALITE
components

Y

Runtime Layer

Modeling Layer Infrastructure as Code Layer
Components

Ccomponents Components

\

Figure 2. The development flow

SODALITE follows the CI/CD (Continuous Integration/Continuous Delivery) approach and its
development flow is depicted in Figure 2. Firstly, a SODALITE developer, either a committer or a
contributor (see the Roles section), submits a pull request after locally changing the source code of
one of the SODALITE repositories. Upon this, a respective technical project leader reviews the
changes and either approves or rejects the pull request, preliminarily discussing with the
developer about the decision the leader made or in case something is unclear.

When the code changes are approved, the CI/CD pipeline is triggered by Jenkins, an automation
server. It schedules any unit, integration and functional tests of SODALITE components. These tests
validate the changes and prove that the updates did not break the project. In case of the test
failures, the technical project leader and the developer are notified about the failures and certain
actions are performed collectively to mitigate them. As soon as the tests are passed, the source
code changes are pushed into the repository. The SODALITE components are then ready for the
manual or automated deployment by artifact leaders (e.g., as a new production release of the
SODALITE platform or a bug fix update) and are subsequently available to the users.

D2.4 - Guidelines for Contributors to the SODALITE Framework - Public Page 16
© Copyright Beneficiaries of the SODALITE Project

{***} Project No 825480. /’ SOdalite

8. Guidelines for external contributors

The guide “How to Contribute to Open Source” [6] suggests that before doing anything, new
contributors should always carry out a quick check to make sure their ideas have not been
addressed already. Potential contributors must always skim through the project documentation
(e.g., README files, open and closed issues). If they cannot find their ideas elsewhere, then they are
ready to contribute.

8.1. Types of contributions

The many facets of a big project like SODALITE can envision different types of contributions:

e Those who like designing can restructure layouts to improve the project’s usability, but
they can also create a style guide to help the project have a consistent visual design.

e Those who like writing can help improve the project’s documentation, curate examples to
show how the different artefacts work, write tutorials, or even translate the documentation
in another language.

e Those who like organizing can help keep things organized, identify duplicates, manage
(and close) open issues, ask clarifying questions to move the discussion forward.

e Those who like coding can address open issues, propose a new feature, improve
automated project setup, create and run new tests.

e Those who like working on the code written by others can review it, test and debug it, and
create and run new tests.

e Those who like helping people can answer questions about the project and open issues
and help moderate the discussion boards or conversation channels.

e Those who like extending the set of computational resources supported by SODALITE can
define new resource models for SODALITE to widen its possible scope.

e Those who are interested in resource management and quality can define ways (patterns)
for using resources.

e Those who like focusing on application operation will develop new deployment models
and new ways of using the framework.

These are the possible types of contributions we envision for the different SODALITE repositories.
These will be provided by the people who are already part of the consortium, but we envision that
people outside of the consortium can become involved and contribute new and interesting
artifacts to help improve the SODALITE framework.

8.2. How to contribute

As mentioned in the previous sections, there could be multiple ways of contributing (summarized
in Figure 3):

e Contributing some new resource models: This is a very valuable contribution for us as it
would extend the ecosystem of computational resources SODALITE is able to offer. Such a
contribution will concern the semantic model repository
(https://github.com/SODALITE-EU/semantic-models). In this case, we suggest contributors
to issue a pull request on that repository. The pull request should include a clear
description of what the new model describes and how it can be used by others.

e Contributing a description of a new use case for the SODALITE platform: This
contribution is precious as it shows that SODALITE can be exploited by external users for
modeling specific application examples. In this case a document describing the application
along with the corresponding models could be produced. Such contribution will concern
the project-wide documentation

(https://github.com/SODALITE-EU/project-wide-documentation). In this case, we suggest

contributors to issue a pull request on that repository. The pull request should include a

D2.4 - Guidelines for Contributors to the SODALITE Framework - Public Page 17
© Copyright Beneficiaries of the SODALITE Project

https://github.com/SODALITE-EU/semantic-models
https://github.com/SODALITE-EU/project-wide-documentation

9% .
{ } Project No 825480. ’SOdallte

clear description of what the new application case is about, of the corresponding
application architecture, and a description of the associated models.

e Signaling a misbehaviour of the system: SODALITE users may encounter unexpected
faults and misbehavior while using the platform. In this case, we suggest users to open an
issue in the repository associated with the component they think has shown the bug. In
case it is not possible to identify a specific repository, then we ask users to open the issue
on https://github.com/SODALITE-EU/project-wide-documentation. Each opened issue will
be assigned to a SODALITE contributor that will follow up on it.

e Contributing a bug fix: external contributors as well as internal ones can propose to
assign to themselves an issue request - this is done replying to the issue request and
waiting for feedback by one of the committers - and then produce a corresponding pull
request in the relevant repository.

e Contributing a proposal for a new feature: external contributors willing to propose the
development of a new feature can open an issue request of type “enhancement”. This will
be discussed with the rest of the team and, if approved, developed.

e Contributing a solution implementing a new feature: As soon as a proposal for a new
feature is approved (see previous point), an external contributor, as well as an internal one,
can offer to take care of it. In this case, the contributor proposes to assign to
himself/herself the development of the specific feature and, when ready, will submit a pull
request that will be reviewed by the SODALITE team. Another possibility is that, without
going through the step of proposing a new feature, the contributor proposes the solution
directly through a pull request. This second option, even if possible, is not encouraged as it
may lead to work duplication and misalignment. To mitigate this problem, it is advisable to
open the pull request as soon as possible and to mark it as “in progress” in order to let the
others know, to allow them to watch and monitor any progress, and to provide any
feedback. Dedicated commits must then correspond to the different milestones.

D2.4 - Guidelines for Contributors to the SODALITE Framework - Public Page 18
© Copyright Beneficiaries of the SODALITE Project

https://github.com/SODALITE-EU/project-wide-documentation

{***} Project No 825480. ? SOdalite

[Pul] Request new Resource Mod el]

. want to contribute a new re maodel

Open issue request for bug report or new feature]

UQ OF propose a New feature

j A New Use case

[Pul] Request new Use Caﬁﬂ

want to help fixing an issue est

Visualise open issue requests
has already develgped a new feature that wants to dm[ale P i]

i
[Seler.t arequest and propose to work on it]

[Pull request solution for a new feature]

pro elected l

<

proposal accepted

[Pul] request to address the iss ue]

Figure 3. Possible types of contributions to the SODALITE project

The contributor must follow a simple process to submit a pull request. The contributor must fork
the repository and clone it locally. The local and original “upstream” repositories must be
connected by adding the latter as remote to the former. The contributor must then pull changes
from the remote repository to keep the local version aligned and avoid conflicts. A dedicated
branch must then be created for carrying out any relevant change, modification, or addition. Every
possible contribution must always respect the styles, rules, and conventions adopted by the
project. The contributor must consider what the project, and the community, is used to, and not
his/her common habits. The goal is to ease any possible merge, and help the others understand.
The contributor must also add references to any appropriate issue, document, or artefact in the
pull request to help the others scope it properly. Screenshots of the before and after, if
appropriate, could also be added to further clarify the scope of the change.

Finally, every change must always be tested properly: regression testing should be carried out if
possible, and additional tests be developed to assess the quality and impact of the proposed
change. Nothing should break the existing project. Figure 4 summarizes the steps to be followed
when working at a pull request. After submission, the workflow in Figure 2 is entered.

D2.4 - Guidelines for Contributors to the SODALITE Framework - Public Page 19
© Copyright Beneficiaries of the SODALITE Project

{H*} Project No 825480. ? SOdalite

want to contribuge with a pull request

[Furk the SODALITE mpusitory}

\
[Create a dedicated hranch}

i
[Create your pull request on the main repository as in prﬂgressJ

T .L_I,Finalize pull request]

[Pul! from remote repository]

L

[Wurk on your contribution and write new tests]

Run tests

Figure 4. Pull request workflow

In general, the SODALITE team would like to enter in touch informally with potential contributors
as soon as possible and discuss with them any problem or new idea. To this purpose, the team will
open a slack channel and will provide on GitHub instructions to join it.

D2.4 - Guidelines for Contributors to the SODALITE Framework - Public Page 20
© Copyright Beneficiaries of the SODALITE Project

{***} Project No 825480. ’ SOdalite

9. Guidelines for software and release management

The project adopts the best practice guidelines to govern the management and quality of released
software and versions [7, 8, 9]. These guidelines are to be followed by all SODALITE contributors,
either internal to the project or external.

According to what the Apache Software Foundation (ASF) says, a release in SODALITE is “anything
that is published beyond the group that owns it, that is, any publication outside the development
community™. In the case of SODALITE, the unit of release is the service [8], that is, a component
offering a proper REST API. The only exception to this principle is the IDE that acts as the frontend
client of the SODALITE platform. Each service must be documented at least through a usage
example that is used as a basis for integration testing.

The development process adopted for the different artifacts is based on the following
assumptions:

Each component resides in a GitHub repository;

Each repository must have unit tests defined;

Each repository has a Jenkins process defined to perform integration;

Anything in the master branch is always deployable. This is guaranteed by the automated
processes defined by Jenkins;

e Each newly released component must be accompanied by an example of usage defined in
terms of corresponding REST calls. This facilitates integration of components.

The procedure to contribute new code to a repository works as follows:

e A pull request is issued to integrate the code into the master branch. If the user performing
the pull request does not have write access to the repository, then the pull request will be
manually evaluated by the repository owner who may delegate other partners in the
request review. If the user performing the pull request has write access to the repository,
then the request activates the Jenkins job automatically, builds the code, runs the defined
unit tests;

e If the unit tests fail, then the code is not integrated in the master; - For this to happen, the
Jenkins status check (continuous-integration/jenkins/pr-merge) needs to be defined as
a required status check;

e If unit tests are successful, the code is integrated into the master (this is currently manual,
but can be automated by Jenkins, if desired) and a new ready to use image is created and
uploaded on DockerHub.

In addition, we also follow the following good practices, as suggested by GitHub flow:

e New ideas and evolutions are managed through branches, and their names should be
descriptive;

e Each commit has an associated commit message, a description explaining why a particular
change was made (each commit is considered a separate unit of change);

e Pull Requests contain an explanation to inform repository owners and other partners
about the changes one would like to perform;

e Each pull request must always be associated with an issue in the management board to
relate a change to an actual need;

e Quality metrics will be periodically collected and their trends will be analyzed over time to
ensure the code of each component will gradually improve its quality through the project.
Based on the outcome of the first measurements, we will decide whether to add
automated checks in the CI/CD pipeline associating them to some quality gates. As for the
tool to be used for quality metrics collection, the consortium is evaluating different
solutions that both provide sufficient guarantees and cover the polyglot context behind
SODALITE. At the moment, SonarQube appears to be the most likely choice given that it

! https://lwww.apache.org/legal/release-policy.html

D2.4 - Guidelines for Contributors to the SODALITE Framework - Public Page 21
© Copyright Beneficiaries of the SODALITE Project

{***} Project No 825480. /’ SOdalite

supports multiple languages, offers a large degree of flexibility and it is well known by the
SODALITE CI/CD master. Given the need for a dedicated VM to SonarQube scanners, the
feasibility of deploying it on our testbed is under investigation. Other possible options are
CodeFactor, Codacy or Code Climate. As for the specific metrics to collect, we will keep
under control at least the following ones: cyclomatic complexity; duplicated blocks, files,
lines; typical code smells; vulnerabilities; coverage of tests. As mentioned above, we will
make sure that at every new release of each component the metrics show an improvement
compared to the previous value.
A SODALITE platform release is composed of the IDE and the set of microservices made available as
images on DockerHub. The deployment and execution of the whole platform is planned to be
automated through TOSCA and Ansible blueprints created and maintained using the same
SODALITE tools. These are available here https://github.com/SODALITE-EU/iac-platform-stack. A
user willing to deploy and execute the platform must go through the following steps:

e Have the xOpera orchestrator installed either locally or on a VM in the preferred cloud
provider

e Install the IDE locally to his/her machine. The installation can either start from
downloading the source code or can rely on the corresponding Docker image available on
DockerHub

e Edit the blueprints to include the specific information concerning the resources that will be
used to run the platform. Specific instructions for this will be released together with the
blueprints (now under development) and maintained through the development of the
project.

e Run the blueprints through xOpera.

During the development of the project we plan to create SODALITE platform releases according to
the following timeline:

e M12: Laboratory prototype that is “up-and running”. This initial version of the SODALITE
platform is released in terms of source code and demonstrators, outside the CI/CD and
automated deployment pipeline we have been defining in parallel.

e M18: First consolidated prototype, Use-Cases can all be executed on it.

e M24: First advanced features, more integrated prototype running. Use-Cases are clearly
improved. Second public release of the complete stack.

e M30: Prototype validated by Use-Cases. Planning for the last features and their integration
complete. Third public release of the complete stack.

e M36: Evaluated and integrated prototype. Use Cases used to validate the Use-Cases. Final
public release of the complete stack.

All releases, except the first one, will be accompanied by the corresponding automatically
generated Docker images and the TOSCA/Ansible blueprints that automate the deployment and
execution of the whole infrastructure.

D2.4 - Guidelines for Contributors to the SODALITE Framework - Public Page 22
© Copyright Beneficiaries of the SODALITE Project

https://github.com/SODALITE-EU/iac-platform-stack

{***} Project No 825480. ? SOdalite

10. Conclusions

This document discusses the guidelines for creating open-source communities behind the different
artefacts developed by SODALITE. It also identifies rules, roles, and hints to let external people
contribute to the project and help ameliorate it.

This document will then serve as reference for the SODALITE communities and will be updated
properly while the project evolves, and new needs emerge.

D2.4 - Guidelines for Contributors to the SODALITE Framework - Public Page 23
© Copyright Beneficiaries of the SODALITE Project

** Project No 825480. ? Sodalite

References

1.

Eric S. Raymond, The Cathedral & the Bazaar: Musings on Linux and Open Source by an
Accidental Revolutionary, O'Reilly Media, 258 pages

2. Stormy Peters and Nithya Ruff, Participating in open source communities
(. icipating/ and

3. SODALITE Consortium, Requirements, KPIs, evaluation plan and architecture - First version,
Technical deliverable 2.1, 2019.

4. Choose an open source license (https://choosealicense.com)

5. The OpenAPI Specification (https://www.openapis.org)

6. How to Contribute to Open Source (https://opensource.guide/how-to-contribute/)

7. Betsy Beyer, Chris Jones, Jennifer Petoff and Niall Richard Murphy Editors, Site Reliability
Engineering - how Google runs production systems, O’Really 2016.

8. A. Fox, D. Patterson, Engineering Software as a Service, an Agile Approach Using Cloud
Computing, Strawberry Canyon LLC; 2nd ed, 2013.

9. Pablo Orviz Fernandez, Mario David, Doina Cristina Duma, Elisabetta Ronchieri, Jorge Gomes,
and Davide Salomoni, Software Quality Assurance in INDIGO-DataCloud Project: a Converging
Evolution of Software Engineering Practices to Support European Research e-Infrastructures,
Journal of Grid Computing volume 18, pages 81-98(2020).

D2.4 - Guidelines for Contributors to the SODALITE Framework - Public Page 24

© Copyright Beneficiaries of the SODALITE Project

https://todogroup.org/guides/participating/
https://todogroup.org/guides/participating/
https://www.linuxfoundation.org/resources/open-source-guides/participating-open-source-communities/
https://www.linuxfoundation.org/resources/open-source-guides/participating-open-source-communities/
https://choosealicense.com/
https://choosealicense.com/
https://www.openapis.org/
https://www.openapis.org/
https://opensource.guide/how-to-contribute/
https://opensource.guide/how-to-contribute/

