
This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 825480.

SOftware Defined AppLication Infrastructures managemenT and Engineering

D2.1
Requirements, KPIs, evaluation plan

and architecture - First version

Editor: POLIMI
July 2019

Project No 825480.

D2.1 - Requirements, KPIs, evaluation plan and architecture - First version - Public Page 1
© Copyright Beneficiaries of the SODALITE Project

Deliverable data

Deliverable Requirements, KPIs, evaluation plan and
architecture - First version

Authors Luciano Baresi (POLIMI), Elisabetta Di Nitto
(POLIMI), Panos Mitzias (CERTH), Dragan Radolović
(XLAB), Kalman Meth (IBM), Yosu Gorroñogoitia
(ATOS), Román Sosa González (Atos), Javier
Carnero (Atos), Kamil Tokmakov (USTUTT), Indika
Kumara (JADS), Karthee Sivalingam (Cray), Adrian
Tate (Cray), Paul Mundt (ADPT), Piero Fraternali
(POLIMI), Daniel Frajberg (POLIMI), Rocio Torres
(POLIMI), Dimitris Liparas (HLRS)

Reviewers Aleš Černivec (XLAB)
Kalman Meth (IBM)

Dissemination level Public

History of changes

Name Change Date

v1 first release
ready for
internal review

12/07/2019

v2 final release 31/07/2019

Project No 825480.

D2.1 - Requirements, KPIs, evaluation plan and architecture - First version - Public Page 2
© Copyright Beneficiaries of the SODALITE Project

Executive Summary
This is the first technical deliverable produced by the SODALITE project. It aims at setting the stage
for all future development activities by providing the following contributions:

● A definition of the main UML use cases and associated requirements for the SODALITE
framework.

● A definition of the SODALITE architecture described in terms of its components and of the
behavior of the components pipeline when executing the relevant UML use cases.

● A preliminary definition of the KPIs (Key Performance Indicators) that will be used to assess
the success of the SODALITE framework. Such definition will be revised and possibly
updated in the forthcoming versions of this deliverable.

● A preliminary definition of the evaluation plan that will be actuated through the project. This
preliminary definition will be made more concrete and precise in the next steps of the
project.

The UML use cases and the architecture presented in this deliverable have been defined with the
contribution of all partners in the project and constitute the main guidelines that will steer the work
in the technical work packages during the first iteration in the project. Both UML use cases and
architecture will be treated as living artifacts and will be evolved and updated on the basis of the
new findings that will arise through the project. Any evolution will be reported in the new releases
of this document (D2.2 and D2.3).
This document has been written in parallel with D6.1 and is complementary to that one. In particular,
D6.1, among the other data, provides a list of the used technologies with the corresponding
references, the time plan for the development of the SODALITE platform, as well as the
implementation plan of the SODALITE case studies, and describes how the SODALITE case studies
plan to cover the UML use cases defined in this document.

Project No 825480.

D2.1 - Requirements, KPIs, evaluation plan and architecture - First version - Public Page 3
© Copyright Beneficiaries of the SODALITE Project

Glossary
This section is meant to be used as a reference for the main terms used in this document. Most of the
terms are defined elsewhere in the document, but their definition is also reported here to allow the
reader to find it quickly. To improve readability, all terms are classified under seven main categories.

Acronyms

AADM Abstract Application Deployment Model

ADM Application Deployment Model

AOE Application Ops Expert

CPU Central Processing Unit

DSL Domain Specific Language

GPU Graphic Processing Unit

HPC High Performance Computing

IaaS Infrastructure as a Service

IaC Infrastructure as Code

KB Semantic Knowledge Base

KPI Key Performance Indicator

LRE Lightweight Runtime Environment

MOM Message oriented middleware

OASIS Organization for the Advancement of Structured Information Standards

OWL Web Ontology Language

PBS Portable Batch System

QE Quality Expert

RDF Resource Description Framework

RE Resource Expert

SD SODALITE Design-time

SR SODALITE Runtime

Torque Terascale Open-source Resource and QUEue Manager

TOSCA Topology and Orchestration Specification for Cloud Applications

Project No 825480.

D2.1 - Requirements, KPIs, evaluation plan and architecture - First version - Public Page 4
© Copyright Beneficiaries of the SODALITE Project

General terms

Adaptation plan An ordered set of actions that modify the current deployment
of a system.

Anti-pattern A common design solution/decision that generates known
negative consequences onto the design.

Blueprint A plan or set of proposals to carry out some work. An IT
blueprint is an artifact created to guide priorities, projects,
budgets, staffing and other IT strategy-related initiatives. As for
IaC, a blueprint is the scripting code that enables resource
provisioning, configuration, and application deployment.

Code smell Any characteristic in the code that possibly indicates a potential
defect/bug.

Design pattern Recurring solution that carries positive consequences onto the
design.

Design smell Any element in the design that indicates violation of
fundamental design principles and negatively affects design
quality.

Domain Specific Language A design language that is specific to a particular domain.

Infrastructure as Code Code that does not define the application logic but, instead,
defines the way a computational infrastructure is to be
provisioned and configured and the way an application is to be
deployed on top of it.

IaC artifacts These are the documentation and models associated to
Infrastructure as Code, as well as the code itself.

Infrastructure as a Service A specific service model that corresponds to offering virtualized
hardware, that is, virtual machines and similar abstractions.

Lightweight application base
image

A container image (e.g., Docker or Singularity image).

Models@runtime Indicates maintaining the models of a system at runtime to
reason on the system.

Over-provisioning The allocation of more computing resources (e.g., virtual
machines and CPUs) than strictly necessary.

Playbook Ansible recipe (or script) for executing a series of steps.

Use case A possible case of usage of a certain piece of software.
SODALITE distinguishes between UML use cases, those
reported in this document, and Demonstrating use cases, that
is, the specific application we exploit to demonstrate the

Project No 825480.

D2.1 - Requirements, KPIs, evaluation plan and architecture - First version - Public Page 5
© Copyright Beneficiaries of the SODALITE Project

SODALITE framework. These last ones are also called SODALITE
case studies.

SODALITE human actors

Application Ops Expert (AOE) The actor in charge of operating the application and, as such, of
all the aspects that refer to the deployment, execution,
optimization and monitoring of the application.

Quality Expert (QE) The actor in charge of the quality of service both provided by
the execution infrastructure and required by the executing
application.

Resource Expert (RE) The actor in charge of dealing with the different resources
required to deploy and execute the application.

Resources managed by SODALITE

Application component An executable the application of interest is partitioned in.

Container Engine An engine for running lightweight containers. It enables
operating-system-level virtualization and the existence of
multiple isolated container instances.

Edge/Fog computing A distributed computing paradigm that brings computation
and data storage closer to the location where they are needed,
to improve response times and save bandwidth.

Execution platform Provides the means to execute the different application
components; e.g HPC, GPU, Openstack Cloud, etc.

Lightweight Runtime
Environment

A “simple” execution environment provided by operating
systems or by virtualization technologies.

Message oriented
middleware

Software infrastructure that supports sending and receiving
messages among distributed elements.

Middleware framework The underlying glue that helps both storing the different data
and artifacts and make the different elements communicate.

Monitoring agent Software entity that collects usage and performance statistics
about system resources.

Resource Any computing artifact needed to deploy and run an
application.

Serverless computing A cloud-computing execution model in which the user submits
the tasks to execute and cloud provider manages the
computing infrastructure transparently.

Project No 825480.

D2.1 - Requirements, KPIs, evaluation plan and architecture - First version - Public Page 6
© Copyright Beneficiaries of the SODALITE Project

Specific targeted technologies

Docker An open platform for developing, shipping, and running
applications. Docker provides the ability to package and run an
application in a loosely isolated environment called a
container.

Istio A Service Mesh on top of a cluster manager such as Kubernetes.

Kompose Kompose is a conversion tool for Docker Compose to container
orchestrators such as Kubernetes.

Kubernetes An open-source system for automating deployment, scaling,
and management of containerized applications.

OpenStack An open source cloud operating system.

OpenWhisk A popular and highly scalable serverless computing / cloud
functions platform that allows for functional logic to be written
and triggered in response to events or directly via a REST API.

Portable Batch System A job scheduler that is designed to manage the distribution of
batch jobs and interactive sessions across the available nodes
in the HPC cluster.

Singularity A container solution like Docker that is created specifically for
scientific applications and workflows in a HPC environment.

Skydive A software tool that produces network monitoring metrics.

Slurm An open source, fault-tolerant, and highly scalable cluster
management and job scheduling system for large and small
Linux clusters.

Terascale Open-source
Resource and QUEue
Manager (Torque)

A distributed resource manager that provides the functionality
of PBS but also extends it to provide scalability, fault tolerance,
usability and functionality.

SODALITE elements

Abstract Application Tuple An Abstract Application tuple comprises an abstract description
of the application, its infrastructure, and its non-functional
requirements..

Application Deployment
Model/Abstract Application
Deployment Model

An abstract model defined through the use of SODALITE DSL
with concrete definitions for constraints, parameters,
functional and nonfunctional requirements and goals, thus
defining an instance of the DSL model.

Infrastructure Abstract
Pattern

A defined set of infrastructure resource types, interlinked with
known relationship types (dependencies, compatibility, etc),

Project No 825480.

D2.1 - Requirements, KPIs, evaluation plan and architecture - First version - Public Page 7
© Copyright Beneficiaries of the SODALITE Project

aimed at supporting the recommendation generating
mechanism of the Semantic Reasoner.

Semantic Knowledge Base All modeling artefacts made available to the SODALITE users.

SODALITE Design-time All SODALITE components made available to the user to
support the design and development of Infrastructure as Code
(IaC).

SODALITE DSL The modeling language offered to the SODALITE users to
support design and development of IaC.

SODALITE Runtime All SODALITE components supporting the execution of
applications on top of heterogeneous resources.

Taxonomy of Infrastructure
Bugs/Defects and
Resolutions

A classification of the common bugs and their resolutions for
infrastructure designs and IaC code specifications.

Interchange languages

OWL2 An ontology language for the Semantic Web with formally
defined meaning. OWL2 ontologies provide classes, properties,
individuals, and data values and are stored as Semantic Web
documents. OWL2 ontologies can be used along with
information written in RDF, and OWL 2 ontologies themselves
are primarily exchanged as RDF documents.

TOSCA An OASIS standard that defines the interoperable description of
services and applications hosted on the cloud and elsewhere,
thereby enabling portability and automated management
across cloud providers regardless of underlying platform or
infrastructure; thus expanding customer choice, improving
reliability, and reducing cost and time-to-value.

Project No 825480.

D2.1 - Requirements, KPIs, evaluation plan and architecture - First version - Public Page 8
© Copyright Beneficiaries of the SODALITE Project

Table of contents
Executive Summary 2

Glossary 3

1. Introduction 11
1.1. Relationships with other WPs 11
1.2. Preliminary notes 11
1.3. Structure of the document 12

2. Requirement Elicitation and Analysis 13
2.1. SODALITE Context and Goals 13
2.2. Actors and use cases 14

2.2.1. UC1: Define Application Deployment Model (WP3) 16
Requirements associated with use case UC1 17

2.2.2. UC2: Select Resources (WP3) 21
Requirements associated with use case UC2 21

2.2.3. UC3: Generate IaC code (WP4) 23
Requirements associated with use case UC3 24
Assumptions associated with use case UC3 27

2.2.4 UC4: Verify IaC (WP4) 28
Requirements associated with use case UC4 28

2.2.5. UC5: Predict and Correct Bugs (WP4) 29
Requirements associated with use case UC5 30

2.2.6. UC6: Execute Provisioning, Deployment and Configuration (WP5) 31
Requirements associated with use case UC6 32

2.2.7. UC7: Start Application (WP5) 33
Requirements associated with use case UC7 33

2.2.8. UC8: Monitor Runtime (WP5) 34
Requirements associated with use case UC8 35

2.2.9 UC9: Identify Refactoring Options (WP5) 38
Requirements associated with use case UC9 38

2.2.10 UC10: Execute Partial Redeployment (WP5) 42
Requirements associated with use case UC10 43

2.2.11. UC11: Define IaC Bugs Taxonomy (WP4) 44
Requirements associated with use case UC11 45

2.2.12. UC12: Map Resources and Optimisations (WP3) 45
Requirements associated with use case UC12 46

2.2.13. UC13: Model Resources (WP3) 47
Requirements associated with use case UC13 47

Project No 825480.

D2.1 - Requirements, KPIs, evaluation plan and architecture - First version - Public Page 9
© Copyright Beneficiaries of the SODALITE Project

Assumptions associated with use case UC13 50
2.2.14. UC14: Estimate Quality Characteristics of Applications and Workload (WP3)
 50

Requirements associated with use case UC14 50
2.2.15. UC15: Statically Optimize Application and Deployment (WP4) 52

Requirements associated with use case UC15 52
Assumptions associated with use case UC15 53

2.2.16. UC16: Build Runtime Images (WP4) 55
Requirements associated with use case UC16 55

2.3. Summary of use cases 56

3. Architecture 58
3.1. WP3 Modelling layer 59

3.1.1 Component descriptions 59
3.1.1.1 SODALITE IDE 59
3.1.1.2 Semantic Reasoner (Knowledge Base Service - KBS) 60
3.1.1.3 Semantic Knowledge Base (KB) 61

3.1.2 Use Case Sequence diagrams 62
3.1.2.1 UC13: Model Resources 62
3.1.2.2 UC1: Define Application Deployment Model 63
3.1.2.3 UC2: Select Resources 64
3.1.2.4 UC12: Map Resources and Optimisations 65
3.1.2.5 UC14: Estimate Quality Characteristics of Applications and Workload 66

3.2 WP4 Infrastructure as Code layer 66
3.2.1 Component Descriptions 67

3.2.1.1 Abstract Model Parser 67
3.2.1.2 IaC Blueprint Builder 67
3.2.1.3 IaC Resources Model 68
3.2.1.4 Runtime Image Builder 68
3.2.1.5 Concrete Image Builder 68
3.2.1.6 Application Optimiser 69
3.2.1.7 IaC Verifier 69
3.2.1.8 Verification Model Builder 69
3.2.1.9 Topology Verifier 70
3.2.1.10 Provisioning Workflow Verifier 70
3.2.1.11 Bug Predictor and Fixer 70
3.2.1.12 Predictive Model Builder 71
3.2.1.13 IaC Quality Assessor 71
3.2.1.14 IaC Model Repository 71

Project No 825480.

D2.1 - Requirements, KPIs, evaluation plan and architecture - First version - Public Page 10
© Copyright Beneficiaries of the SODALITE Project

3.2.1.15 Image Registry 71
3.2.2 Sequence Diagrams 72

3.2.2.1 UC3: Generate IaC Code 72
3.2.2.2 UC4: Verify IaC 73
3.2.2.3 UC5: Predict and Correct Bugs 74
3.2.2.4 UC11: Define IaC Bugs Taxonomy 75
3.2.2.5 UC15: Statically Optimize Application and Deployment 76
3.2.2.6 UC16: Build Runtime images 77

3.3. WP5 Runtime layer 78
3.3.1 Component Descriptions 78

3.3.1.1 Orchestrator + Drivers 78
3.3.1.2 Monitoring 79
3.3.1.3 Deployment Refactorer 79
3.3.1.4 Node Manager 79
3.3.1.5 Refactoring Option Discoverer 80

3.3.2 Sequence Diagrams 81
3.3.2.1 UC6: Execute Provisioning, Deployment and Configuration 81
3.3.2.2 UC7: Start Application 82
3.3.2.3 UC8: Monitor Runtime 83
3.3.2.4 UC9: Identify Refactoring Options 85
3.3.2.5 UC10: Execute Partial Redeployment 86

3.4. Mapping SODALITE Architecture with the SODALITE Exploitable Results 87

4. Technical KPIs 90

5. Preliminary Evaluation Plan 92

References 94

Project No 825480.

D2.1 - Requirements, KPIs, evaluation plan and architecture - First version - Public Page 11
© Copyright Beneficiaries of the SODALITE Project

1. Introduction
In recent years the global market has seen a tremendous rise in utility computing, which serves as
the back-end for practically any new technology, methodology or advancement from healthcare to
aerospace. We are entering a new era of heterogeneous, software-defined, high-performance
computing environments. In this context, SODALITE aims to address this heterogeneity by
considering environments that comprise accelerators/GPUs, configurable processors, and non-x86
CPUs such as ARMv8. General purpose GPUs are becoming common currency in data-centers while
specialized FPGA accelerators, ranging from deep-learning specific accelerators to burst buffers
technologies, are becoming “the big coin”, enormously speeding up applications execution and
likely to become common in the near future.
SODALITE wants to address the gap emerging around the aforementioned software-defined,
application-specific infrastructures and aims to provide developers and infrastructure operators
with tools that abstract their application and infrastructure requirements to enable simpler and
faster development, deployment, operation, and execution of heterogeneous applications
reflecting diverse circumstances on heterogeneous, software-defined, high-performance, cloud
infrastructures, with a particular focus on performance, quality, manageability, and reliability.
According to the Grant Agreement, SODALITE will produce several tangible results:

● A pattern-based abstraction library that includes application, infrastructure, and
performance abstractions;

● A design and programming model for both full-stack applications and infrastructures based
on the abstraction library;

● A deployment framework that enables the static optimization of abstracted applications
onto specific infrastructure;

● Automated run-time optimization and management of applications.
The purpose of this document is to analyse in detail the scope and goals of SODALITE and, based on
the feedback by our case studies, to define the use cases and requirements for the project.
Additionally, this document provides also a first definition of the SODALITE architecture and details
its behavior when fulfilling the defined use cases. Finally, the document includes a first definition of
the technical KPIs for the project and of the plan that will be adopted for evaluation.

1.1. Relationships with other WPs
Including the definition of requirements and of the SODALITE architecture, this deliverable is the
first cornerstone produced by the project and will steer the work of the technical work packages
(WP3-WP5). In fact, the deliverable defines the focus of technical WPs in terms of use cases and the
architecture and interfaces offered by the components that will be developed under their
responsibility.
This deliverable will also influence the work in WP6 as it defines the KPIs to be assessed during the
evaluation as well as a preliminary plan for evaluation. As such, this deliverable and deliverable D6.1
[1] from WP6 have been developed in a coordinated and coherent way.

1.2. Preliminary notes
Note on component specification and technologies: according to the grant agreement, D6.1
should have included “specifications of the components’ functionality”. Instead, we have decided
to include them in this deliverable to improve readability and understandability of the architectural
diagrams we present here. Instead, a description of the technologies that will be adopted in the
project, is presented in D6.1 together with the associated references.
Note on terminology: we distinguish between the UML use cases, which are those reported in this
document and the demonstrating use cases, also called SODALITE case studies, which are the

Project No 825480.

D2.1 - Requirements, KPIs, evaluation plan and architecture - First version - Public Page 12
© Copyright Beneficiaries of the SODALITE Project

specific applications we will exploit to experiment with the usage of the SODALITE framework. These
last ones are developed within the context of WP6 and are described in D6.1.
Note on UML: In this document we adopt UML as a modeling language for use cases (see Figure 1)
and for defining the architecture of the SODALITE framework in terms of component diagrams and
sequence diagrams (see Figures from 2 to 20). However, the UML notation adopted in this document
is not always fully compatible with the UML standard [2]. This is due to the fact that the tool we have
adopted, PlantUML1, does not support some features of the standard. The most significant
difference is the absence in the tool of the dock icon representing the concept of required interface.
We have replaced this concept with a simple usage relationship.

1.3. Structure of the document
Consistently with its objectives, this document is structured as follows:

● Section 2 focuses on requirement analysis. In particular, it defines the scope and goals of the
project, taking the Grant Agreement as a reference. It also identifies the main actors that are
relevant in SODALITE and the main use cases that we aim at fulfilling.

● Section 3 focuses on the architecture of the SODALITE framework. It defines the components
that will be developed as part of each work package and describes in detail how these
components interact with each other in the fulfillment of the use cases.

● Section 4 briefly defines the technical KPIs we will consider in the project.
● Finally, Section 5 provides a preliminary draft of the evaluation plan which essentially

reports the approach that we will adopt in the evaluation.
We plan to further detail the content of Sections 4 and 5 in the next versions (D2.2 and D2.3) of this
deliverable.

1 http://plantuml.com/

Project No 825480.

D2.1 - Requirements, KPIs, evaluation plan and architecture - First version - Public Page 13
© Copyright Beneficiaries of the SODALITE Project

2. Requirement Elicitation and Analysis
The first phase of any development process is the elicitation of requirements and the subsequent
analysis. This activity is even more important in SODALITE given the nature and complexity of the
solution the consortium wants to conceive. To elicit requirements we have adopted a scenario-
based approach [3] that has lead us to the definition of the following elements:

● UML Use cases: these identify a) the boundaries of the SODALITE system in terms of the UML
actors the system interacts with, and b) the functionalities the SODALITE system offers to its
users (the human actors in UML terms). Note: in the following of this document we will use
the generic term use case to mean a UML use case.

● Requirements: these are prescriptive assertions that describe what the SODALITE system
should offer to its users [4].

● Domain assumptions: these are descriptive assertions that should be true in the domain of
adoption of the SODALITE system to ensure that this last one can work properly [4].

 Both technology partners and domain experts have been involved. In a first iteration, each partner
-no matter the specific expertise - has contributed his/her needs and wishes with respect to the
SODALITE system. All the requirements identified during this first iteration have been filtered and
classified and have allowed us to identify, in the second iteration, the SODALITE actors and the UML
use cases and to describe these in detail. In the third iteration, requirements have been assigned to
the UML use cases they were most related to. Additionally, a few domain assumptions have been
identified.
The following of this section is organized as follows: To help the reader in understanding the vision
behind SODALITE, Section 2.1 briefly presents its context and the main goals. Subsequently, Section
2.2 introduces the UML use cases, details each of them and lists the associated requirements and
domain assumptions (if any). Finally, Section 2.3 provides a summary and a conclusion for this part.

2.1. SODALITE Context and Goals
The SODALITE vision is to support Digital Transformation of European Industry through (1) increasing
design and runtime effectiveness of software-defined infrastructures, to ensure high-performance
execution over dynamic heterogeneous execution environments; (2) increasing simplicity of modelling
applications and infrastructures, to improve manageability, collaboration, and time to market (quote
from the grant agreement [5]).
Within this vision, SODALITE will provide application developers and infrastructure operators with
tools that (a) abstract their application and infrastructure requirements to (b) enable simpler and
faster development, deployment, operation, and execution of heterogeneous applications reflecting
diverse circumstances over (c) heterogeneous, software-defined, high-performance, cloud
infrastructures, with a particular focus on performance, quality, manageability, and reliability (quote
from the grant agreement).
In particular, SODALITE is focusing on supporting the entire life cycle of the so-called Infrastructure
as Code (IaC). IaC means limiting the need to manually provision resources, configuring them and
deploying an application by offering to DevOps teams the possibility to code such tasks into proper
scripts that are then executed by proper orchestrators, thus introducing a significant automation in
the application life cycle.
If we can define IaC, it means that we can deal with such code as we do with traditional code.
Therefore, activities concerning the design of IaC, its verification, its optimization, its dynamic
evolution (i.e., the possibility of modifying, on the fly, the IaC associated to a software system so that
its deployment and configuration can change) can be envisaged and have the potential to
significantly improve the state of practice which is still relatively immature in this area. The purpose
of SODALITE is exactly to contribute to this goal.

Project No 825480.

D2.1 - Requirements, KPIs, evaluation plan and architecture - First version - Public Page 14
© Copyright Beneficiaries of the SODALITE Project

2.2. Actors and use cases
This section proposes a first identification of the main UML use cases that SODALITE will implement,
along with the actors (roles) that can trigger these use cases or contribute to them by providing
application elements, execution capabilities, and storage and communication infrastructures.
The actors (see Figure 1) can easily be grouped into two families: the users, experts in charge of
interacting with and exploiting SODALITE, and the resources needed by the system to carry out the
different activities. As for users, we have:

● Application Ops Experts (AOE). They are in charge of operating the application and, as
such, are in charge of all the aspects that refer to the deployment, execution, optimization
and monitoring of the application. They are supposed to know the applications to execute
and the requirements on both the deployment/execution environment and the quality of
services they are interested in.

● Resource Experts (RE). They are in charge of dealing with the different resources required
to deploy and execute the application. These persons are in charge of application
component technologies, of cloud, HPC, and GPU-based computing infrastructures, or of
middleware solutions for both storing data and allowing components to communicate.

● Quality Experts (QE). They are responsible for the quality of service both provided by the
execution infrastructure and required by the executing application. Being part of the
SODALITE ecosystem, they are in charge of offering libraries of patterns for addressing
specific performance and quality problems in the SODALITE applications.

As for resources, they merely cover all the possible ones needed to operate applications on
SODALITE. These resources can be specialized in:

● Application components are the executables the applications of interest are partitioned in.
These components can be based on diverse technologies and come both as black-boxes and
as complete packages, that is, the executables come with source code and with any other
external artifact needed to compile, deploy, and execute them.

● Execution platforms provide the means to execute the different application components.
They can be cloud based elements (e.g., virtual machines or containers), HPC
infrastructures, or clusters of GPUs.

● Middleware frameworks provide the underlying glue and help both store the different data
and artifacts and make the different elements communicate.

The use cases reflect the main activities human actors can trigger or participate in as part of the life
cycle management of IaC. More specifically:

● To make the SODALITE framework usable by AOEs, it must be populated with information
concerning the resources that can be exploited at runtime. This requires modeling resources
(UC13) and making them available, as part of the SODALITE Domain Specific Language, to
AOEs. This activity is performed by Resource Experts which are also in charge of mapping
the modeled resources into specific optimization patterns (UC12).

● The Quality Expert defines a bug taxonomy for IaC (UC11) that helps AOEs in predicting bugs
(UC5). Moreover, he/she experiments with application components and prototypes to
estimate their quality characteristics (UC14).

● AOEs start their activity by defining an application deployment model (UC1). This model
includes the main components of an application and any constraint or requirement on their
deployment, configuration or execution. At this point they can either rely on the resources
the SODALITE system would assign by default, or they could select specific resources (UC2).
After this step, they are ready to trigger the automatic generation of IaC code (UC3) and its
verification (UC4) as well as bug prediction and correction (UC5) and static optimization

Project No 825480.

D2.1 - Requirements, KPIs, evaluation plan and architecture - First version - Public Page 15
© Copyright Beneficiaries of the SODALITE Project

(UC15) aiming at improving application performance. Of course these activities may lead to
some reiteration in the mentioned use cases until the point in which, as part of the IaC code
generation, AOEs generate the needed runtime images (UC16). Then AOEs can trigger the
execution of provisioning, configuration and deployment (UC6), start the application (UC7)
and start monitoring the execution (UC8) with the purpose of checking that everything is
working well and, in case of problems, of identifying possible refactoring and deployment
improvement options (UC9). As a result of this identification, they can go back to the
modeling and IaC generation/verification/optimization phases and, at this point, trigger a
partial redeployment of the system (UC10).

While Figure 1 summarizes the scope of the project and allows the reader to get a high-level idea at
a first glance, the next subsections describe each use case in detail. In the next, each use case
description uses SD and SR to refer to SODALITE components foreseen at Design-time, and Run-
time, respectively.

Project No 825480.

D2.1 - Requirements, KPIs, evaluation plan and architecture - First version - Public Page 16
© Copyright Beneficiaries of the SODALITE Project

Figure 1: Use cases and actors.

2.2.1. UC1: Define Application Deployment Model (WP3)

Actors: ● Application Ops Expert (AOE)

Entry condition: Triggered by Application Ops Expert

Project No 825480.

D2.1 - Requirements, KPIs, evaluation plan and architecture - First version - Public Page 17
© Copyright Beneficiaries of the SODALITE Project

Flow of events: The UC sequence is described by the following steps:
● The Application Ops Expert (AOE) initiates the SODALITE

Design-time (SD) in order to define the application
deployment model.

● The AOE uses a DSL (Domain Specific Language) editor or
a graphical interface (e.g., UML diagrams) within the SD to
describe application topology/constraints:
components/services, inter-component bounds, etc.

● The AOE uses a DSL editor or a graphical interface within
the SD to express optimization requirements/constraints:
at application, component, and environment level
(network, storage).

● In case of graphical input, the SD translates the input into
DSL syntax.

● The SD validates the DSL input for syntax validity.
● The SD consults the Semantic Reasoner for the qualitative

integrity of the input. The Semantic Reasoner should check
for known inconsistencies (e.g., incompatibilities, anti-
patterns, etc.)

● All resulted issues/errors are presented to the AOE in
design time, so that she can perform refinements.

● The SD consults the Semantic Reasoner for
recommendations sourcing from known patterns,
requirements, etc, and presents those to the AOE with
confidence scores.

● The AOE browses/accepts/rejects recommendations and
injects the desired ones into the model.

● After looping through the validation and
recommendations steps, the AOE submits the required,
valid application deployment model to the SD.

● The SD uploads the model to the semantic knowledge
base.

● The SD should then present specific
resources/services/products to the AOE (i.e., the process
continues to the UC2)

Exit condition: Application Deployment Model (ADM) created and published on
Semantic Knowledge Base (KB)

Exceptions: Lack of confident system-generated suggestions (can be tackled
with a confidence level threshold)

Requirements associated with use case UC1

Id. Title Description

Project No 825480.

D2.1 - Requirements, KPIs, evaluation plan and architecture - First version - Public Page 18
© Copyright Beneficiaries of the SODALITE Project

UC1.R1 The SODALITE Design-time environment
requires an API to the
application/Infrastructure abstract
pattern repository

Application/Infrastructure abstract
patterns can be stored/retrieved
to/from this repository through this API
from clients such as the
Application/Infrastructure Developer
Editor (IDE)

Rationale Scope Use Case

The specification of application/infrastructure abstract
models in the IDE is based on the re-utilization of these
patterns

Application
Components

Library

Define
Application
Deployment
Model (WP3)

Id. Title Description

UC1.R2 DSL: specification of application patterns
and models

Definition/Implementation of a DSL
(both metamodel/semantic) for
describing application delivery
concerns, including deployment units,
dependencies, interactions,
configuration, non-functional
requirements, etc. This DSL should
abstract concrete deployment
approaches such as Ansible, Chef,
Puppet

Rationale Scope Use Case

Both application abstract patterns and models (use
case specific) are conforming instances of this DSL
(metamodel, ontology)

Abstracted
Application

Tuple

Define
Application

Deployment Model
(WP3)

Id. Title Description

UC1.R3 Authoring of application abstract models
(part of abstract tuple)

Developers are assisted by the SD editor
to create abstract models describing
their application delivery (deployment)
requirements according to the
deployment (partitioning) strategy for
their applications. These abstract
models are conforming to the
application DSL.

Rationale Scope Use Case

Project No 825480.

D2.1 - Requirements, KPIs, evaluation plan and architecture - First version - Public Page 19
© Copyright Beneficiaries of the SODALITE Project

The specification of application abstract models
should be assisted by the editor, which helps
developers to reuse modeling patterns (from the
repository) as well as on the use of the DSL modeling
constructions.

Application
Developer

Editor

Define
Application

Deployment Model
(WP3)

Id. Title Description

UC1.R4 Integration of Application Developer
Editor with SODALITE SD

The specification of the application
abstract models takes place within the
same IDE that the developer uses for
designing and implementing her
application.

Rationale Scope Use Case

The specification of the application abstract model
gets simplified from the application information
collected from the IDE automatically or by user input
that can be obtained from her IDE.

Application
Developer

Editor

Define
Application

Deployment Model
(WP3)

Id. Title Description

UC1.R5 IntelliJ IDEA IDE extension Application developer editor extensions
as plugin in IntelliJ IDEA IDE

Rationale Scope Use Case

The Vehicle IoT use case depends heavily on the
Android ecosystem, including Android Studio (which
no longer supports Eclipse, but is itself derived from
IntelliJ) and related IDEs (IntelliJ IDEA, GoLand). An
individual plugin would allow for use across all related
IDEs, and would further allow frontend and backend
modeling to be logically separated.

Application
Developer Editor

Define
Application

Deployment Model
(WP3)

Id. Title Description

UC1.R6 Description of application and standard
build and run options

The details of the application that will
enable its compilation into IaC artifacts
suitable for the target architecture must
be defined. Any input files needed for
test run should be available. Methods to
test validity of a successful run should be
specified to verify correctness.

Rationale Scope Use Case

Project No 825480.

D2.1 - Requirements, KPIs, evaluation plan and architecture - First version - Public Page 20
© Copyright Beneficiaries of the SODALITE Project

The optimization of the application can occur only if
these pieces of information are available

Application
Optimiser

Define
Application

Deployment Model
(WP3)

Id. Title Description

UC1.R7 Support for microservice-oriented
architecture

SODALITE must support deployment of
microservice-oriented architecture
developed artifacts

Rationale Scope Use Case

SODALITE should promote service oriented application
design as most suitable for distributed platforms and
applications

Runtime Define
Application

Deployment Model
(WP3)

Id. Title Description

UC1.R8 Abstractions and Mechanisms for
Enforcing Performance, Security, and
Privacy

The application designs should have
abstractions and mechanisms that are
required to enforce the optimization
decisions (related to performance,
privacy, and security).

Rationale Scope Use Case

We may need specific abstractions and mechanisms in
the application to implement some optimization
decisions. For example, the traffic (data or message)
flows need to be intercepted, rate-controlled
(queue/scheduling), and applied privacy enforcement
operators.

Deployment
Improvement

Define
Application

Deployment Model
(WP3)

Id. Title Description

UC1.R9 Augment Application Models, IaC Models,
and Infrastructure Models for Predicting
Control Objectives

The design models of a cloud native
application should include the
information necessary to support
estimating quality attributes to be
optimized.

Rationale Scope Use Case

The design models of the application should have the
information necessary to enable quantifying the
quality attributes (Performance, Privacy, and Security)
of the application.

Application
Developer Editor

Define
Application

Deployment Model
(WP3)

Project No 825480.

D2.1 - Requirements, KPIs, evaluation plan and architecture - First version - Public Page 21
© Copyright Beneficiaries of the SODALITE Project

Id. Title Description

UC1.R10 Modeling language allowing modeling of
all the necessary information to enable
the generation of deployable IaC

The deployment preparation tool
assumes the SODALITE modeling
language will provide all the necessary
elements to model heterogeneous
infrastructures and applications. The
modeling language should provide
means to specify all that is needed in
order to generate deployable artifacts.

Rationale Scope Use Case

There must exist suitable inputs to the deployment
preparation tool allowing the generation of deployable
artifacts.

Infrastructure
Operator Editor

Define
Application

Deployment Model
(WP3)

2.2.2. UC2: Select Resources (WP3)

Actors: ● Application Ops Expert (AOE)

Entry condition: UC1 terminates and the corresponding application deployment
model is stored in the KB

Flow of events: ● The SODALITE IDE (SD) retrieves compatible target
resources.

● [OPTIONAL] The AOE applies filters to available target
resources.

● The AOE interacts with the SD to receive suggestions about
the resource to use.

● The SD provides suggestions based on the information
provided by the AOE in the application deployment model.

● The AOE selects the resources to be used and maps them
to the application components.

● The SD validates the selection or provides suggestions for
changes. In this case, the process goes back to the previous
step.

Exit condition: The ADM is complete as it maps all application components to
concrete suitable resources. It is stored back in the KB.

Exceptions: In case no suitable resource is available, SD returns an error
message to AOE

Requirements associated with use case UC2

Id. Title Description

Project No 825480.

D2.1 - Requirements, KPIs, evaluation plan and architecture - First version - Public Page 22
© Copyright Beneficiaries of the SODALITE Project

UC2.R1 DSL: specification of optimization patterns
and models

Definition/Implementation of a DSL
(both metamodel/semantic) for
describing optimization patterns. This
DSL should extend existing standards
for abstracting optimization strategies

Rationale Scope Use Case

The optimization patterns adopted within the abstract
application tuple connects application abstract models
with infrastructure abstract models and enables the
optimal selection of infrastructure capacities

Abstracted
Application

Tuple

Select
Resource (WP3)

Id. Title Description

UC2.R2 Concretization of abstract models into
deployment/configuration plans

The abstract tuple (application,
infrastructure, optimization) should be
concretized into a
deployment/configuration plan,
compliant to the standards requested
by WP4 (e.g., Ansible, etc)

Rationale Scope Use Case

The abstract tuple is not a deployable descriptor and
needs to be concretized for the target delivery multi-
platform, by resolving optimization patterns and the
non-functional requirements.

Application
Builder

Select
Resource (WP3)

Id. Title Description

UC2.R3 OpenWhisk modeling for serverless
computing actions

Modeling should consider not only
physical infrastructure, but also
serverless computing.

Rationale Scope Use Case

OpenWhisk is a popular and highly scalable serverless
computing / cloud functions platform that allows for
functional logic to be written and triggered in response
to events or directly via a REST API. These functions play
a key role in modern mobile application deployment,
and must be managed and utilized alongside other
types of conventional infrastructure.

Application
Components

Library

Select
Resource (WP3)

Id. Title Description

Project No 825480.

D2.1 - Requirements, KPIs, evaluation plan and architecture - First version - Public Page 23
© Copyright Beneficiaries of the SODALITE Project

UC2.R4 SLURM/Torque modelling Modelling must support SLURM/Torque
for HPC.

Rationale Scope Use Case

Slurm is an open source, fault-tolerant, and highly
scalable cluster management and job scheduling
system for large and small Linux clusters. Slurm
requires no kernel modifications for its operation and is
relatively self-contained.

Application
Components

Library

Select
Resource (WP3)

Id. Title Description

UC2.R5 OpenStack modelling Modelling must support besides
container based deployments also Bare
Metal and VM abstractions such as
OpenStack.

Rationale Scope Use Case

OpenStack is an open source cloud operating system
that controls large pools of compute, storage, and
networking resources throughout a datacenter, all
managed through a dashboard that gives
administrators control while empowering their users to
provision resources through a web interface.

Application
Components

Library

Select
Resource (WP3)

Id. Title Description

UC2.R6 Use context-aware search and discovery,
matchmaking and reuse of cloud
applications and infrastructures

The existing application designs (or
components) and infrastructure should
be able to be dynamically discovered
and used when optimizing the
application.

Rationale Scope Use Case

The SD needs to use the rule-based semantic reasoning
techniques that are developed by CERTH for context-
aware search and discovery, matchmaking and reuse of
cloud applications and Infrastructures. The
deployment improvement module should be able to
query and update the semantic repository.

Deployment
Improvement

Select Resource
(WP3)

2.2.3. UC3: Generate IaC code (WP4)

Actors: ● Application Ops Expert

Entry condition: Abstract, optimal, error free ADM is created and source code
provided optionally

Project No 825480.

D2.1 - Requirements, KPIs, evaluation plan and architecture - First version - Public Page 24
© Copyright Beneficiaries of the SODALITE Project

Flow of events: ● SD parses the ADM.
● SD uses the DSL to match optimal IaC node descriptors,

relationships, requirement capability based on a
repository.

● SD builds the IaC blueprint based on matching IaC node
description.

● SD returns to the AOE the IaC Blueprint.

Exit condition: IaC blueprints are validated and error free or a list of
errors/recommendations is supplied to the user

Exceptions: If there are errors in the process of creating IaC Blueprints, SD stops
the generation of IaC Blueprints, and returns the list of errors found
in ADM to AOE

Requirements associated with use case UC3

Id. Title Description

UC3.R1 SODALITE Runtime (SR) should support
Ansible playbooks and TOSCA node
definitions for application deployment
in public cloud

Implement setup/teardown deployable
playbooks for public clouds (e.g.,
Amazon, Google Cloud)

Rationale Scope Use Case

SODALITE must address various architectures Application
Components

Library

Generate IaC code
(WP4)

Id. Title Description

UC3.R2 SR should support Ansible playbooks
and TOSCA node definitions for
application deployment in HPC
environment

Implement setup/teardown deployable
orchestrator playbooks for HPC (Torque)

Rationale Scope Use Case

SODALITE must address various architectures Application
Components

Library

Generate IaC code
(WP4)

Id. Title Description

UC3.R3 SR should support Ansible playbooks
and TOSCA node definitions for
application deployment on edge

Implement setup/teardown deployable
orchestrator playbooks for REST enabled
edge

Project No 825480.

D2.1 - Requirements, KPIs, evaluation plan and architecture - First version - Public Page 25
© Copyright Beneficiaries of the SODALITE Project

Rationale Scope Use Case

SODALITE must address various architectures Application
Components

Library

Generate IaC code
(WP4)

Id. Title Description

UC3.R4 SR should support Ansible playbooks
and TOSCA node definitions for
application deployment in fog

Implement setup/teardown deployable
orchestrator playbooks for fog (network
equipment)

Rationale Scope Use Case

SODALITE must address various architectures Application
Components

Library

Generate IaC code
(WP4)

Id. Title Description

UC3.R5 Support for SODALITE DSL The deployment preparation tool must
be able to understand and process as
input infrastructure specifications
defined according to the SODALITE DSL.

Rationale Scope Use Case

SODALITE will provide a unified language for
infrastructure and application specification.

Application
Builder

Generate IaC code
(WP4)

Id. Title Description

UC3.R6 Generation of correct, complete and
deployable IaC artifacts

The deployment preparation tool must
be able to generate IaC artifacts that are
syntactically correct and runnable.
Moreover the deployment preparation
tool must be able to generate
corresponding IaC artifacts for all the
necessary elements and constructs of the
SODALITE modeling language.

Rationale Scope Use Case

SODALITE must produce deployable IaC artifacts. Application
Builder

Generate IaC code
(WP4)

Id. Title Description

Project No 825480.

D2.1 - Requirements, KPIs, evaluation plan and architecture - First version - Public Page 26
© Copyright Beneficiaries of the SODALITE Project

UC3.R7 Generation of IaC which exploits
heterogeneous architectures

The deployment preparation tool must
be able to generate IaC artifacts targeting
different architectures (CPUs, HPC,
GPUs).

Rationale Scope Use Case

SODALITE must address heterogeneous architectures. Application
Builder

Generate IaC code
(WP4)

Id. Title Description

UC3.R8 Reporting of errors in input models
which prevent IaC generation

The deployment preparation tool must
report meaningful messages regarding
errors encountered during the
processing that should help users in
fixing issues.

Rationale Scope Use Case

Error messages must be informative. Application
Builder

Generate IaC code
(WP4)

Id. Title Description

UC3.R9 Generation of IaC enabling
configuration of runtime components
(monitoring, optimization and
refactoring) as well as of runtime
management policies (refactoring
policies, security policies, etc.).

The deployment preparation tool must
be able to generate IaC artifacts properly
instrumented with configurations and
policies needed for runtime application
management (monitoring
configurations, deployment refactoring
policies, security policies, etc.)

Rationale Scope Use Case

SODALITE must support infrastructures subject to
various runtime policies.

Application
Builder

Generate IaC code
(WP4)

Id. Title Description

UC3.R10 Generation of IaC which exploits
serverless computing artifacts (cloud
functions)

The deployment preparation tool should
be able to generate artifacts targeting
pre-defined Cloud Functions in a
serverless computing environment.

Rationale Scope Use Case

Project No 825480.

D2.1 - Requirements, KPIs, evaluation plan and architecture - First version - Public Page 27
© Copyright Beneficiaries of the SODALITE Project

SODALITE should be able to handle infrastructure
heterogeneity spanning across hardware/software
resources, including pre-defined cloud functions
available for the application to make use of.

Application
Builder

Generate IaC code
(WP4)

Id. Title Description

UC3.R11 Orchestrator input The Orchestrator takes as input a
Concrete Deployment Plan, specified in
TOSCA, defining the artifacts that
compose an application, their
relationships and infrastructure
dependencies of each artifact.

Rationale Scope Use Case

The Concrete Deployment Plan should be a defined
instance of a DSL specified by the Application Ops
expert, so it benefits from a known and established
model.

Runtime Generate IaC code
(WP4)

Assumptions associated with use case UC3

Id. Title Description

UC3.A1 The modeling approach will be
complete enough to offer the possibility
of modeling the deployment of complex
systems on heterogeneous
architectures

The deployment preparation tool
assumes that its starting point, i.e., an
application deployment model, will
contain all pieces of information needed
to generate an effective and complete IaC.

Rationale Scope Use Case

If this assumption does not hold, it will not be possible
to generate an executable IaC.

Runtime Generate IaC code
(WP4)

Id. Title Description

UC3.A2 The modeling approach will be
complete enough to offer the possibility
to define runtime management policies

The deployment preparation tool
assumes that the application deployment
model will contain all that is needed to
generate IaC artifacts instrumented and
configured with runtime management
policies.

Rationale Scope Use Case

Project No 825480.

D2.1 - Requirements, KPIs, evaluation plan and architecture - First version - Public Page 28
© Copyright Beneficiaries of the SODALITE Project

If this assumption does not hold, it will not be possible
to generate an executable IaC with runtime
management policies.

Runtime Generate IaC code
(WP4)

Id. Title Description

UC3.A3 The modeling approach will be
complete enough to offer the possibility
to define the configuration of runtime
tools such as the monitoring
infrastructure

The deployment preparation tool
assumes that, as part of the application
deployment model, it will be possible to
define information that will enable the
proper configuration and subsequent
execution of the various runtime tools
that will be developed in the scope of
SODALITE.

Rationale Scope Use Case

If this assumption does not hold, it will be more
difficult to exploit supporting runtime tools during
the execution of a complex application.

Runtime Generate IaC code
(WP4)

2.2.4 UC4: Verify IaC (WP4)

Actors: ● Application Ops Expert

Entry condition: AOE submits the IaC blueprints and the IaC code scripts generated
by UC3.

Flow of events: ● SD receives the IaC blueprints and the IaC scripts.
● SD parses blueprints and IaC scripts, and builds the formal

models required for validating them.
● SD checks if the constraints on the nodes, the relationships

between nodes, and their properties in the application
topology described by the blueprints are satisfied.

● SD checks if the constraints on the provisioning workflow
described in the IaC scripts are satisfied.

● SD provides/displays the validation results to AOE.

Exit condition: The verification of the blueprints and IaC scripts are completed.
The validation results are ready.

Exceptions: If there are parse errors, SD stops the validation process, and
returns the errors to AOE.

Requirements associated with use case UC4

Id. Title Description

Project No 825480.

D2.1 - Requirements, KPIs, evaluation plan and architecture - First version - Public Page 29
© Copyright Beneficiaries of the SODALITE Project

UC4.R1 Predictive and Corrective (Defect)
Analysis of IaC Scripts

The defects in IaC should be predicted,
and the resolutions for the identified
defects should be recommended.

Rationale Scope Use Case

Before executing IaC scripts, we need to identify and
fix their defects that can cause performance, security,
and privacy vulnerabilities.

Deployment
Improvement

Verify IaC (WP4)

Id. Title Description

UC4.R2 Prepare An Infrastructure Code Quality
Framework

Infrastructure Code Quality Framework
will include the software quality metrics
that can be used to assess the quality of
IaC. The relevant metrics should be able
to be measured and used to predict the
defects in IaC.

Rationale Scope Use Case

The quality factors such as low-coupling, high
cohesion, Chidamber and Kemerer metrics can
indicate the defects (security vulnerabilities, privacy
vulnerabilities, and performance vulnerabilities). We
can build the required vulnerability predictors using
machine learning techniques.

Deployment
Improvement

Verify IaC (WP4)

 2.2.5. UC5: Predict and Correct Bugs (WP4)

Actors: ● Application Ops Expert

Entry condition: AOE submits the IaC artefacts verified by UC 4

Flow of events: ● SD receives the verified IaC artefacts including the IaC
blueprints and the IaC scripts.

● SD parses the IaC artifacts, and builds the predictive
models required for predicting the defects/bugs in them.
The defects are anti-patterns, design smells, and code
smells for security, privacy and performance.

● SD finds defects in the application topology described in
the blueprints.

● SD finds the defects in the provisioning workflows
described in the IaC scripts as well as those in the script
source codes.

● SD provides/displays the defects and the potential
corrections for each identified defect to AOE, which selects
the corrections.

● SD applies selected corrections.

Project No 825480.

D2.1 - Requirements, KPIs, evaluation plan and architecture - First version - Public Page 30
© Copyright Beneficiaries of the SODALITE Project

● SD can train a machine learning model required for
predicting defect-proneness of IaC artifacts based on IaC
quality metrics.

● SD can predict the defect-proneness index for the IaC
artifacts of the application for the machine learning model.

Exit condition: SD cannot find further defects. AOE decides to stop the defect
finding process.

Exceptions: If there are parse errors, SD stops the defect prediction process,
and returns the errors to AOE.

Requirements associated with use case UC5

Id. Title Description

UC5.R1 Predict and Correct Performance Defects
in Designs

Given an application design and the
corresponding infrastructure design, the
performance defects should be
predicted and corrected.

Rationale Scope Use Case

We need to ensure that the cloud native application to
be deployed does not have known performance
defects.

Deployment
Improvement

Predict and Correct
Bugs (WP4)

Id. Title Description

UC5.R2 Predict and Correct Privacy Defects in
Designs

Given an application design and the
corresponding infrastructure design, the
privacy defects should be predicted and
corrected.

Rationale Scope Use Case

We need to ensure that the cloud native application to
be deployed does not have known privacy defects.

Deployment
Improvement

Predict and Correct
Bugs (WP4)

Id. Title Description

UC5.R3 Predict and Correct Security Defects in
Designs

Given an application design and the
corresponding infrastructure design, the
security defects should be predicted and
corrected.

Rationale Scope Use Case

Project No 825480.

D2.1 - Requirements, KPIs, evaluation plan and architecture - First version - Public Page 31
© Copyright Beneficiaries of the SODALITE Project

We need to ensure that the cloud native application to
be deployed does not have known security defects.

Deployment
Improvement

Predict and Correct
Bugs (WP4)

 2.2.6. UC6: Execute Provisioning, Deployment and Configuration (WP5)

Actors: ● Application Ops Expert (AOE)
● Resources

Entry condition: ● HPC and Cloud infrastructures must support Lightweight
Runtime Environments (LRE), e.g., for Cloud, Kubernetes
must be installed, and for HPC container engine,
Singularity must be installed on the compute nodes. If VMs
are instantiated, then firstly LRE must be installed
(alternatively, images containing LRE are booted)

● Corrected and verified (UC4, UC5) TOSCA blueprints and
deployment playbooks are generated (UC3), and AOE
starts the deployment

Flow of events: ● AOE selects the execute provisioning, deployment and
configuration option.

● SODALITE Runtime (SR) receives IaC (blueprints and
playbooks).

if Execution Platform is Cloud:
● SR provisions Resources according to the IaC.
● SR deploys application components onto the Cloud

infrastructure within LRE (e.g., application container
image is deployed from SODALITE image repository).

● SR configures application (e.g., creates application
component endpoints, attaches volumes).

if Execution Platform is HPC or GPU cluster:
● SR uploads image into the workspace of the user (e.g.,

home directory) on the front-end (head) node.
● SR uploads a job script to be run (e.g., Torque job script

with PBS directives).

Exit condition: Initial application deployment is completed and successful

Exceptions: ● No resources are available at the time of deployment
execution.

● Resources needed for particular application component
are not available.

● Deployment is unsuccessful, e.g., corrupted container
image, bad container port mapping (port is in use issue),
other container related issues (e.g., installed container
engine version does not support requested feature,
failures to attach volume).

● Infrastructure failures, e.g., disk, network equipment
failures, system shutdown, human factors.

Project No 825480.

D2.1 - Requirements, KPIs, evaluation plan and architecture - First version - Public Page 32
© Copyright Beneficiaries of the SODALITE Project

Requirements associated with use case UC6

Id. Title Description

UC6.R1 SODALITE Runtime supporting various
architectures

Implement SODALITE Runtime to support
various architectures.

Rationale Scope Use Case

SODALITE Runtime needs to address various
architectures (public and private clouds, HPC,
Edge/Fog nodes) and enable them for resource
provisioning in WP5.

Application
Components

Library

Execute
Provisioning,

Deployment and
Configuration (WP5)

Id. Title Description

UC6.R2 Support for extension plugins SR must be extendible to various target
architectures. A plugin solution can be
envisaged.

Rationale Scope Use Case

SODALITE must support the development of plug-ins
that will use the target system management
interface (ranging from OpenStack, Kubernetes, to
HPCs Torque).

Application
Components

Library

Execute
Provisioning,

Deployment and
Configuration (WP5)

Id. Title Description

UC6.R3 SR should support Ansible playbooks
and TOSCA node definitions for
application deployment in private
cloud.

Implement setup/teardown deployable
orchestrator playbooks for private cloud
(OpenStack, Kubernetes).

Rationale Scope Use Case

SODALITE must address various architectures Application
Components

Library

Execute
Provisioning,

Deployment and
Configuration (WP5)

Id. Title Description

UC6.R4 SR plugin supporting Docker Compose SR should Implement a plugin for multi-
container deployments through Docker
Compose.

Rationale Scope Use Case

Project No 825480.

D2.1 - Requirements, KPIs, evaluation plan and architecture - First version - Public Page 33
© Copyright Beneficiaries of the SODALITE Project

SODALITE must be able to support a range of plugins
and deployment patterns, including those already in
use by the use cases.

Application
Components

Library

Execute
Provisioning,

Deployment and
Configuration (WP5)

Id. Title Description

UC6.R5 Heterogeneous infrastructure SR must support, at the same time,
different kinds of computing
infrastructures. The actual list of
infrastructures depends on the case
studies requirements, but at least: HPC,
Openstack, Kubernetes.

Rationale Scope Use Case

The SODALITE computing infrastructure is
heterogeneous.

Runtime Execute
Provisioning,

Deployment and
Configuration (WP5)

 2.2.7. UC7: Start Application (WP5)

Actors: ● Application Ops Expert (AOE)
● Resource

Entry condition: ● Deployment has occurred successfully (UC6).
● Monitoring utilities must be preinstalled on the Resources.
● AOE initiates the start (it could be an automatic step after

deployment, depending on the type of application).

Flow of events: if Execution Platform is Cloud:
● SR runs application (could be running already after the

deployment).
if Execution Platform is HPC or GPU Cluster:

● SR submits a job script to the workload manager.
● SR waits for the job to start.

Initiates collection of monitoring metrics

Exit condition: Application is started

Exceptions: Application fails at runtime

Requirements associated with use case UC7

Id. Title Description

UC7.R1 Lightweight open source Message oriented
middleware (MOM) for intra-service
communication

The platform should provide
communication mechanisms to be
reused by the applications.

Project No 825480.

D2.1 - Requirements, KPIs, evaluation plan and architecture - First version - Public Page 34
© Copyright Beneficiaries of the SODALITE Project

Rationale Scope Use Case

The SR should provide common communication
components to be reused in different configurations.

Runtime Start Application
(WP5)

Id. Title Description

UC7.R2 Smart application scheduling Multiple heterogeneous applications
(streaming, batch processing,
microservices, HPC) share the SODALITE
infrastructure. In case of resource
contention, the platform must provide a
mechanism to schedule the execution of
applications according to different
criteria (e.g., priority, available
resources, QoS requirements)

Rationale Scope Use Case

Different type of applications must be managed
according to their different requirements and priority.

Runtime Start Application
(WP5)

2.2.8. UC8: Monitor Runtime (WP5)

Actors: ● Application Ops Expert (AOE)
● Resource

Entry condition: Monitoring agents are running on various entities (e.g., hosts); (1)
collecting pre-defined statistics; (2) waiting for requests to perform
specialized (not pre-defined) data collection activities.

Flow of events: ● AOE regularly receives pre-defined statistics from monitoring
agents. Types of monitored data: network latency, network
throughput, Resource utilization metrics (e.g., CPU,
memory).

Repeat until satisfied (or give up):
● AOE requests to see (not pre-defined) performance statistics

of specified entities.
● Request is translated into requests to SR to obtain the

requested statistics. This may result in some new statistics
being tracked for some entities.

● SR collects the requested statistics.
● Updated statistics are presented to AOE.
● AOE requests to stop collecting special performance

statistics of specified entities.

Exit condition: Information is received by the requester

Project No 825480.

D2.1 - Requirements, KPIs, evaluation plan and architecture - First version - Public Page 35
© Copyright Beneficiaries of the SODALITE Project

Exceptions: ● Monitoring platform is down.
● Requested component is down. If request times out, make

decisions based on available info and/or return an error
indication.

Requirements associated with use case UC8

Id. Title Description

UC8.R1 IDE Infrastructure dashboard
(monitoring, deployment,
reconfiguration)

Online runtime application behaviour
monitoring, gathered from the target
delivery platform, is required to create
and update patterns describing the
behavior of the underlying infrastructure.
Besides, deployment status information
and online reconfiguration must be
provided to end-users in the dashboard
(IDE).

Rationale Scope Use Case

Online runtime feedback mechanism must close back
the loop so that infrastructure (and optimization)
abstract patterns could be updated based on learnt
observations of application runtime behavior

Infrastructure
Operator

Editor

Monitor
Runtime (WP5)

Id. Title Description

UC8.R2 Collect network metrics Collect network usage between tracked
entities (hosts, VMs, containers, switches,
etc)

Rationale Scope Use Case

SR makes deployment decisions based on
application specifications and monitoring
information. The network monitoring information
needs to be imported and understood in order to
make re-deployment decisions.

Runtime Monitor
Runtime (WP5)

Id. Title Description

UC8.R3 Collect host metrics (CPU, memory) Collect CPU and memory usage of tracked
entities (hosts, VMs, containers, etc)

Rationale Scope Use Case

Project No 825480.

D2.1 - Requirements, KPIs, evaluation plan and architecture - First version - Public Page 36
© Copyright Beneficiaries of the SODALITE Project

SR makes deployment decisions based on
application specifications and monitoring
information. The CPU and memory monitoring
information needs to be imported and understood in
order to make re-deployment decisions.

Runtime Monitor
Runtime (WP5)

Id. Title Description

UC8.R4 Monitor Overprovisioning (Performance),
Security, and Privacy Metrics

The management module should be able
to collect the overprovisioning
(performance), security, and privacy
metrics

Rationale Scope Use Case

In order to detect and predict the potential violations
of the performance (here, avoiding over-
provisioning), security, and privacy objectives, we
need to use suitable metrics. The application
execution environment should support collecting
these metrics.

Deployment
Improvement

Monitor
Runtime (WP5)

Id. Title Description

UC8.R5 Monitoring levels The Monitoring must collect metrics from
different levels:
- application
- runtime environment
- infrastructure

Rationale Scope Use Case

The metrics from multiple levels allows the
monitoring system to offer to its users (both human
beings and SODALITE adaptation components) a
complete view on the system status.

Runtime Monitor
Runtime (WP5)

Id. Title Description

UC8.R6 Monitoring infrastructures The monitor must gather metrics from
different kind of infrastructures,
specifically HPC and Cloud systems. The
actual list of infrastructures depends on
the case studies requirements, but at
least: HPC, Openstack, Kubernetes

Rationale Scope Use Case

Project No 825480.

D2.1 - Requirements, KPIs, evaluation plan and architecture - First version - Public Page 37
© Copyright Beneficiaries of the SODALITE Project

The SODALITE computing infrastructure is
heterogeneous

Runtime Monitor
Runtime (WP5)

Id. Title Description

UC8.R7 End-to-end audit logging Platform must be able to provide end-to-
end logging across the entire data life-
cycle (e.g., Istio sidecars + Prometheus
across the microservice mesh)

Rationale Scope Use Case

Due to compliance and audit requirements, end-to-
end logging across the entire data life-cycle is
necessitated.

Runtime Monitor
Runtime (WP5)

Id. Title Description

UC8.R8 Visualization of service deployment and
adaptations

Platform should be able to support
visualization of the running service
deployment through a dashboard view
(e.g., Grafana)

Rationale Scope Use Case

The Vehicle IoT use case will deal with the
deployment of various services, each of which will
contain its own deployment artifacts that should be
able to be visually represented and monitored.

Runtime Monitor
Runtime (WP5)

Id. Title Description

UC8.R9 Absorb Skydive metrics SkyDive produces network monitoring
metrics. These metrics must be absorbed
by the Orchestrator to make
redeployment decisions.

Rationale Scope Use Case

SR makes deployment decisions based on
application specifications and monitoring
information. The network monitoring information
coming from Skydive needs to be imported and
understood in order to make re-deployment
decisions. SkyDive provides a REST API with JSON
output.

Runtime Monitor
Runtime (WP5)

Project No 825480.

D2.1 - Requirements, KPIs, evaluation plan and architecture - First version - Public Page 38
© Copyright Beneficiaries of the SODALITE Project

 2.2.9 UC9: Identify Refactoring Options (WP5)

Actors: ● Application Ops Expert
● Resource

Entry condition: Via runtime monitoring (UC8), SR detects one or more conditions
(e.g., QoS violation, under/over utilization of resources, defects, new
refactoring options) for initiating a refactoring/adaptation process

Flow of events: ● SR maintains the runtime instance model and the knowledge
about the available set of the refactoring options up-to-date.

● SR finds defects in the runtime instance model topology and
removes the defects.

● SR applies patterns to the topology to improve privacy,
security, and resource provisioning.

● SR replaces one or more current instances of the applied
patterns with some other instances to improve privacy,
security, and resource provisioning.

● SR decides to refactor the deployment architecture
(topology) for the application (globally) or to change the
resources used by one or more nodes in the current
deployment model (locally).

● SR finds a valid (consistent and mutually compatible) set of
refactoring options while considering refactoring overhead
and time, workload dynamics, and system stability.

● SR generates an adaptation plan for the selected set of
refactoring options.

● SR stores the generated adaptation plan in the Semantic
Reasoner.

Exit condition: Once the adaptation plan is generated.

Exceptions: If a new deployment cannot be found to resolve the situation that
triggered the refactoring, send an alert to AOE.

Requirements associated with use case UC9

Id. Title Description

UC9.R1 Model Control/Optimization Objectives
(Performance, Privacy, and Security)

The control or optimization objectives
should be represented in a way that
enables making trade-offs among them.

Rationale Scope Use Case

The deployment optimization needs to consider the
three key SODALITE quality attributes (Performance,
Privacy, and Security). We may need to make trade-offs
among them.

Deployment
Improvement

Identify Refactoring
Options (WP5)

Project No 825480.

D2.1 - Requirements, KPIs, evaluation plan and architecture - First version - Public Page 39
© Copyright Beneficiaries of the SODALITE Project

Id. Title Description

UC9.R2 Model Design (Adaptation) Choices The domain expert’s knowledge about
the design (or adaptation) choices
should be represented.

Rationale Scope Use Case

To optimize an application design, we have to apply
some design options to alter the design. To make
trade-off between design alternatives, we need to
represent them (the whole design choices) in a suitable
form (e.g., a feature model, and decision tree).

Deployment
Improvement

Identify
Refactoring Options

(WP5)

Id. Title Description

UC9.R3 Find an Optimal Design Solution
Considering Control Objective Tradeoffs

An optimal design for the application
and its infrastructure should be found
considering the desired
control/optimization objectives (and
their tradeoffs)

Rationale Scope Use Case

Given an initial application design and the
corresponding initial infrastructure design, we need to
come with an optimal design solution. We may need to
make the trade-off between optimization objectives.

Deployment
Improvement

Identify
Refactoring Options

(WP5)

Id. Title Description

UC9.R4 Forecast Workload (Multi-class/tenant) The application workload should be
able to be forecasted.

Rationale Scope Use Case

When determining performance violations and
overprovisioning, and optimizing the running
application, the control algorithms should use the
forecasted workload.

Deployment
Improvement

Identify
Refactoring Options

(WP5)

Id. Title Description

UC9.R5 Forecast Infrastructure Dynamics The states and dynamics of the
infrastructure should be able to be
forecasted.

Rationale Scope Use Case

Project No 825480.

D2.1 - Requirements, KPIs, evaluation plan and architecture - First version - Public Page 40
© Copyright Beneficiaries of the SODALITE Project

Similar to the above explanation Deployment
Improvement

Identify
Refactoring Options

(WP5)

Id. Title Description

UC9.R6 Predict Violations of Control Objectives
(Performance, Security, and Privacy)

The potential violations of control
objectives (performance, security, and
privacy) should be able to be predicted.

Rationale Scope Use Case

The potential (or detected) violations of control
objectives drives the adaptation decisions. The
adaptation policies can be reactive and/or proactive.

Deployment
Improvement

Identify
Refactoring Options

(WP5)

Id. Title Description

UC9.R7 Generate Application and Infrastructure
Adaptation Plans

Based on the differences between the
current running system and the desired
system (the identified optimal design
solution), the adaptation plans should
be generated.

Rationale Scope Use Case

In order to move the current system to the desired
system, we need to modify the current system. The
required modifications are defined as an adaptation
plan (an ordered set of adaptation commands). The
runtime models kept in the control module
(models@runtime) can be used to generate these
plans.

Deployment
Improvement

Identify
Refactoring Options

(WP5)

Id. Title Description

UC9.R8 Enact Application and Infrastructure
Adaptation Plans

The adaptation plans should be
scheduled and enacted gracefully.

Rationale Scope Use Case

The adaptation plans should be executed in order to
propagate the desired changes. Ideally, the
performance violations and system instability during
the execution of the adaptation plans should be
prevented and minimized.

Deployment
Improvement

Identify
Refactoring Options

(WP5)

Id. Title Description

Project No 825480.

D2.1 - Requirements, KPIs, evaluation plan and architecture - First version - Public Page 41
© Copyright Beneficiaries of the SODALITE Project

UC9.R9 Detect and Correct Defects at Runtime The defects in the running application
(instance model) should be predicted
and corrected.

Rationale Scope Use Case

When the application is running, new defects may be
discovered (compared with what found during the
design time). The runtime changes (adaptations) may
also introduce new defects (e.g., create a security anti-
pattern). Thus, we need to predict and correct the
defects at runtime too. These will use the relevant
techniques developed in Task4.4.

Deployment
Improvement

Identify
Refactoring Options

(WP5)

Id. Title Description

UC9.R10 Static Provisioning of Heterogeneous
Resources

The platform must be able to statically
predict the amount of resources to
allocate to an application to 1) avoid
violations of the Quality of Service
guaranteed to the users (latency,
throughput, deadlines) 2) improve
efficiency (minimize the resource
consumption). The allocation could mix
different types of resources (HPC, GPU,
VMs) since the SODALITE infrastructure
is heterogeneous.

Rationale Scope Use Case

The SODALITE computing infrastructure is
heterogeneous, thus, resources must be efficiently
provisioned.

Runtime Identify
Refactoring Options

(WP5)

Id. Title Description

UC9.R11 Elastic Provisioning of Heterogeneous
Resources

The platform must be able to change
dynamically the amount of resources
allocated to an application to 1) avoid
violations of the Quality of Service
guaranteed to the users (latency,
throughput, deadlines) 2) improve
efficiency (minimize the resource
consumption). The allocation could mix
different types of resources (HPC, GPU,
VMs) since the SODALITE infrastructure
is heterogeneous.

Rationale Scope Use Case

Project No 825480.

D2.1 - Requirements, KPIs, evaluation plan and architecture - First version - Public Page 42
© Copyright Beneficiaries of the SODALITE Project

The SODALITE computing infrastructure is
heterogeneous, resources must be efficiently managed
at runtime.

Runtime Identify
Refactoring Options

(WP5)

Id. Title Description

UC9.R12 TOSCA inputs to SR SR must receive TOSCA-based
adaptation plans.

Rationale Scope Use Case

As SR supports TOSCA-based deployment, the
adaptation plans must be in the same format.

Deployment
Improvement

Identify
Refactoring Options

(WP5)

Id. Title Description

UC9.R13 Dynamic Policy-based restrictions on
resource access from the Edge

SR must be able to limit resource access
based on dynamic policy changes from
the Edge.

Rationale Scope Use Case

This requirement is very important from the viewpoint
of the IoT use case:

1. A backend instance is pushed down to the
Edge (in our case, a Vehicle), which may be
travelling between different jurisdictions –
subjecting it to different compliance
requirements based on locality. This issue is
further conflated by the case that the Cloud-
backend and the Edge instance of the server
may not be in the same legal jurisdiction,
subjecting the entire set of dataflows to a
superset of compliance requirements.

2. The end-user (Driver) of the application, may
dynamically change things like their privacy
preferences and consent settings at any time
during the deployment. Based on these
changes, we need to re-evaluate what this
means for the infrastructure, and determine
whether we need to re-deploy, enable/disable
features, update access control policies, etc.

Runtime Identify
Refactoring Options

(WP5)

 2.2.10 UC10: Execute Partial Redeployment (WP5)

Actors: ● Application Ops Expert (AOE)
● Resources

Project No 825480.

D2.1 - Requirements, KPIs, evaluation plan and architecture - First version - Public Page 43
© Copyright Beneficiaries of the SODALITE Project

Entry condition: ● The refactoring options have been identified (UC9) and the
deployment model has been successfully updated

● TOSCA blueprints and Ansible playbooks are generated and
Application Ops Expert starts the redeployment

Flow of events: ● SR receives IaC (blueprints and playbooks) referring to the
current deployment.

● SR derives the differences between current and updated
deployment that needs to be applied to get the updated
(desired) state.

● SR applies these differences until the current state of
deployment will be the updated (desired) state.

if Resource is Cloud:
● SR executes possible refactoring options: scale

in/out/up/down, migrate to another Resource, deploy new
components, remove current components.

if Resource is HPC/GPU:
● SR executes possible refactoring options: migrate to another

Resource, deploy new components, remove current
components.

Exit condition: Redeployment is completed, application is run, and monitoring is
established with a "healthy" status

Exceptions: ● SR fails to derive the differences, although the deployment
model was updated

● No resources are available at the time of redeployment
● Redeployment is unsuccessful, e.g., failures in scaling in/out,

horizontally/vertically
● Infrastructure failures, e.g., disk, network equipment

failures, system shutdown, human factors

Requirements associated with use case UC10

Id. Title Description

UC10.R1 Create and Maintain Runtime Models SODALITE SR (the control loop) must
maintain a replica (a virtual copy) of the
deployed application and the
infrastructure using the models@runtime
paradigm. The runtime models should
also include the models representing
control objectives (see UC9.R1)

Rationale Scope Use Case

Project No 825480.

D2.1 - Requirements, KPIs, evaluation plan and architecture - First version - Public Page 44
© Copyright Beneficiaries of the SODALITE Project

In order to plan and simulate the runtime changes
(e.g., refactoring) to the actual system, we need a
model representing the actual system. This model
maintains a live (descriptive and prescriptive)
connection with the actual system. This will also
enable the consistency checking of the adapted
application.

Deployment
Improvement

Execute
Partial

Redeployment
(WP5)

Id. Title Description

UC10.R2 Horizontal Resource Scalability The platform should provide means to
horizontally scale heterogeneous
resources (GPU, VMs, Containers). Tools
(e.g., Kubernetes) must be extended or
modified to allow the desired behavior

Rationale Scope Use Case

Enables UC9.R11 Runtime Execute
Partial

Redeployment
(WP5)

Id. Title Description

UC10.R3 Vertical Resource Scalability The platform should provide means to
vertically scale heterogeneous resources
(GPU, VMs, Containers). Tools (e.g.,
Kubernetes) must be extended or
modified to allow the desired behavior.

Rationale Scope Use Case

Enables UC9.R11. Vertical scalability is an emerging
technique that avoids the overhead of booting new
virtual assets and allows for a faster and fine-grained
resource allocation.

Runtime Execute
Partial

Redeployment
(WP5)

2.2.11. UC11: Define IaC Bugs Taxonomy (WP4)

Actors: ● Quality Expert (QE)

Entry condition: The descriptions of defects and resolutions in the literature (such as
IaC code smells, design smells, anti-patterns, and design patterns)
from a domain analysis

Flow of events: ● QE identifies, defines, and organizes a vocabulary of the key
concepts used to describe defect and resolutions in terms of
IaC (code and design) smells and anti-patterns/patterns
found in the literature.

Project No 825480.

D2.1 - Requirements, KPIs, evaluation plan and architecture - First version - Public Page 45
© Copyright Beneficiaries of the SODALITE Project

● QE uses the vocabulary to classify, relate, and combine all
defects and resolutions, and builds a taxonomy.

● QE formally codifies the taxonomy using ontologies (logics).
● QE formally codifies the rules to apply on the models of IaC

artifacts to detect each defect, and to recommend the
relevant resolutions, all based on the taxonomy.

● SD stores the ontological representation of the taxonomy,
and the rules.

Exit condition: When the taxonomy is sufficiently complete.

Exceptions:

Requirements associated with use case UC11

Id. Title Description

UC11.R1 Create a Taxonomy of Infrastructure
Bugs and Resolutions

A taxonomy of the bugs/defects and
resolutions should be created for
infrastructure as codes. This provides a
basis for detecting defects in IaC scripts
and resolving them (static analysis). The
taxonomy needs to be built using a
literature review and qualitative analysis
of IaC scripts. We need to consider the
defects related to the three key quality
attributes of SODALITE (performance,
security, and privacy).

Rationale Scope Use Case

We can use a taxonomy to characterize the IaC
defects and bugs, and their potential resolutions.
With a rule-based approach or an ontological
approach, we can use the taxonomy to automatically
detect the defects in the IaC scripts. We can also use
the taxonomy (knowledge) in machine learning
algorithms or evolutionary algorithms for defect
prediction in IaC.

Deployment
Improvement

Define IaC Bugs
Taxonomy (WP4)

2.2.12. UC12: Map Resources and Optimisations (WP3)

Actors: ● Resource Expert (RE)

Entry condition: Triggered by Resource Expert

Flow of events: ● The Resource Expert (RE) initiates the SODALITE IDE (SD) in
order to define resource patterns and optimisations (they
could regard application patterns, infrastructure patterns,
etc).

Project No 825480.

D2.1 - Requirements, KPIs, evaluation plan and architecture - First version - Public Page 46
© Copyright Beneficiaries of the SODALITE Project

● The RE assembles a pattern using known resource types and
relationships (as defined by the Semantic Knowledge Base -
KB). This can be done via a DSL editor or a graphical interface.

● The RE selects relevant optimisation approaches from a given
UI menu in the SD.

● The SD retrieves metadata and dependencies from the
Execution Platform and available targets from the IaC Model
repository.

● The SD validates the relevance of the given set of
optimisations.

● The RE reviews and submits the newly created pattern and
optimisation details and they are stored to the KB.

● [OPTIONAL] The RE corresponds sets of compatible target
resources for her new pattern, using the known resources in
the KB that were created as part of UC13 and UC14.

● [OPTIONAL] the RE assigns performance metrics to each
target resource.

● [OPTIONAL] The SD stores the defined target resources to the
KB, so that they can be used within UC2

Exit condition: The RE submits a new application/resource pattern and [OPTIONAL]
compatible target resources

Exceptions: A problem that might occur is the RE trying to assign target resources
that are incompatible with each other for
a) technical reasons as defined in UC13
b) non-technical reasons (e.g., competing infrastructure vendors,
etc.)
The SD should prevent the submission of such cases to the KB.

Requirements associated with use case UC12

Id. Title Description

UC12.R1 Select Optimisations for Application
and Infrastructure targets

SODALITE should select the optimisation
options that can be applied to the
application based on the target
resources available. These options are
made available for the Application Ops
Expert to select from.

Rationale Scope Use Case

This task takes an HPC view of application and
infrastructure modelling with the intention of
providing tools to enable performance abstractions -
that is software tools and patterns that enable explicit
or implicit performance decisions.

Application
Optimiser

Map Resources and
Optimisation (WP3)

Project No 825480.

D2.1 - Requirements, KPIs, evaluation plan and architecture - First version - Public Page 47
© Copyright Beneficiaries of the SODALITE Project

2.2.13. UC13: Model Resources (WP3)

Actors: ● Resource Expert

Entry condition: Triggered by Resource Expert: A new resource needs to be added to the
SODALITE Semantic Knowledge Base (KB)

Flow of events: ● The Resource Expert (RE) initiates the SODALITE IDE (SD) in
order to define new resources.

● The SD retrieves and presents to the RE the known abstract
resource types that exist in the ontology schema.

● The RE decides whether she wants to add a new abstract
resource type within the schema or a new target resource.

● In case of a new resource type, the RE needs to define where it
should be put in the ontology (i.e., define its super classes).

● [OPTIONAL] The RE defines relationship/dependency types
between resource types (classes).

● [OPTIONAL] The RE defines relationships/dependencies
between target resources (instances).

● [OPTIONAL] The RE defines optimization approaches/patterns.
● The RE submits to the SD every new definition she makes.
● The SD validates the integrity of these changes.
● The SD communicates the changes to populate the KB.

Exit condition: The new resource is now in the ontology and can be used as part of an
application model.

Exceptions: ● If SD is unable to extend the DSL it will inform the user with an
error message

● If SD will not be able to plug in the new model transformation
code, it will raise an error and will signal an error if the user will
try to use that resource

Requirements associated with use case UC13

Id. Title Description

UC13.R1 Docker Modelling Modelling must support container
runtime: Docker RunC and ContainerD

Rationale Scope Use Case

One of the runtime environments will be containers
(most popular is Docker), so we need to be able to
model this type of infrastructure.

Application
Components

Library

Model
Resources (WP3)

Id. Title Description

Project No 825480.

D2.1 - Requirements, KPIs, evaluation plan and architecture - First version - Public Page 48
© Copyright Beneficiaries of the SODALITE Project

UC13.R2 Kubernetes Modelling Modelling must support abstractions of
Kubernetes: Pods, deployment, network
policy, Service, Ingress, DaemonSet, etc.

Rationale Scope Use Case

Kubernetes is a popular cluster manager that is used in
many deployments, so we need to be able to model
this type of infrastructure.

Application
Components

Library

Model
Resources (WP3)

Id. Title Description

UC13.R3 Istio Modelling Modelling should support Istio entities

Rationale Scope Use Case

Istio provides a Service Mesh on top of a cluster
manager such as Kubernetes.

Application
Components

Library

Model
Resources (WP3)

Id. Title Description

UC13.R4 Ontology Serialization The semantic model (i.e., ontology)
serialization should be compliant to the
OWL 2 ontology language.

Rationale Scope Use Case

Compliance with OWL 2 offers semantic
interoperability with other third-party ontologies, and
encourages the adoption of our ontology byother
parties.

Application
Components

Library

Model
Resources (WP3)

Id. Title Description

UC13.R5 TOSCA Compliance The semantic model (i.e., ontology)
should be compliant to the TOSCA
standard.

Rationale Scope Use Case

TOSCA is an OASIS standard that defines the
interoperable description of services and applications
hosted on the cloud and elsewhere, thereby enabling
portability and automated management across cloud
providers regardless of underlying platform or
infrastructure; thus expanding customer choice,
improving reliability, and reducing cost and time-to-
value.

Application
Components

Library

Model
Resources (WP3)

Project No 825480.

D2.1 - Requirements, KPIs, evaluation plan and architecture - First version - Public Page 49
© Copyright Beneficiaries of the SODALITE Project

Id. Title Description

UC13.R6 Authoring of infrastructure abstract
models (part of abstract tuple)

Infrastructure vendors are assisted by
the SODALITE SD to create abstract
models describing their infrastructures.
These abstract models are conforming
to the infrastructure DSL

Rationale Scope Use Case

The specification of infrastructure abstract models
should be assisted by the editor, which helps vendors
to reuse modeling patterns (from the repository) as
well as on the use of the DSL modeling constructions.

Infrastructure
Operator

Editor

Model
Resources (WP3)

Id. Title Description

UC13.R7 IasS Modelling Modelling must support abstractions of
IaaS

Rationale Scope Use Case

IaaS is one of the SODALITE target execution platforms Application
Components

Library

Model
Resources (WP3)

Id. Title Description

UC13.R8 IaC deployment management Modelling Modelling must support abstractions of
IaC.

Rationale Scope Use Case

This to enable the IaC generation components to
generate effective infrastructural code.

Application
Components

Library

Model
Resources (WP3)

Id. Title Description

UC13.R9 Description of the available hardware SODALITE should have details of the
available hardware on which the
applications will be deployed. Details of
the compute, memory, storage, network
should be available within IaC artifacts.
In case of HPC resources, the available
queues for test/optimization run should
be listed. If there are more than one
single architecture (CPU/GPU,
DRAM/HBM), valid mapping of several
available options should be listed.

Project No 825480.

D2.1 - Requirements, KPIs, evaluation plan and architecture - First version - Public Page 50
© Copyright Beneficiaries of the SODALITE Project

Rationale Scope Use Case

Support for heterogeneous hardware is envisaged Application
Optimiser

Model
Resources (WP3)

 Assumptions associated with use case UC13

Id. Title Description

UC13.A1 RDF Triplestore An RDF-based graph database like
GraphDB needs to be deployed.

Rationale Scope Use Case

The triplestore will host the semantic models
(ontologies) produced within WP3 and act as the
semantic repository. It will enable the
population/retrieval of data (e.g. patterns) to/from the
ontologies and the application of semantic reasoning.

Application
Components

Library

Model
Resources (WP3)

2.2.14. UC14: Estimate Quality Characteristics of Applications and Workload (WP3)

Actors: ● Quality Expert (QE)

Entry condition: A new application or resource must be added to KB to then enable
optimizations and (initial) resource provisioning.

Flow of events: ● QE creates a simulated environment or a mockup to acquire
the information of interest (performance, security, privacy
metrics).

● QE runs the profiling execution/simulation and stores the data
of interest in KB.

● QE uses SD to relate data, applications, and resources.

Exit condition: Sufficient data are available and can be used as part of UC12

Exceptions: ● QE cannot set a proper test environment.
● Test execution exceeds foreseen resources and time.
● Data are not sufficiently accurate.

Requirements associated with use case UC14

Id. Title Description

UC14.R1 Estimate Performance of Designs Given an application design and the
corresponding infrastructure design, the
performance of the application should
be estimated/calculated.

Project No 825480.

D2.1 - Requirements, KPIs, evaluation plan and architecture - First version - Public Page 51
© Copyright Beneficiaries of the SODALITE Project

Rationale Scope Use Case

In order to determine an application is optimal with
respect to performance, we first need to be able to
estimate the performance of the application based on
its design models.

Deployment
Improvement

Estimate Quality
Characteristics of
Applications and
Workload (WP3)

Id. Title Description

UC14.R2 Estimate Security Level of Designs Given an application design and the
corresponding infrastructure design, the
degree of security of the application
should be estimated/calculated.

Rationale Scope Use Case

In order to determine an application is optimal with
respect to security, we first need to be able to estimate
the security level of the application based on its design
models.

Deployment
Improvement

Estimate Quality
Characteristics of
Applications and
Workload (WP3)

Id. Title Description

UC14.R3 Estimate Privacy Level of Designs Given an application design and the
corresponding infrastructure design, the
degree of privacy of the application
should be estimated/calculated.

Rationale Scope Use Case

In order to determine an application is optimal with
respect to privacy, we first need to be able to estimate
the privacy level of the application based on its design
models.

Deployment
Improvement

Estimate Quality
Characteristics of
Applications and
Workload (WP3)

Id. Title Description

UC14.R4 Assess the Impact of a Design Choice The impact of a design choice on the
performance, security, and privacy of
the application should be able to be
estimated.

Rationale Scope Use Case

In order to refactor the application and infrastructure
designs by applying design choices, we need to be able
to estimate the impact of each such choice with respect
to the three key quality attributes of SODALITE.

Deployment
Improvement

Estimate Quality
Characteristics of
Applications and
Workload (WP3)

Project No 825480.

D2.1 - Requirements, KPIs, evaluation plan and architecture - First version - Public Page 52
© Copyright Beneficiaries of the SODALITE Project

2.2.15. UC15: Statically Optimize Application and Deployment (WP4)

Actors: ● Application Ops Expert (AOE)

Entry condition: Optimisation is enabled

Flow of events: Based on specified target architecture and selected optimisation
options, the application will be optimised and the deployment model
will be updated.

● SR checks and filters for optimisation support for specified
target architecture. If none is available it exits.

● SR checks and filters for validity of selected optimisation
options. If none exists, it exits.

For the selected optimisation options
● SR applies optimisation.
● SR validates optimisation.
● SR updates deployment for any runtime changes.
● Optimisation report sent to AOE.

Exit condition: Successful optimisation and validation

Exceptions: In case of failure at any stage of the optimisation process, the default or
the input will be returned with no changes. The expectation is that the
entire workflow will work without the optimiser (Optional)

Requirements associated with use case UC15

Id. Title Description

UC15.R1 Delivery of optimized application The optimized application (based on the
selected optimisations) as an executable
or container along with its runtime
environment (JIT compiler) will be
passed to the deployment manager for
deployment.

Rationale Scope Use Case

Application executable can be optimized based on the
mapping in UC12

Application
Optimiser

Statically
Optimize

Application and
Deployment (WP4)

Id. Title Description

UC15.R2 Optimise Application and Deployment Platforms should optimise Application
and its deployment based on the
optimisation selected by the Application
Ops Expert

Project No 825480.

D2.1 - Requirements, KPIs, evaluation plan and architecture - First version - Public Page 53
© Copyright Beneficiaries of the SODALITE Project

Rationale Scope Use Case

The framework for performance optimizations of three
types are developed in this task. The Hardware
Abstract Interface allows code to be developed in
higher-level abstract interfaces that are both
hardware neutral but enabling to some degree the
machine performance optimisation. Native
optimisations are provided for CPU, memory and I/O
options that optimise a task for the given hardware.
Runtime parameters are assessed empirically through
monitoring and provide the best combination of
runtime parameters based on search optimisation.

Application
Optimiser

Statically Optimize
Application and

Deployment (WP4)

Assumptions associated with use case UC15

Id. Title Description

UC15.A1 Optimization options for Memory The optimization process assumes that
the required level of memory optimization
and the available memory hardware in the
infrastructure are available. Default safe
option can be assumed by the optimiser if
no value available.

Rationale Scope Use Case

Native optimizations are provided for CPU, memory
and I/O options that optimize a task for the given
hardware. Runtime parameters are assessed
empirically through monitoring and provide the best
combination of runtime parameters based on
assessed empirically through monitoring and
provide the best combination of runtime parameters
based on search optimization.

Application
Optimiser

Statically
Optimize

Application and
Deployment (WP4)

Id. Title Description

UC15.A2 Optimization options for IO The level of storage optimization should
be available. Default safe option can be
assumed by the optimizer if no value
available.

Rationale Scope Use Case

Project No 825480.

D2.1 - Requirements, KPIs, evaluation plan and architecture - First version - Public Page 54
© Copyright Beneficiaries of the SODALITE Project

Native optimizations are provided for CPU, memory
and I/O options that optimize a task for the given
hardware. Runtime parameters are assessed
empirically through monitoring and provide the best
combination of runtime parameters based on
assessed empirically through monitoring and
provide the best combination of runtime parameters
based on search optimization.

Application
Optimiser

Statically
Optimize

Application and
Deployment (WP4)

Id. Title Description

UC15.A3 Optimization options for Network The level of network optimization should
be available. Default safe option can be
assumed by the optimizer if no value
available.

Rationale Scope Use Case

Native optimisations are provided for CPU, memory
and I/O options that optimise a task for the given
hardware. Runtime parameters are assessed
empirically through monitoring and provide the best
combination of runtime parameters based on
assessed empirically through monitoring and
provide the best combination of runtime parameters
based on search optimisation.

Application
Optimiser

Statically
Optimize

Application and
Deployment (WP4)

Id. Title Description

UC15.A4 Optimisation options for Autotuning The level of autotuning optimisation
should be available. Default safe option
can be assumed by the optimiser if no
value available.

Rationale Scope Use Case

Native optimisations are provided for CPU, memory
and I/O options that optimise a task for the given
hardware. Runtime parameters are assessed
empirically through monitoring and provide the best
combination of runtime parameters based on
assessed empirically through monitoring and
provide the best combination of runtime parameters
based on search optimisation.

Application
Optimiser

Statically
Optimize

Application and
Deployment (WP4)

Id. Title Description

Project No 825480.

D2.1 - Requirements, KPIs, evaluation plan and architecture - First version - Public Page 55
© Copyright Beneficiaries of the SODALITE Project

UC15.A5 Optimisation options for Compute The level of compute optimisation should
be available. Default safe option can be
assumed by the optimiser if no value
available.

Rationale Scope Use Case

Native optimisations are provided for CPU, memory
and I/O options that optimise a task for the given
hardware. Runtime parameters are assessed
empirically through monitoring and provide the best
combination of runtime parameters based on
assessed empirically through monitoring and
provide the best combination of runtime parameters
based on search optimisation.

Application
Optimiser

Statically
Optimize

Application and
Deployment (WP4)

2.2.16. UC16: Build Runtime Images (WP4)

Actors: ● Application Ops. Expert

Entry condition: Target execution environment is defined, artefact binary executables
with dependencies and configurations exist in predefined locations

Flow of events: ● SR reads the definition of Target Environment
● SR chooses the best matching template for the process of image

building based on supported target environment image
container technology (eg. HPC, Cloud etc.)

● SR gathers all the artefacts with dependencies and
configuration for the execution environment

● SR builds the image and stores it.

Exit condition: The image is stored properly in the SODALITE framework

Exceptions: Failure in the image building process (e.g., errors in definitions of target
environment, binary executable artefact with dependencies and
configurations and similar):
If there are errors in the process of creating the artefacts runtime image,
SD stops the build process, and returns the list of errors found in the
process referring to the application deployment model and makes this
available to AOE.

Requirements associated with use case UC16

Id. Title Description

UC16.R6 Lightweight application base images The platform must provide light base
images for the applications to be reused.

Rationale Scope Use Case

Project No 825480.

D2.1 - Requirements, KPIs, evaluation plan and architecture - First version - Public Page 56
© Copyright Beneficiaries of the SODALITE Project

The SR must have minimum footprint on application
and resources usage.

Runtime Build Runtime Images
(WP4)

2.3. Summary of use cases
In the previous sections we have described the SODALITE UML use cases. Each of them involves at
least a human actor and may include also the interaction with some resources which are to be
considered as external actors as well.
The table below provides a summary of all use cases and highlights the main human actors involved
in them and whether they are mandatory steps for a proper usage of SODALITE or whether they can
be considered optional. These latter ones concern steps that can either be triggered by the actors or
can be skipped. They are:

● UC2: Select Resources since default resources can be assigned to an application if no one is
selected

● UC5: Predict and Correct Bugs as the AOE may be willing to exclude this automated
correction and may want to take care of bugs by himself/herself.

● UC8: Monitor runtime as, while monitoring is highly beneficial, it may introduce an overhead
that users may want to exclude. Of course, excluding monitoring implies that UC9 and UC10
(refactoring and redeployment) cannot be performed.

● UC9: Identify Refactoring Options, UC10: Execute Partial Redeployment and UC15: Statically
Optimize Application and Deployment. Even if these represent the most advanced features
offered by SODALITE, the user can still exploit the platform without exploiting them.

Use Case Main target
users Notes

UC1 Define Application Deployment Model
(WP3)

Application
Ops Experts Mandatory

UC2 Select Resources (WP3) Application
Ops Experts

Optional

UC3 Generate IaC code (WP4) Application
Ops Experts

Mandatory

UC4 Verify IaC (WP4)
Application
Ops Experts

Mandatory

UC5 Predict and Correct Bugs (WP4)
Application
Ops Experts

Optional

UC6 Execute Provisioning, Deployment and
Configuration (WP5)

Application
Ops Experts

Mandatory

UC7 Start Application (WP5)
Application
Ops Experts

Mandatory

UC8 Monitor Runtime (WP5) Application
Ops Experts

Optional but mandatory for
refactoring and redeployment

UC9 Identify Refactoring Options (WP5)
Application
Ops Experts

Optional (Mandatory for Vehicle
IoT UC)

Project No 825480.

D2.1 - Requirements, KPIs, evaluation plan and architecture - First version - Public Page 57
© Copyright Beneficiaries of the SODALITE Project

UC10 Execute Partial Redeployment (WP5)
Application
Ops Experts

Optional (Mandatory for Vehicle
IoT UC)

UC11 Define IaC Bugs Taxonomy (WP4)
Quality
Experts

Mandatory for QE

UC12 Map Resources and Optimisations (WP3)
Resource
Experts

Mandatory for RE

UC13 Model Resources (WP3)
Resource
Experts Mandatory for RE

UC14 Estimate Quality Characteristics of
Applications and Workload (WP3)

Quality
Experts Mandatory for QE

UC15 Statically Optimize Application and
Deployment (WP4)

Application
Ops Experts

Optional

UC16 Build Runtime images (WP4)
Application
Ops Experts

Mandatory

Project No 825480.

D2.1 - Requirements, KPIs, evaluation plan and architecture - First version - Public Page 58
© Copyright Beneficiaries of the SODALITE Project

3. Architecture
The SODALITE platform is divided into three main layers, each covered by a separate work package.
These layers are the Modeling layer (WP3), the Infrastructure as Code layer (WP4), and the Runtime
layer (WP5). Figure 2 shows these layers together with their relationships defined in terms of offered
and used interfaces. The Modeling layer exploits the interfaces offered by the other two layers to
offer to the end users (Application Ops Experts, Resource Experts and Quality Experts) the needed
information concerning the application deployment configuration and the corresponding runtime.
In turn, it offers to the other layers the possibility to access the ontology and the application
deployment model through the SemanticReasoningAPI. The Infrastructure as Code Layer offers to
the modeling layer the APIs for preparing the deployment, for verifying the IaC and for predicting
defects. Finally, the Runtime Layer offers the APIs for controlling the orchestration of an application
deployment and for monitoring the status of the system. In turn, this layer relies on the interfaces
offered be the underlying technologies with particular reference to the ones shown in the figure.
In the next sections, we describe the main components in each of these layers and how they fit
together. For each component, we specify its functional description, inputs, outputs, programming
languages/tools used, dependencies, and critical factors (such as risks that can affect the
implementation of the component). The sequence diagrams for the previously defined use cases fill
in the details of the data flow, while referring to additional sub-components not shown in the high-
level diagrams.

Figure 2: SODALITE Overall Architecture.

Project No 825480.

D2.1 - Requirements, KPIs, evaluation plan and architecture - First version - Public Page 59
© Copyright Beneficiaries of the SODALITE Project

3.1. WP3 Modelling layer

Figure 3: WP3 Modelling Layer Architecture.

Figure 3 shows the internal architecture of the SODALITE Modelling Layer. The used interfaces
offered by other components are also highlighted. A set of SODALITE domain ontologies, resulted by
the abstract modelling of the related domains (applications, infrastructure, performance
optimization and deployment), will be hosted in a SPARQL-served RDF Triplestore (GraphDB),
constituting SODALITE’s Semantic Knowledge Base. A dedicated middleware (Semantic Reasoner)
will enable the exploitation of this repository, mediating for the population of data and the
application of rule-based Semantic Reasoning. Last but not least, an IDE will provide a user interface
with a DSL editor, for the design of deployment models using knowledge retrieved from the
Semantic Reasoner. The IDE will also communicate with other system APIs for the monitoring of the
deployment lifecycle.

3.1.1 Component descriptions

3.1.1.1 SODALITE IDE
Functional Description:
The SODALITE IDE provides complete support for the authoring lifecycle of abstract application
deployment models (AADM in the following). The IDE enables Application Ops Experts (AOE in the
following) to create AADMs for their applications. AADMs are instances of the SODALITE DSL
metamodel.
The IDE assists AOEs in the textual/graphical authoring of the AADM thanks to features such as: a)
syntax highlighting, b) autoformatting, c) autocompletion and quick fixes, d) validation/error
checking, e) scoping (cross-references), f) outlining, etc.
AOEs can describe in the AADM the application topology in terms of components and services, their
constraints and inter-component boundaries, and also express optimization requirements or
constraints.
The IDE checks the AADM for DSL conformance (syntactic validation) and relies on the Semantic
Reasoner for semantic validation (i.e., inconsistencies and/or recommendations). They are
presented to the AOE in the IDE for further inspection. Eventually, the AOE can refine/amend the
AADM based on them.

Project No 825480.

D2.1 - Requirements, KPIs, evaluation plan and architecture - First version - Public Page 60
© Copyright Beneficiaries of the SODALITE Project

Additionally, the IDE can request to the Semantic Reasoner for node resources compatible with
application deployment needs. Matching resources are presented to the AOE in the IDE.
Upon completion, the AOE sends the AADM to Abstract Model Parser in order to build an IaC
blueprint.
Eventually, the AOE can store an AADM pattern into the Semantic KB in order to be incorporated into
the set of reusable patterns for recommendations.
Input:
Authoring of AADM (as instances of SODALITE DSL) requires the following inputs in the SODALITE
IDE:

1. AOE manual inputs: the AADM consists on a set of statements (in case of textual editing) or
subgraphs (in case of graphical editing), which are compliant with the SODALITE DSL, that
are manually introduced by the AOE, based on his/her knowledge of his/her app.

2. Libraries of predefined SODALITE reusable types (and patterns) (which are compliant with
the SODALITE DSL) and that can be imported from the SODALITE KB or from the local IDE
workspace.

3. Semantic Reasoner inputs. They are Reasoner responses to IDE requests. Possible Reasoner
inputs are:

a. qualitative validation results (inconsistencies, anti-patterns)
b. node target matches
c. suggestions/recommendations
d. Optimisations

Output:
1. An AADM instance to be sent to the Abstract Model Parser
2. An AADM pattern to be sent to the Semantic KB for storage and eventual sharing in other

AADM authoring processes.
Programming languages/tools:

● SODALITE DSL: XText, EMF
● SODALITE IDE: Eclipse, Web (Orion)
● SODALITE IDE DSL Editor: XText, Sirius, Java

Dependencies:
1. Semantic Reasoner REST API
2. Semantic Reasoner query language and OWL notation
3. Semantic Reasoner response schema (JSON)
4. Alignment between SODALITE DSL and Semantic KB Schema

Critical factors:
The latency accessing the SODALITE KB (and retrieving request responses) from the IDE may prevent
AADM Editor to present real time recommendations, node targets, etc in the code assistance.
AADM patterns need to be serialized in the selected OWL notation before being submitted to the
Semantic KB for sharing/reutilization. Therefore, SODALITE DSL and KB Schema must be
semantically compatible.
Eclipse DSL technology (XText, EMF, Sirius) might not be fully compatible with a full-fledged Web-
based IDE.

3.1.1.2 Semantic Reasoner (Knowledge Base Service - KBS)
Functional Description:

Project No 825480.

D2.1 - Requirements, KPIs, evaluation plan and architecture - First version - Public Page 61
© Copyright Beneficiaries of the SODALITE Project

The KBS is middleware facilitating the interaction with the semantic knowledge base (KB). In
particular, it provides an API to support the insertion and retrieval of knowledge to/from the KB, and
the application of rule-based semantic reasoning over the data stored in the KB.
Input:

1. Requests from the SODALITE IDE for the insertion of domain knowledge from Application
Ops Experts and Resource Experts (abstract and target resource types, resource patterns,
dependencies, inconsistencies, etc.).

2. Requests from the SODALITE IDE for knowledge retrieval in order to present appropriate
content in the IDE, to assure alignment with the DSL, etc.

3. Requests from the SODALITE IDE for the qualitative validation of user input (with the help of
semantic reasoning).

4. Requests from the SODALITE IDE for recommendations based on the user requirements.
Output:

1. Domain knowledge (abstract and target resource types, resource patterns, dependencies,
inconsistencies, etc.)

2. Detected inconsistencies in a given deployment model.
3. Generated recommendations based on user requirements.

Programming languages/tools: Python, REST API, SPARQL query language
Dependencies:

1. Alignment with the SODALITE IDE and its DSL should be established.
2. The required API services need to be defined.

Critical factors: The imprecise definition of the inputs’ structure.

3.1.1.3 Semantic Knowledge Base (KB)
Functional Description: The KB is SODALITE’s semantic repository that will host the models
(ontologies) created in WP3. The ontologies will be populated with domain knowledge, i.e., abstract
and target resource types, resource patterns, deployment patterns, dependencies, inconsistencies,
etc. This component will interact with the KBS and will offer capabilities for knowledge storage and
manipulation.
Input: Queries from the KBS for the insertion, update, deletion and retrieval of knowledge. More
complex queries will also allow the execution of rule-based semantic reasoning and the inference of
recommendations and/or inconsistencies.
Output: Requested domain knowledge, recommendations and inconsistencies.
Programming languages/tools:

1. Semantic triplestore with SPARQL support (GraphDB Free version).
2. SPARQL query language.

Dependencies: The semantic models (ontologies) will provide the data storage schema for the KB.
Thus, the development of the models directly affects the KB functionality.
Critical factors: The triplestore’s scalability needs to be studied, as performance issues might occur
upon a great increase in data and querying load.

Project No 825480.

D2.1 - Requirements, KPIs, evaluation plan and architecture - First version - Public Page 62
© Copyright Beneficiaries of the SODALITE Project

3.1.2 Use Case Sequence diagrams

3.1.2.1 UC13: Model Resources

Figure 4: Sequence diagram for UC13.

Figure 4 describes how the SODALITE components cooperate to implement the features offered as
part of UC13 - Model Resources. This use case is initiated by the Resource Expert in order to populate
and enrich the KB with new definitions of resource types. New knowledge could regard abstract
and/or specific resource types, relationships between known entities (e.g., dependencies between
resources), patterns and optimisation approaches. The whole process takes place with the use of

Project No 825480.

D2.1 - Requirements, KPIs, evaluation plan and architecture - First version - Public Page 63
© Copyright Beneficiaries of the SODALITE Project

the SODALITE IDE and its DSL, assisted by the Semantic Reasoner for the qualitative validation of
input and the interaction with the KB.

3.1.2.2 UC1: Define Application Deployment Model

Figure 5: Sequence diagram for UC1.

Figure 5 models the collaboration between the SODALITE components to implement the features
required in UC1. The Application Ops Expert (AOE) uses the SODALITE IDE in order to define an
application deployment model (ADM). The IDE is charged with presenting existing knowledge (e.g.
resource types), validating user DSL input by detecting inconsistencies, and generating

Project No 825480.

D2.1 - Requirements, KPIs, evaluation plan and architecture - First version - Public Page 64
© Copyright Beneficiaries of the SODALITE Project

recommendations. The required interaction with the KB is served by the Semantic Reasoner
component. The use case output is a valid ADM.

3.1.2.3 UC2: Select Resources

Figure 6: Sequence diagram for UC2.

Figure 6 models the interaction between the SODALITE components when implementing the
features offered within UC2 - Select Resources. As soon as an application deployment model,
incorporating abstract resource types, has been defined, a selection of target resources needs to be
made and mapped to the abstract types, in order to enable the deployment process. This flow
includes the generation of suggestions regarding compatible resources and patterns - to which the

Project No 825480.

D2.1 - Requirements, KPIs, evaluation plan and architecture - First version - Public Page 65
© Copyright Beneficiaries of the SODALITE Project

user will be able to apply filters - and the validation of provided input, with the support of the
Semantic Reasoner and information stored in the Semantic Knowledge Base.

3.1.2.4 UC12: Map Resources and Optimisations

Figure 7: Sequence diagram for UC12.

Figure 7 describes the interaction between the SODALITE components while implementing UC12 -
Map Resources and Optimizations. This use case describes the process of defining abstract resource
patterns by a Resource Expert (RE). Additionally, actual (target) resources can be mapped to these
patterns. To these ends, the SODALITE IDE retrieves and presents known resource types using the
Semantic Reasoner. Finally, the newly generated knowledge is stored in the Semantic Knowledge
Base and becomes available in related use cases, such as the aforementioned Select Resources.
Moreover, based on the application and available resource types, different optimizations will be
enabled for the RE to select from. The RE will also have to enter the settings for any selected
optimisation. This will be stored in the IaC Model repository.

Project No 825480.

D2.1 - Requirements, KPIs, evaluation plan and architecture - First version - Public Page 66
© Copyright Beneficiaries of the SODALITE Project

3.1.2.5 UC14: Estimate Quality Characteristics of Applications and Workload
We do not include a separate sequence diagram for this use case as the Quality Expert in this case
performs the quality assessment experiments. In doing so, he/she exploits the whole SODALITE
framework to define the Application Deployment Model (UC1) associated with the experimental
prototypes used in the assessment:

● select the resources he/she wants to assess for performance (UC2),
● generate the IaC code (UC3) and possibly verify it (UC4),
● execute provisioning, deployment and configuration (UC6),
● start the prototype (UC7),
● run the monitor to collect data (UC8) and, finally,
● edit the resource and application models (UC13) and (UC1) to include additional information

about performance.
Alternatively, the Quality Expert could run the experiments in a simulated environment outside the
SODALITE framework and then exploit UC13 and UC1 to update the corresponding models in
SODALITE.

3.2 WP4 Infrastructure as Code layer

Figure 8: Infrastructure as Code Layer Architecture.

The Generation of Infrastructure as Code (IaC) blueprint builds on the abstract application definition
and deployment model from the WP3 Modelling layer and uses the tuple of matching IaC node

Project No 825480.

D2.1 - Requirements, KPIs, evaluation plan and architecture - First version - Public Page 67
© Copyright Beneficiaries of the SODALITE Project

definition and abstract application artifact definition with functional and nonfunctional
requirements for preparing an optimal IaC blueprint and runtime artifacts for subsequent
deployment in WP5 Runtime Layer. The Infrastructure as Code Layer orchestrates the parsing,
building, verifying the IaC blueprint with topology and application optimisation in focus, still
keeping reference to the underlying abstract model source at all times. Figure 8 shows the internal
architecture of this layer, highlighting the way this layer is interfaced with the other two. In the
following each component is described.

3.2.1 Component Descriptions

3.2.1.1 Abstract Model Parser
Functional Description: The Abstract Model Parser is the central component for the preparation of
the deployable IaC blueprint and related Actuation scripts.
Its main function is to abstract the parsing of the abstract deployment model from building the
deployable IaC. It feeds the IaC Builder component with all the data provided by the App Ops Expert
and needed for the selection and building of IaC Nodes (Blueprint) and preparation of the Actuation
scripts (playbooks).
Input: Takes input from the SODALITE IDE as the reference to the abstract application deployment
model. It is based on the POLIMI extensive knowledge of modelling and parsing UML deployment
diagrams into IaC blueprints, e.g., TOSCA deployment blueprint.
The component allows the SODALITE IDE to:

● start the parsing process
● cancel the parsing process at any given time
● return resulting build time information to the user in a human readable form

Output: Produces the output for the user based on the process of parsing abstract application
deployment model.
Programming languages/tools: Java
Dependencies: This component interacts with different components enabling the user to parse the
abstract application deployment model and build IaC code through REST API calls to other
SODALITE components:

● IaC Blueprint Builder
● IaC Resources Model

Critical factors: This component should be able to take input from the SODALITE IDE through a web
API allowing the user to cancel the parsing process at any given time.

3.2.1.2 IaC Blueprint Builder
Functional Description: This component internally produces the IaC blueprint based on the input
provided in the abstract application deployment model passed to the Abstract Model Parser. It
flattens the application model topology in a node list and for any given node:

● returns the best matching IaC node definition from the IaC Resources Model repository
● sets provided parameters
● internally builds relations to other nodes

For any selected node it then checks the artefacts to be deployed on that node.
In case the abstract model holds information about the artefact source and the source is available,
it triggers the call to the Application Optimiser component in order to try to start the compilation
and optimisation, defined in the model.
After all the artefacts are built as runtime binaries and configured, this component calls the Image
Builder component to build and pack the artefact images ready for deployment.

Project No 825480.

D2.1 - Requirements, KPIs, evaluation plan and architecture - First version - Public Page 68
© Copyright Beneficiaries of the SODALITE Project

At the end of the process of creation of the IaC and the building of Artefact images, it saves the
resulting IaC in the IaC Repository and returns the build time information in a human readable form.
Input: Abstract application deployment model, IaC Resources Model
Output: IaC blueprint (TOSCA) with actuation scripts (Ansible playbooks). Returns information about
the IaC building process in human readable form to be shown to the user.
Programming languages/tools: Java, Python
Dependencies:

● SODALITE IDE
● Abstract Model Parser
● IaC Resources Model
● Application Optimiser
● IaC Repository

Critical factors: This component should be able to take input from the SODALITE IDE through a web
API allowing the user to cancel the IaC building process at any given time.

3.2.1.3 IaC Resources Model
Functional Description: This component holds the IaC Node Definitions and Actuation scripts
(playbooks) for the deployment of the application through a set of predefined templates. It is
structured as a repository and allows for best matching search.
Input: Definition of abstract node model and constraints.
Output: IaC Node definition and playbooks for actuation
Programming languages/tools: Python/Java
Dependencies: Resource Experts supply infrastructure node definition and relationships with
binding to preferred execution platforms. QA Experts supply prefered application binding to
infrastructure definition.
Critical factors: N/A

3.2.1.4 Runtime Image Builder
Functional Description: Runtime image builder builds the runtime images
Input: Target architecture and artifact definition
Output: A runtime image equipped with configuration, artifact executable binary, configuration
metadata, monitoring artifact. The image is released to the Image repository for deployment.
Programming languages/tools: Python
Dependencies: Concrete Image Builder
Critical factors: N/A

3.2.1.5 Concrete Image Builder
Functional Description: Implementation of concrete image builder for the execution platform to
handle specifics regarding configuration, deployment, monitoring.
As it seems there can be significant differences between the images built targeting
HPC/Cloud/Kubernetes, Concrete Image Builder implements an adapter pattern to satisfy and
bridge the different approaches for targeting the above-mentioned execution platforms.
The built image also includes monitoring artefacts allowing the post deploy configuration by the
Orchestrator.
Input: Runtime Image Builder configuration and definition of binary runtime.
Output: Runtime Image

Project No 825480.

D2.1 - Requirements, KPIs, evaluation plan and architecture - First version - Public Page 69
© Copyright Beneficiaries of the SODALITE Project

Programming languages/tools: Yaml (Docker, Kompose, HPC container technology), Python
Dependencies: Runtime Image Builder
Critical factors: N/A

3.2.1.6 Application Optimiser
Functional Description: The Application Optimiser Optimises application for a given target platform
based on the optimisation options selected.
Input: Optimisation recipe containing the set of Application tasks, Infrastructure targets and
optimisations. This recipe will be retrieved from the IaC Model repository.
Further refined inputs are listed below:

1. Artifacts and dependencies for Application tasks
2. Hardware information for Infrastructure targets
3. Optimisation settings for optimisations.

Output: Optimised executable or container, Changes to runtime/deployment and job scripts for
submission to resource.
Programming languages/tools: Python, Ruby, CRESTA Autotuning framework
Dependencies: IaC model repository, Runtime Image Builder, Execution Platform
Critical factors: Overhead time for optimisation an application. Validation of Optimisation may
require support from the execution platform

3.2.1.7 IaC Verifier
Functional Description: This component coordinates the processes of verification of the application
deployment topology and provisioning (deployment) workflow/plan.
Input:

● Abstract IaC models
● Correctness criteria such as well-structuredness, soundness, and application specific

constraints
Output:

● Verification Errors (for invalid artifacts)
● Verification Summary (for valid artifacts)

Programming languages/tools: Java / Eclipse
Dependencies:

● SODALITE IDE
● Verification Model Builder
● Topology Verifier
● Provisioning Workflow Verifier

Critical factors: N/A

3.2.1.8 Verification Model Builder
Functional Description: This component builds the models required to verify the abstract IaC models,
for example, a knowledge base instance for ontological (semantic) reasoning on the topology, and
a petri net representation for the provisioning (deployment) workflow.
Input: Abstract IaC models; Verification knowledge (from Semantic Knowledge Base)
Output: Verification Models
Programming languages/tools: Java
Dependencies:

Project No 825480.

D2.1 - Requirements, KPIs, evaluation plan and architecture - First version - Public Page 70
© Copyright Beneficiaries of the SODALITE Project

● Semantic Knowledge Base
● Topology Verifier

Critical factors: N/A

3.2.1.9 Topology Verifier
Functional Description: This component verifies the deployment topology of the application against
given correctness criteria and application specific constraints.
Input:

● Formal model of the topology
● Correctness criteria
● Application specific constraints

Output:
● Topology Verification Errors (for an invalid topology)
● Topology Verification Summary (for a valid topology)

Programming languages/tools: Java
Dependencies:

● IaC Verifier
● Verification Model Builder

Critical factors: N/A

3.2.1.10 Provisioning Workflow Verifier
Functional Description: This component verifies the deployment (provisioning) workflow of the
application against given correctness criteria and application specific constraints.
Input:

● Formal Model of the Provisioning Workflow
● Correctness criteria
● Application specific constraints

Output:
● Topology Verification Errors (for an invalid provisioning workflow)
● Topology Verification Summary (for a valid provisioning workflow)

Programming languages/tools: Java
Dependencies:

● IaC Verifier
● Verification Model Builder

Critical factors: N/A

3.2.1.11 Bug Predictor and Fixer
Functional Description: This component is responsible for predicting bugs in abstract IaC models
(topology and provisioning workflow), suggesting corrections or fixes for each bug, and correcting
the bug applying the fix selected by the Application Ops Expert.
Input: Abstract IaC models
Output: Bugs, Fixes
Programming languages/tools: Java
Dependencies:

● SODALITE IDE

Project No 825480.

D2.1 - Requirements, KPIs, evaluation plan and architecture - First version - Public Page 71
© Copyright Beneficiaries of the SODALITE Project

● Semantic Knowledge Base
● Predictive Model Builder
● IaC Quality Assessor

Critical factors: N/A

3.2.1.12 Predictive Model Builder
Functional Description: This component builds the ontological predictive model for finding bugs (in
topology and provisioning workflow) and suggesting corrections. The bugs are anti-patterns,
derivations from design patterns, and other code and design smells. This component also builds a
machine learning model that can predict bug proneness index of the IaC artifacts based on IaC
metrics.
Input:

● Abstract IaC models or Concrete IaC artifacts
● Bug and resolution knowledge (ontology and rules)
● IaC datasets
● IaC metrics

Output:
● Ontological Predictive Models
● Machine Learning based Predictive Model

Programming languages/tools: Java
Dependencies:

● Bug Predictor and Fixer
● Semantic Knowledge Base

Critical factors: N/A

3.2.1.13 IaC Quality Assessor
Functional Description: This component can calculate different IaC metrics for IaC artifacts.
Input: IaC artifacts
Output: IaC metrics
Programming languages/tools: Java
Dependencies:

● Bug Predictor and Fixer
Critical factors: N/A

3.2.1.14 IaC Model Repository
Functional Description: IaC Model Repository will store the optimisation recipe that will be used by
the Application Optimiser to optimise the application and deployment for a target.
Input: Query by Application id or Target id
Output: Add/Modify/Select Optimisations for a selected application or target or both.
Programming languages/tools: Python
Dependencies: None
Critical factors: Model Repository inaccessible to SODALITE IDE or Application Optimiser

3.2.1.15 Image Registry
Functional Description: Image Registry will store the executable runtime image of the artifact defined
in the application design process and built in the SODALITE deployment preparation process. This

Project No 825480.

D2.1 - Requirements, KPIs, evaluation plan and architecture - First version - Public Page 72
© Copyright Beneficiaries of the SODALITE Project

registry and the images will be accessible through a docker-like interface describing the access to a
specific image through filtering, labels, image IDs.
Input: Image ID, label or similar
Output: The runtime image of the artefact
Programming languages/tools: Python, Docker
Dependencies: Runtime Image Builder, Orchestrator
Critical factors: accessibility from Runtime Image Builder, Orchestrator.

3.2.2 Sequence Diagrams

3.2.2.1 UC3: Generate IaC Code

Figure 9: Sequence diagram for UC3.

Figure 9 describes the interaction between the SODALITE components while implementing UC3 -
Generate IaC Code. The prerequisites for the IaC blueprint to be built are a well defined abstract
application deployment model and definition of artifacts, be it source (scripts) or executable
binaries with configuration, to be deployed on the infrastructure. Application Ops Experts initiates
the generation of the IaC blueprint through SODALITE IDE with the reference to the model definition.
Abstract Model Parser parses the model and replaces the abstract node definitions and relations
with optimal IaC node definition from the IaC Resource Model which is built into the IaC blueprint by
the IaC Blueprint Builder. Each step is tracked and recorded for subsequent IaC changes reflecting
the model. For each node, artifacts definitions with source code are then optimally compiled by the

Project No 825480.

D2.1 - Requirements, KPIs, evaluation plan and architecture - First version - Public Page 73
© Copyright Beneficiaries of the SODALITE Project

Application Optimiser component into an executable binary. Immediately after this step the
executables are packed into Runtime Images by the Build Runtime Image component. The Runtime
Images are stored in the registry for later deployment and the IaC Blueprint is stored in the IaC
Repository. The build-time results are returned back to the Application Ops Expert.

3.2.2.2 UC4: Verify IaC

Figure 10: Sequence diagram for UC4.

Figure 10 describes the interaction between the SODALITE components while implementing UC4 -
Verify IaC. Application Ops Expert provides the abstract IaC modeling artifacts to the IaC Verifier to
formally verify the artifacts with respect to given correctness criteria. Both the deployment model
and the provisioning workflow of the application needs to be verified. The provisioning workflow
includes the provisioning and configuring of the infrastructure, deployment of the application
components on the infrastructure, and configuring the infrastructure and the application
components. Verification Model Builder builds the formal verification models using the verification
knowledge from the Semantic Knowledge Base. Topology Verifier verifies the topology whereas the
Provisioning Workflow Verifier verifies the provisioning workflow. The verification results are
returned back to the Application Ops Expert.

Project No 825480.

D2.1 - Requirements, KPIs, evaluation plan and architecture - First version - Public Page 74
© Copyright Beneficiaries of the SODALITE Project

3.2.2.3 UC5: Predict and Correct Bugs

Figure 11: Sequence diagram for UC5.

Figure 11 describes the interaction between the SODALITE components while implementing UC5 -
Predict and Correct Bugs. Application Ops Expert submits the abstract IaC models via SODALITE IDE
to Bug Predictor and Fixer for detecting the bugs in the application topology and the provisioning
workflow. Bug Predictor and Fixer uses Predictive Model Builder to parse the received IaC models,
and builds the predictive models required for predicting the bugs in them. The bugs are anti-
patterns, design smells, and code smells for security, privacy and performance. The bug prediction
results are shown in SODALITE IDE. Application Ops Expert can select one or more bugs, request
potential fixes for each selected bug, and choose and apply the desired fixes. The Semantic
Knowledge Base contains the knowledge required to predict bugs and to recommend
corrections/fixes. Bug Predictor and Fixer can also assess the quality of concrete IaC artifacts in
terms of IaC quality metrics, and use the IaC metrics to predict the defect-proneness indices in the
IaC artifacts.

Project No 825480.

D2.1 - Requirements, KPIs, evaluation plan and architecture - First version - Public Page 75
© Copyright Beneficiaries of the SODALITE Project

3.2.2.4 UC11: Define IaC Bugs Taxonomy

Figure 12: Sequence diagram for UC11.

Figure 12 describes the interaction between the SODALITE components while implementing UC11 -
Define IaC Bugs Taxonomy. Quality Expert identifies, defines, and organizes a vocabulary of the key
concepts used to describe bugs and their resolutions for IaC. Next, Quality Expert uses the
vocabulary to classify, relate, and combine all bugs and resolutions, and builds a taxonomy. Then,
the taxonomy is defined formally as an ontology. The ontological reasoning rules required for
detecting bugs and suggesting fixes for bugs are also defined. Finally, Quality Expert deploys the
ontology and rules in Semantic Knowledge Base.

Project No 825480.

D2.1 - Requirements, KPIs, evaluation plan and architecture - First version - Public Page 76
© Copyright Beneficiaries of the SODALITE Project

3.2.2.5 UC15: Statically Optimize Application and Deployment

Figure 13: Sequence diagram for UC15.

Figure 13 describes the interaction between the SODALITE components while implementing UC15 -
Statically Optimize Application and Deployment. This use case describes the process for optimising
the Application and deployment statically. Static optimisation refers to the optimisation before
deployment of the application. The input for this use case is the optimisation recipe created as part
of the Map resources and optimisation (WP3) use case and the output will be an optimised
application executable or a container. The optimization recipe stored in the IaC Model repository is
retrieved and extracted. For all the tasks in the recipe, the tasks are optimised for different targets
based on the optimisations selected. An optimisation report will be made at the end of this process.

Project No 825480.

D2.1 - Requirements, KPIs, evaluation plan and architecture - First version - Public Page 77
© Copyright Beneficiaries of the SODALITE Project

3.2.2.6 UC16: Build Runtime images

Figure 14: Sequence diagram for UC16.

Figure 14 describes the interaction between the SODALITE components while implementing UC16 -
Build Runtime Images. This is an internal process initiated in UC3 - Generate IaC. Runtime Image
Builder builds a runtime image based on tuple definition of target architecture and artifact list for
that architecture. Runtime Image Builder activates a specific Concrete Image Builder based on target
architecture to prepare a runtime image of the artifact and its configuration with added SODALITE
monitoring artifact. The built runtime image is then stored in the Image registry for later
deployment. The build-time information is returned to the calling component IaC Blueprint builder.

Project No 825480.

D2.1 - Requirements, KPIs, evaluation plan and architecture - First version - Public Page 78
© Copyright Beneficiaries of the SODALITE Project

3.3. WP5 Runtime layer

Figure 15: Runtime Layer Architecture.

The Runtime layer of SODALITE (see Figure 15) is in charge of the deployment of SODALITE
applications into heterogeneous infrastructures, its monitoring and the refactoring of the
deployment in response to violations in the application goals. It is composed of the following main
blocks:

● Orchestrator. It receives the application to be deployed or re-deployed as a blueprint
expressed in TOSCA, deploying the application components on the appropriate
infrastructure.

● Monitoring. It monitors the application components and the infrastructure where they are
deployed to be used by Refactoring and the interested SODALITE actors.

● Refactoring. It is able to propose a new application model to fulfill the application goals.
When it modifies the model in the Semantic Reasoner, it calls the Deployment Preparation,
which will trigger the generation of a new blueprint that arrives to the Orchestrator to initiate
the redeployment.

3.3.1 Component Descriptions

3.3.1.1 Orchestrator + Drivers
Functional Description: The Orchestrator manages the lifecycle of an application deployed in
heterogeneous infrastructures.
Input: Deployment plan
Output: Commands to target infrastructures
Programming languages/tools: Python, xOpera, Cloudify.
Dependencies: Target infrastructures: HPC, Kubernetes, OpenStack…

Project No 825480.

D2.1 - Requirements, KPIs, evaluation plan and architecture - First version - Public Page 79
© Copyright Beneficiaries of the SODALITE Project

Critical factors: Each orchestrator has its own limitations. This results in limitations concerning the
possibility to apply certain actions on the managed application. For instance, since Cloudify does
not support SubstitutableNodes, it does not support the Refactoring feature.

3.3.1.2 Monitoring
Functional Description: Gathers metrics from the heterogeneous infrastructure and application
execution, allowing query and aggregation on them.
Input: Heterogeneous infrastructure
Output: Metrics
Programming languages/tools: Prometheus, Prometheus query language and API
Dependencies: Monitoring agents in each of the infrastructure components. We’ll need to probe each
agent according to its specific API or we’ll need intermediate connectors that translate between
Prometheus style APIs to the APIs of the specific monitoring agent.
Critical factors: Certain metrics could be difficult to get in some infrastructures.

3.3.1.3 Deployment Refactorer
Functional Description: This component refactors the deployment model of an application in
response to violations in the application goals. It also derives the node-level goals from the
application goals. The goals are monitored at runtime by collecting the necessary metrics. A
machine learning based predictive model is used to select a valid set of refactoring options to derive
a valid variant of the deployment model (the new deployment model). The new abstract deployment
model is transformed to TOSCA and IaC Scripts using the Deployment Preparation module.
Optionally, an adaptation plan can be generated based on the differences between the new
deployment model and the current deployment model. The new refactoring options as well as the
changes to the existing refactoring options can be discovered at runtime.
Input:

● IaC topology model
● Refactoring option model
● Application goals
● QoS metrics

Output: (Topology) Adaptation Plan or New Deployment Model (in TOSCA and IaC Scripts)
Programming languages/tools: Java
Dependencies:

● Refactoring Option Discoverer
● Node Manager
● Deployment Preparation
● Semantic Reasoner
● Monitoring Agent

Critical factors: N/A

3.3.1.4 Node Manager
Functional Description: This component is responsible for managing node resources including the
overall node capacity/throughput while maintaining the node goals assigned by the Deployment
Refactorer. The node goals are monitored at runtime by collecting the necessary metrics. The node
may have policies for auto-scaling and availability.
Input: Node goals, QoS metrics

Project No 825480.

D2.1 - Requirements, KPIs, evaluation plan and architecture - First version - Public Page 80
© Copyright Beneficiaries of the SODALITE Project

Output: Node Resource Allocation Decisions (e.g., limit admission of requests, change CPU
allocations, etc.)
Programming languages/tools: Java
Dependencies:

● Deployment Refactorer
● Orchestrator
● Semantic Reasoner
● Monitoring Agent

Critical factors: N/A

3.3.1.5 Refactoring Option Discoverer
Functional Description: This component is responsible for discovering new refactoring options and
changes to existing refactoring options based on design patterns and anti-patterns (in general,
topology level defects). For example, a new instance of a pattern that may offer better performance
or security may be found.
Input: Search criteria (patterns, anti-patterns, QoS goals, and constraints)
Output: Refactoring options
Programming languages/tools: Java
Dependencies:

● Deployment Refactorer
● Monitoring Agent
● Semantic Reasoner

Critical factors: N/A

Project No 825480.

D2.1 - Requirements, KPIs, evaluation plan and architecture - First version - Public Page 81
© Copyright Beneficiaries of the SODALITE Project

3.3.2 Sequence Diagrams

3.3.2.1 UC6: Execute Provisioning, Deployment and Configuration

Figure 16: Sequence diagram for UC6.

Figure 16 describes the interaction between the SODALITE components while implementing UC6 -
Execute Provisioning, Deployment and Configuration. Application Ops Expert initiates the
deployment via SODALITE IDE, which in turn provides IaC blueprints and playbooks to the
Orchestrator. Upon this, the Orchestrator interacts with the Execution Platform Manager to
provision Resources for the deployment and configure the application components. In this sequence
diagram, the following Execution Platform Managers are considered: OpenStack as the virtual

Project No 825480.

D2.1 - Requirements, KPIs, evaluation plan and architecture - First version - Public Page 82
© Copyright Beneficiaries of the SODALITE Project

infrastructure provisioner, Kubernetes as a provisioner of the infrastructure for containerized
applications and batch job manager to provide compute Resources within HPC and GPU clusters. All
of the considered execution platforms are assumed to provide unified Lightweight Runtime
Environment (LRE) to deploy the generated application artefacts in the different execution
platforms.

With OpenStack, before the deployment, the virtual Resources must be firstly provisioned. For that,
the Orchestrator requests OpenStack to provision a set of virtual machines (VMs) and other
resources that the application demands, e.g., network and storage. The LRE is then installed on VMs
for the deployment of the application artefacts. Upon the deployment, the Orchestrator configures
application components.
Kubernetes automates resource provisioning and application deployment by providing an interface,
through which the deployment and configuration descriptions are passed. Hence, the Orchestrator
submits these descriptions to Kubernetes, which deploys the application artefacts and configures
them afterwards.
When HPC or GPU clusters are selected as the Resources for deployment, the Orchestrator pre-
uploads the artefacts and job description script to the user workspace (e.g. home directory of the
user) on login (front-end) nodes before submitting the job to the batch job manager.
At this point, the deployment of the heterogeneous application components is performed on
different Resources and the application is ready to be started. Optionally, the configuration of a
monitoring platform can be additionally executed if such mechanisms are provided to the
Orchestrator.

3.3.2.2 UC7: Start Application

Figure 17: Sequence diagram for UC7.

Project No 825480.

D2.1 - Requirements, KPIs, evaluation plan and architecture - First version - Public Page 83
© Copyright Beneficiaries of the SODALITE Project

Figure 17 describes the interaction between the SODALITE components while implementing UC7 -
Start Application. This sequence diagram describes the steps performed when an application is
started. In case of a service (e.g., web application, REST service), the application is started after the
deployment and runs until its termination. In case of non-services applications - which start, do
some processing and end (e.g., HPC application) -, applications may be started several times for a
single deployment.
The Application Ops Expert decides to start an application by using the SODALITE IDE. This request
arrives to the Orchestrator, which in turn starts the execution of each of the components that
compose the application. When the component starts, the execution environment of the application
sends a message to Monitoring Platform to indicate that the component is alive and prepared to
send metrics. Once the components register to Monitoring, Orchestrator can initiate collection of
metrics for its purposes (e.g., check application health).

3.3.2.3 UC8: Monitor Runtime

Figure 18: Sequence diagram for UC8.

Project No 825480.

D2.1 - Requirements, KPIs, evaluation plan and architecture - First version - Public Page 84
© Copyright Beneficiaries of the SODALITE Project

Figure 18 describes the interaction between the SODALITE components while implementing UC8 -
Monitor Runtime. The Monitor component collects system statistics on an ongoing basis. On each
host (whether physical or virtual) there is a software component that interacts with the Monitoring
component and reports standard system statistics. The statistics are usually collected on each
(physical or virtual) host by reading various counters and registers that hold updated system
statistics. These combined statistics are collected and periodically reported to a dashboard that is
part of the SODALITE IDE. These statistics are also available to be used by the Deployment Refactor
component to make placement decisions based on resource usage. In some cases it may be
desirable to collect some specific non-standard statistics in order to isolate the cause of some
observed anomaly. In this case, the operator can request to collect additional specific statistics. This
request is translated by the Monitoring component into requests to the agents running on each
(physical or virtual) host. When the operator no longer needs the collection of the non-standard
statistics, he informs the Monitoring component to stop the collection of those statistics

Project No 825480.

D2.1 - Requirements, KPIs, evaluation plan and architecture - First version - Public Page 85
© Copyright Beneficiaries of the SODALITE Project

3.3.2.4 UC9: Identify Refactoring Options

Figure 19: Sequence diagram for UC9.

Figure 19 describes the interaction between the SODALITE components while implementing UC9 -
Identify Refactoring Options. Deployment Refactorer is initialized with the IaC models for the initial
deployment, the initial set of refactoring options, and application goals. It uses the Node Managers
of each of the nodes in the application topology to manage the resources in those nodes. The node
resource management is based on the node level goals derived from the application goals. Via
Monitoring Agent, Deployment Refactorer monitors the application goals. If application goals
violations are detected, Deployment Refactorer tries to find a new deployment model for the

Project No 825480.

D2.1 - Requirements, KPIs, evaluation plan and architecture - First version - Public Page 86
© Copyright Beneficiaries of the SODALITE Project

application that can resolve the detected application goal violations. If a new deployment model
cannot be found, Application Ops Expert is alerted. The new deployment is enacted via Deployment
Preparation component. Deployment Refactorer also may reassign node-level goals as necessary.
Refactoring Option Discoverer can find the new refactoring options as well as the changes to the
existing refactoring options using patterns and anti-patterns (bugs). It uses Semantic Reasoner for
this purpose. Both Deployment Refactorer and Node Manager use the Monitoring Agent to collect
data to determine the impacts of the refactoring decisions and to update the predictive models used
for refactoring option selection and node resource allocation, respectively.

3.3.2.5 UC10: Execute Partial Redeployment

Figure 20: Sequence diagram for UC10.

Figure 20 describes the interaction between the SODALITE components while implementing UC10 -
Execute Partial Redeployment. After the Refactoring Options have been identified and Deployment
Model has been updated, Application Ops Expert initiates redeployment via SODALITE IDE, which in
turn instructs Deployment Preparation Module to provision the IaC blueprints and playbooks of the
new deployment. The Orchestrator derives the difference between current and updated
deployments and applies adaptation actions until the current state of deployment becomes the
updated state.
Such adaptation actions are performed on the Execution Platforms used for the redeployment. If the
selected platform is Cloud, the actions that might be performed are the following:

● any form of scaling (in/out/up/down),

Project No 825480.

D2.1 - Requirements, KPIs, evaluation plan and architecture - First version - Public Page 87
© Copyright Beneficiaries of the SODALITE Project

● migration to another Execution Platform,
● deployment of the new application components introduced by the Application Ops Expert

and removal of current components.
For what concerns HPC and GPU clusters, as the corresponding Execution Platforms lacks flexibility
in scaling at runtime, the scaling actions are not present as possible adaptation actions in the
sequence diagram; however, all the other actions applicable to Cloud can be executed on these
platforms as well (migration, deployment and removal of components).

3.4. Mapping SODALITE Architecture with the SODALITE Exploitable Results
From the Grant Agreement preparation till now the SODALITE consortium understanding of the
problem being tackled has evolved and is resulting in a more precise definition of the elements
belonging to the SODALITE solution. As a consequence of this, various elements presented in this
deliverable were not available in the Grant Agreement and others have changed their names. The
purpose of the following table, therefore, is to clarify the mapping between the terminology adopted
in the Grant Agreement and the current terminology. Based on the development of the project, the
list of the exploitable results might evolve over time. The table below represents the current
understanding of the consortium.

 WP/Task Exploitable
results Description Corresponding

element in D2.1

ER#0 6
SODALITE

Stack

a complete set of tools and software
components, developed in this project. It
joins all SODALITE elements under one
brand and allows the project to present its
outputs using one name - SODALITE.
SODALITE Stack will enable mix and match
selection of tools, used for different use
cases and different infrastructures.

SODALITE Platform

ER#1 3
Abstraction

Components
Library

a library of basic component abstractions,
along with patterns related to application,
infrastructure and performance.
Application developers and infrastructure
operators will exploit this library to best
describe their applications or
infrastructures. This library is the central
semantic part of the project. SODALITE
abstractions are human and machine-
readable and are used for the creation of
Abstracted Application Tuples.

Semantic
Knowledge Base

ER#2 3
Abstracted
Application

Tuple

A tuple materialises an application
modelled by exploiting the components
library above. Each tuple comprises an
abstract description of the application, its
infrastructure, and its non-functional
requirements. The tuple is then used to
feed the Application Builder and create an
Application Pattern Implementation.

Application
Deployment Model

Project No 825480.

D2.1 - Requirements, KPIs, evaluation plan and architecture - First version - Public Page 88
© Copyright Beneficiaries of the SODALITE Project

ER#3 4
Application
Container

This takes the form of a container with the
application, its deployment plan and the
runtime constraints. This is used by
Runtime, to actually deploy the application
on the infrastructure.

Runtime Image
Builder

ER#4 3
Application
Developer

Editor

This corresponds to the SODALITE
application modelling IDE, used to
compose and describe applications, their
components, and performance using the
Abstraction Components Library.

SODALITE IDE,
Semantic Reasoner

ER#5 4 Application
Builder

A tool that takes an Abstracted Application
Tuple and constructs an Application
Pattern Implementation plan for the given
abstracted infrastructure. This plan is used
to feed the Application Optimiser, which
aligns the application with the chosen
abstracted infrastructure and takes into
account its performance and other non-
functional requirements.

Deployment
Preparation

ER#6 4
Application
Optimiser

This component takes into account the
infrastructure, as provided by the
application developer and the operator.
The purpose is to statically optimise the
application, its deployment and
configuration, to maximize its
performance.

Application
Optimiser

ER#7 3
Infrastructure

Operator
Editor

This corresponds to the SODALITE
infrastructure modelling editor, used to
compose and describe infrastructures by
means of the Abstraction Components
Library. The outcome is then used by both
Application Optimiser and Deployment
Improvement. It also provides dashboards,
showing the infrastructure and application
state for already deployed applications
(monitoring, deployment, operational
analytics, and reconfiguration data).

SODALITE IDE

ER#8 5
Deployment

Improvement

This component uses the static models and
dynamic monitoring data to assess the
current state of infrastructure and
application. Based on this state it provides
dynamic reconfiguration plans to improve
the deployment. To this end, it includes the
Predictive Deployment Refactoring
component, which uses historical data
(monitoring, infrastructure state), as well
as Operational Analytics and Semantic
decision support, to decide how and when

Deployment
Refactorer,
Refactoring

Options Discoverer

Project No 825480.

D2.1 - Requirements, KPIs, evaluation plan and architecture - First version - Public Page 89
© Copyright Beneficiaries of the SODALITE Project

to do the re-deployment and what needs to
be changed to improve performance. In
short, this steers the application execution
during its runtime to achieve better
performance.

ER#9 5 Runtime

This is the central component that takes
care of the deployment of the application
and of its possible re-deployments, based
on outcome from Deployment
Improvement component. It also provides
the lowest level monitoring and alerting to
other components.

Orchestrator and
Monitoring

Project No 825480.

D2.1 - Requirements, KPIs, evaluation plan and architecture - First version - Public Page 90
© Copyright Beneficiaries of the SODALITE Project

4. Technical KPIs
The following table reports the technical KPIs defined in the Grant Agreement and provides
additional information concerning their interpretation, the measurement approach, the involved
components and the deadline by which the target lower bound is planned to be achieved. We do not
consider in this analysis KPI 6.1 (Uptake of developed work in
the use-cases.) and 6.2 (Dissemination of developed work using the use-cases) as they are not
directly related to the technical aspects of the project.

Id and
description

Specific
meaning

Target Involved
component

Deadline

KPI 1.1:
Abstraction of
application and
infrastructure.

 Lower bound is 25%
coverage of all application
and infrastructure
scenarios in the scope of
SODALITE case-studies

SODALITE
Modeling Layer

M24

KPI 1.2:
Abstraction of
Infrastructure
Performance
Patterns.

 Lower bound is 80% of all
performance patterns
found in HPC and Cloud
infrastructures

SODALITE
Modeling Layer

M33

KPI 1.3:
Abstraction of
execution
constraints and
possibilities.

 Lower bound is coverage
of 80% of execution
scenarios

SODALITE
Modeling Layer

M33

KPI 2.1: Increase
of abstracted
application
performance on
abstracted
infrastructure by
using
Infrastructure
performance
abstraction
patterns

When AOE
exploit
abstractions in
their application
code, we expect
an increase in
performance of
15%

Application performance
increased by 15%. The
performance metric to be
used will depend on the
specific case study.

Case studies,
SODALITE
Modeling
Layer,
Infrastructure
as Code Layer,
Runtime, and
Case studies

M30

KPI 2.2: Increase
of concretized
(deployed)
application
performance
running on
targeted
infrastructure
through

 Lower bound target is 20%
improvement over the
baseline

SODALITE
Infrastructure
as Code Layer,
SODALITE
Runtime

M30

Project No 825480.

D2.1 - Requirements, KPIs, evaluation plan and architecture - First version - Public Page 91
© Copyright Beneficiaries of the SODALITE Project

Predictive
Deployment
Refactoring.

KPI 3.1: Reduction
in software
and/or
application
development
time and cost.

The focus will be
on development
of deployment
descriptions, not
application
code.

Lower bound target is 10%
improvement over the
baseline and will be
evaluated through
external parties where
possible. The
improvement will be
measured by considering
the time needed to
develop an application
manually and then with
SODALITE.

SODALITE
Modeling Layer

M24

KPI 3.2: Reduction
in software
management
(redeployment,
reconfiguration)
time and cost.

This reduction is
specifically
concerning
resource
management.

Lower bound target is 30%
improvement over the
baseline and will be
evaluated through
external parties where
possible. The
improvement will be
measured by changing the
way we re-deploy the app.

SODALITE
Runtime

M24

KPI 4.1:
Component
compatibility

Integration of
the SODALITE
system allows
for combined
use of all its
components.

The target is 95% of
SODALITE component
compatibility

All
components

M33

KPI 5.1: Open
source release

 Minimum 80% of code
released under open-
source license

All
components

M36

KPI 5.1: Extension
of existing
projects

 Minimum 60% of code
extending the existing
projects, to be upstreamed

All
components

M36

Project No 825480.

D2.1 - Requirements, KPIs, evaluation plan and architecture - First version - Public Page 92
© Copyright Beneficiaries of the SODALITE Project

5. Preliminary Evaluation Plan
The main objective of the evaluation plan will be to verify the achievement of the KPIs presented in
Section 4. The SODALITE case studies will be exploited in this assessment. Objective metrics such as
performance improvement or reduction in required effort will be complemented by subjective
feedback from the case study owners. Where possible, external stakeholders will be involved as well,
in particular, for KPIs 3.1 and 3.2.
As described in Section 4, the fulfillment of KPIs will be assessed starting from M24 on. In the
previous iterations of the project, other testing and validation activities will be performed. More
specifically, we will test the UML use cases defined in Section 2 in the context of some of the
SODALITE case studies. The Table below shows the planned coverage of UML use cases by case
studies and when the intermediate and final versions of the use cases will be ready to be tested by
case study owners. The table also includes a column for the testbed providers. They, in fact, will play
the role of Resource Expert and Quality Expert. In these two roles, they will provide inputs to all three
case studies, in particular, concerning the characteristics of the specific resources they will make
available for the purpose of the experimentation.
Additional details concerning the evaluation plan will be made available in the forthcoming releases
of this deliverable.

Use Case
Virtual
clinica
l trial

SNOW Vehicle
IoT

Testbed
providers Released at

UC1 Define Application Deployment Model (WP3) X X X M12, M18,
M24

UC2 Select Resources (WP3) X
M12, M18,

M24

UC3 Generate IaC code (WP4) X X X
M12, M18,

M24

UC4 Verify IaC (WP4) X X X
M12, M18,

M24

UC5 Predict and Correct Bugs (WP4) X
M12, M18,

M24

UC6 Execute Provisioning, Deployment and
Configuration (WP5) X X X

M12, M18,
M24, M33

UC7 Start Application (WP5) X X X
M12, M18,
M24, M33

UC8 Monitor Runtime (WP5) X X X
M12, M18,
M24, M33

UC9 Identify Refactoring Options (WP5) X X X
M18, M24,
M30, M33

UC10 Execute Partial Redeployment (WP5) X X X
M18, M24,

M33

UC11 Define IaC Bugs Taxonomy (WP4) X M12, M18

UC12 Map Resources and Optimisations (WP3) X X X X M12, M24

Project No 825480.

D2.1 - Requirements, KPIs, evaluation plan and architecture - First version - Public Page 93
© Copyright Beneficiaries of the SODALITE Project

UC13 Model Resources (WP3) X X
M12, M22,

M30

UC14 Estimate Quality Characteristics of
Applications and Workload (WP3)

 X M18, M24,
M33

UC15 Statically Optimize Application and
Deployment (WP4)

X X X M18, M30

UC16 Build Runtime images (WP4) X X X
M12, M18,

M24

Project No 825480.

D2.1 - Requirements, KPIs, evaluation plan and architecture - First version - Public Page 94
© Copyright Beneficiaries of the SODALITE Project

References
[1] IBM, D6.1 SODALITE platform and use cases implementation plan. SODALITE Technical

Deliverable 2019.
[2] OMG, Unified Modeling Language. Formal Document. Version 2.5.1, December 2017.
[3] ISO/IEC/IEEE International Standard - Systems and software engineering -- Life cycle processes -

Requirements engineering," in ISO/IEC/IEEE 29148:2018(E) , vol., no., pp.1-104, 30 Nov. 2018,
doi: 10.1109/IEEESTD.2018.8559686.

[4] Michael Jackson and Pamela Zave. 1995. Deriving specifications from requirements: an
example. In Proceedings of the 17th international conference on Software engineering (ICSE
'95). ACM, New York, NY, USA, 15-24. DOI=http://dx.doi.org/10.1145/225014.225016.

[5] XLAB, SOftware Defined AppLication Infrastructures managemenT and Engineering (SODALITE)
- Grant agreement number: 825480, AMENDMENT Reference No AMD-825480-4, 2019.

