
This project has received funding from the European Union’s Horizon 2020 research and innovation

programme under grant agreement No 825480.

SOftware Defined AppLication Infrastructures managemenT and Engineering

D2.2
Requirements, KPIs, evaluation plan and

architecture - Intermediate version

IBM and POLIMI

31/01/2021

Project No 825480.

D2.2 - Requirements, KPIs, evaluation plan and architecture - Intermediate version Page 1

© Copyright Beneficiaries of the SODALITE Project

Deliverable data

Deliverable Requirements, KPIs, evaluation plan and
architecture - Intermediate version

Authors Luciano Baresi (POLIMI), Elisabetta Di Nitto

(POLIMI), Alexander Maslennikov (XLAB), Dragan

Radolović (XLAB), Alfio Lazzaro (HPE), Jesús

Gorroñogoitia (Atos)

Reviewers Nejc Bat (XLAB)

Yosef Moatti (IBM)

Dissemination level Public

History of changes

Name Change Date

v1 first release

ready for

internal review

21/01/2021

v2 final release 28/01/2021

Project No 825480.

D2.2 - Requirements, KPIs, evaluation plan and architecture - Intermediate version Page 2

© Copyright Beneficiaries of the SODALITE Project

Executive Summary

This deliverable is the continuation of deliverable D2.1 and provides the consolidated evolution of
requirements, KPIs, evaluation plan and architecture over the second year. More specifically, it

presents the current status of the requirements identified in the original document, along with the
new use case and new requirements highlighted in the second year. It provides a new description of
the architecture of the SODALITE environment, where we identify the major changes we applied in

the second phase of the project and also the new elements that have been released since the first
milestone. The architecture described here complies with the release of the SODALITE environment

at month 24, that is, Milestone MS6. As for KPIs, we now provide a detailed, ameliorated description
of each KPI, its scope, and the evaluation workflow we have put in place.

Project No 825480.

D2.2 - Requirements, KPIs, evaluation plan and architecture - Intermediate version Page 3

© Copyright Beneficiaries of the SODALITE Project

Glossary

This section provides a reference for the main terms used in this document. Most of the terms are
defined the first time they are used in the document, but their definition is also reported here for the

sake of simplicity and speed. Reported terms are classified under seven main categories.

Acronyms

AADM Abstract Application Deployment Model

AAI Authentication and Authorization Infrastructure

ADM Application Deployment Model

AM Ansible Model

AOE Application Ops Expert

CPU Central Processing Unit

DSL Domain Specific Language

GPU Graphic Processing Unit

HPC High Performance Computing

IaaS Infrastructure as a Service

IaC Infrastructure as Code

IAM Identity and Access Management

JWT JSON Web Token

KB Semantic Knowledge Base

KPI Key Performance Indicator

LRE Lightweight Runtime Environment

MOM Message oriented middleware

OASIS Organization for the Advancement of Structured Information Standards

OM Optimization Model

OWL Web Ontology Language

PBS Portable Batch System

QE Quality Expert

RDF Resource Description Framework

RE Resource Expert

Project No 825480.

D2.2 - Requirements, KPIs, evaluation plan and architecture - Intermediate version Page 4

© Copyright Beneficiaries of the SODALITE Project

RM Resource Model

SD SODALITE Design-time

SR SODALITE Runtime

Torque Terascale Open-source Resource and QUEue Manager

TOSCA Topology and Orchestration Specification for Cloud Applications

General terms

Adaptation plan An ordered set of actions that modify the current deployment

of a system.

Anti-pattern A common design solution/decision that generates known

negative consequences onto the design.

Blueprint A plan or set of proposals to carry out some work. An IT
blueprint is an artifact created to guide priorities, projects,

budgets, staffing and other IT strategy-related initiatives. As for
IaC, a blueprint is the scripting code that enables resource
provisioning, configuration, and application deployment.

Code smell Any characteristic in the code that possibly indicates a potential

defect/bug.

Design pattern Recurring solution that carries positive consequences onto the

design.

Design smell Any element in the design that indicates violation of

fundamental design principles and negatively affects design
quality.

Domain Specific Language A design language that is specific to a particular domain.

Infrastructure as Code Code that does not define the application logic but, instead,

defines how a computational infrastructure is to be provisioned
and configured and the way an application is to be deployed on
top of it.

IaC artifacts These are the documentation and models associated with

Infrastructure as Code, as well as the code itself.

Infrastructure as a Service A specific service model that corresponds to offering virtualized

hardware, that is, virtual machines and similar abstractions.

Lightweight application base

image

A container image (e.g., Docker or Singularity image).

Models@runtime Indicates maintaining the models of a system at runtime to
reason on the system.

Project No 825480.

D2.2 - Requirements, KPIs, evaluation plan and architecture - Intermediate version Page 5

© Copyright Beneficiaries of the SODALITE Project

Over-provisioning The allocation of more computing resources (e.g., virtual

machines and CPUs) than strictly necessary.

Playbook Ansible recipe (or script) for executing a series of steps.

Use case A possible case of usage of a certain piece of software.

SODALITE distinguishes between UML use cases, those

reported in this document, and Demonstrating use cases, that
is, the specific application we exploit to demonstrate the
SODALITE environment. These last ones are also called

SODALITE case studies.

SODALITE human actors

Application Ops Expert (AOE) The actor in charge of operating the application and, as such, of
all the aspects that refer to the deployment, execution,
optimization and monitoring of the application.

Quality Expert (QE) The actor in charge of the quality of service both provided by
the execution infrastructure and required by the executing

application.

Resource Expert (RE) The actor in charge of dealing with the different resources

required to deploy and execute the application.

Resources managed by SODALITE

Application component An executable the application of interest is partitioned in.

Container Engine An engine for running lightweight containers. It enables
operating-system-level virtualization and the existence of
multiple isolated container instances.

Edge/Fog computing A distributed computing paradigm that brings computation

and data storage closer to the location where they are needed,
to improve response times and save bandwidth.

Execution platform Provides the means to execute the different application

components; e.g., HPC, GPU, Openstack Cloud, etc.

Lightweight Runtime
Environment

A “simple” execution environment provided by operating
systems or by virtualization technologies.

Message oriented
middleware

Software infrastructure that supports sending and receiving
messages among distributed elements.

Middleware framework The underlying glue that helps both storing the different data
and artifacts and making the different elements communicate.

Monitoring agent Software entity that collects usage and performance statistics
about system resources.

Project No 825480.

D2.2 - Requirements, KPIs, evaluation plan and architecture - Intermediate version Page 6

© Copyright Beneficiaries of the SODALITE Project

Resource Any computing artifact needed to deploy and run an

application.

Serverless computing A cloud-computing execution model in which the user submits
only the tasks to be executed to the cloud provider, which
manages the computing infrastructure transparently.

Specific targeted technologies

Docker An open platform for developing, shipping, and running

applications. Docker provides the ability to package and run an
application in a loosely isolated environment called a

container.

Istio A Service Mesh on top of a cluster manager such as Kubernetes.

Kompose Kompose is a conversion tool for Docker Compose to container
orchestrators such as Kubernetes.

Kubernetes An open-source system for automating deployment, scaling,
and management of containerized applications.

OpenStack An open source cloud operating system.

OpenWhisk A popular and highly scalable serverless computing / cloud
functions platform that allows for functional logic to be written

and triggered in response to events or directly via a REST API.

Portable Batch System A job scheduler that is designed to manage the distribution of
batch jobs and interactive sessions across the available nodes

in the HPC cluster.

Singularity A container solution like Docker that is created specifically for
scientific applications and workflows in an HPC environment.

Skydive A software tool that produces network monitoring metrics.

Slurm An open source, fault-tolerant, and highly scalable cluster
management and job scheduling system for large and small
Linux clusters.

Terascale Open-source
Resource and QUEue
Manager (Torque)

A distributed resource manager that provides the functionality
of PBS but also extends it to provide scalability, fault tolerance,
usability and functionality.

SODALITE elements

Abstract Application Tuple An Abstract Application tuple comprises an abstract description

of the application, its infrastructure, and its non-functional
requirements.

Project No 825480.

D2.2 - Requirements, KPIs, evaluation plan and architecture - Intermediate version Page 7

© Copyright Beneficiaries of the SODALITE Project

Application Deployment

Model/Abstract Application
Deployment Model

An abstract model defined through the use of SODALITE DSL

with concrete definitions for constraints, parameters,
functional and non-functional requirements and goals, thus
defining an instance of the DSL model.

Infrastructure Abstract
Pattern

A defined set of infrastructure resource types, interlinked with
known relationship types (dependencies, compatibility, etc),
aimed at supporting the recommendation generating

mechanism of the Semantic Reasoner.

Semantic Knowledge Base All modelling artefacts made available to the SODALITE users.

SODALITE Design-time All SODALITE components made available to the user to

support the design and development of Infrastructure as Code
(IaC).

SODALITE DSL The modelling language offered to the SODALITE users to

support design and development of IaC.

SODALITE Runtime All SODALITE components supporting the execution of

applications on top of heterogeneous resources.

Taxonomy of Infrastructure
Bugs/Defects and

Resolutions

A classification of the common bugs and their resolutions for
infrastructure designs and IaC code specifications.

Interchange languages

OWL2 An ontology language for the Semantic Web with formally
defined meaning. OWL2 ontologies provide classes, properties,
individuals, and data values and are stored as Semantic Web

documents. OWL2 ontologies can be used along with

information written in RDF, and OWL 2 ontologies themselves

are primarily exchanged as RDF documents.

TOSCA An OASIS standard that defines the interoperable description of

services and applications hosted on the cloud and elsewhere,

thereby enabling portability and automated management
across cloud providers regardless of underlying platform or

infrastructure; thus, expanding customer choice, improving
reliability, and reducing cost and time-to-value.

Project No 825480.

D2.2 - Requirements, KPIs, evaluation plan and architecture - Intermediate version Page 8

© Copyright Beneficiaries of the SODALITE Project

Table of contents

Executive Summary 2

Glossary 3

Table of contents 8

List of Figures 11

1. Introduction 12

2. Year-two innovation 12

2.1 Vision 12

2.2 Innovations introduced in the second project year 13

3. Updates on requirement elicitation 15

3.1 Initial requirements 16

3.2 New UC 24

UC17: Platform Resource Discovery 24

Associated requirements 25

3.3 New requirements and their impact on UCs 26

3.4 Workflow 31

3.4.1 The Resource Expert Workflow 31

3.4.2 The Application Ops Expert Workflows 32

3.4.3 The Quality Expert Workflow 33

3.4.4 The System Administrator Workflow 34

4. Architecture 34

4.1 General architecture changes 34

4.2. Modelling layer 35

4.2.1 Component descriptions 36

4.2.1.1 SODALITE IDE 36

4.2.1.2 Semantic Reasoner (Knowledge Base Service - KBS) 37

4.2.1.3 Semantic Knowledge Base (KB) 38

4.2.2 Use Case Sequence diagrams 38

4.2.2.1 UC13: Model Resources 39

4.2.2.2 UC1: Define Application Deployment Model 40

4.2.2.3 UC2: Select Resources 41

4.2.2.4 UC12: Map Resources and Optimisations 42

4.2.2.5 UC14: Estimate Quality Characteristics of Applications and Workload 43

4.3 Infrastructure as Code Layer 43

4.3.1 Component Descriptions 44

4.3.1.1 Abstract Model Parser 44

4.3.1.2 IaC Blueprint Builder 45

4.3.1.3 IaC Model Repository 45

Project No 825480.

D2.2 - Requirements, KPIs, evaluation plan and architecture - Intermediate version Page 9

© Copyright Beneficiaries of the SODALITE Project

4.3.1.4 Runtime Image Builder 46

4.3.1.5 Concrete Image Builder 46

4.3.1.6 Application Optimiser - MODAK 46

4.3.1.7 IaC Verifier 47

4.3.1.8 Verification Model Builder 47

4.3.1.9 Topology Verifier 47

4.3.1.10 Provisioning Workflow Verifier 48

4.3.1.11 Bug Predictor and Fixer 48

4.3.1.12 Predictive Model Builder 48

4.3.1.13 IaC Quality Assessor 49

4.3.1.14 Platform Discovery Service 49

4.3.2 Use Case Sequence diagrams 49

4.3.2.1 UC3: Generate IaC 49

4.3.2.2 UC4: Verify IaC 50

4.3.2.3 UC5: Predict and Correct Bugs 51

4.2.2.4 UC11: Define IaC Bugs Taxonomy 52

4.3.2.5 UC15: Statically Optimise Application and Deployment 53

4.3.2.6 UC16: Build Runtime images 54

4.3.2.6 UC17: Platform Discovery Service 55

4.3 Runtime Layer 56

4.3.1 Component Descriptions 57

4.3.1.1 xOpera REST API 57

4.3.1.2 Monitoring + Exporters 57

4.3.1.2 Monitoring Dashboard 58

4.3.1.2 Alert Manager 58

4.3.1.3 Deployment Refactorer 58

4.3.1.4 Node Manager 59

4.3.1.5 Refactoring Option Discoverer 59

4.3.2 Sequence Diagrams 60

4.3.2.1 UC6: Execute Provisioning, Deployment and Configuration 60

4.3.2.2 UC7: Start Application 62

4.3.2.3 UC8: Monitor Runtime 63

4.3.2.4 UC9: Identify Refactoring Options 64

4.3.2.5 UC10: Execute Partial Redeployment 65

4.4 Security Pillar 66

4.4.1 Security Pillar Toolkit 67

5. KPIs and evaluation plan 68

5.1 Technical KPIs 69

5.2 Quality metrics associated with the SODALITE development process 69

5.3 Evaluation plan 70

KPI 1.1 70

Project No 825480.

D2.2 - Requirements, KPIs, evaluation plan and architecture - Intermediate version Page 10

© Copyright Beneficiaries of the SODALITE Project

KPI 1.2 70

KPI 1.3 71

KPI 2.1 72

KPI 2.2 72

KPI 3.1 74

KPI 3.2 75

KPI 4.1 76

KPI 5.1 77

KPI 5.2 77

5.4 Controlled experiments 78

Experiment with students and other external stakeholders 78

Description of the Application used for the experiments 78

Exercise A - Development of a deployment blueprint in TOSCA 78

Exercise B - Development of an AADM using the SODALITE IDE 79

Experiment with case study owners 79

Experiment with TOSCA experts 79

6. Conclusions and Future Work 79

7. References 80

Project No 825480.

D2.2 - Requirements, KPIs, evaluation plan and architecture - Intermediate version Page 11

© Copyright Beneficiaries of the SODALITE Project

List of figures

List of Images

■ Figure 1 - Resource Expert Workflow.

■ Figure 2 - Design Time Workflow Executed by Application Ops Experts.

■ Figure 3 - Runtime Workflow Executed by Application Ops Experts.

■ Figure 4 - Workflow executed by the Quality Expert.

■ Figure 5 - Updated SODALITE general architecture.

■ Figure 6 - Updated SODALITE Modelling Layer Architecture.

■ Figure 7 - Sequence diagram for UC13.

■ Figure 8 - Sequence diagram for UC1.

■ Figure 9 - Sequence diagram for UC2.

■ Figure 10 - Sequence diagram for UC12.

■ Figure 11 - Updated SODALITE IaC Layer Architecture.

■ Figure 12 - Sequence diagram for UC3 Generate IaC.

■ Figure 13 - Sequence diagram for UC4 Verify IaC.

■ Figure 14 - Sequence diagram for UC5 Predict and Correct Bugs.

■ Figure 15 - Sequence diagram for UC11 Define IaC Bugs Taxonomy.

■ Figure 16 - Sequence diagram for UC15.

■ Figure 17 - Sequence diagram for UC16.

■ Figure 18 - Sequence diagram for UC17 Platform Discovery Service.

■ Figure 19 - Updated SODALITE Runtime Layer Architecture.

■ Figure 20 - Sequence diagram for UC6.

■ Figure 21 - Sequence diagram for UC7.

■ Figure 22 - Sequence diagram for UC8.

■ Figure 23 - Sequence diagram for UC9.

■ Figure 24 - Sequence diagram for UC10.

■ Figure 25 - Sample IAM authentication workflow.

■ Figure 26 - Structure of ML exemplar application.

Project No 825480.

D2.2 - Requirements, KPIs, evaluation plan and architecture - Intermediate version Page 12

© Copyright Beneficiaries of the SODALITE Project

1. Introduction

This document is the continuation of D2.1, where the consortium identified the first set of
requirements behind the SODALITE environment, designed a first architecture, revised the KPIs

stated in the description of work and provided some first hints on how to evaluate them. This
document describes an updated and ameliorated intermediary version, which aims to collect,
integrate, and present all the work done over the second year of the project and in preparation for

the milestone at month 24 (MS6). The work presented here is not simply incremental, since it comes
one year after the initial document, but it also contains new and original contributions developed

by the consortium in this second leg of the project.

Even if the document complements D2.1, it is self-contained and supplies the reader with updated
descriptions of the different aspects. First of all, we frame the document by summarizing the

innovative elements conceived and developed over the second year. Then we move to the work
done on requirements and we start by recalling all the requirements identified initially and setting
their current fulfilment level. Diverse requirements proposed in D2.1 are now fully implemented;

some requirements are now outdated, some will be addressed in the next, final iteration, and others
have been modified due to the new/current needs. The final status of the requirements will be

provided at M30 in deliverable D2.3.

The section on the architecture of the SODALITE environment is aimed to both refine the initial

architecture and frame the novel elements. We also want to present a complete map of the
environment, describe each component and clarify which component does what, dedicate special

emphasis to the infrastructures we orchestrate, and show a complete pipeline.

The work done on KPIs in this second year was twofold. We first continued clarifying and refining the

meaning of the different KPIs proposed in the description of work and initially reported in D2.1. We
then continued by moving a step further and identifying the proper means, tools, and workflows to

assess these indicators by proposed deadlines. This document is only in charge of paving the ground
to the evaluation of these metrics. deliverable D6.3 provides the actual values we collected and

discusses them.

Similarly, to the role played by D2.1, this document summarizes the activities carried out over the
second year of the project and can be seen as the preamble of the different activities then carried
out in the other work packages. Specifically, this document can be seen as an introduction for D4.2,

and D5.2, and should also be considered in conjunction with D6.3, where the consortium presents
the intermediate implementation and evaluation of the SODALITE platform and use cases.

The rest of the document is then structured around the organization highlighted above. Section 2

describes the innovation addressed in the second year. Section 3 summarizes the work done on
requirements. Section 4 describes the new, ameliorated architecture, and develops around the
three main technical work packages of the project. Section 5 describes the workflows identified to

assess the different KPI already presented in D2.1. Section 6 concludes the document.

2. Year-two innovation

The main focus of the SODALITE consortium in the second year of the project has been on the

extension and consolidation of the SODALITE vision and of the SODALITE results.

2.1 Vision

The context in which the project develops concerns the configuration, deployment and operation of

complex applications. Often these are developed by specialists of particular application domains

and particular development technologies that, however, are not necessarily expert of the resources
from which applications could benefit for their execution. This implies that for such teams it is not

easy to take care of IT-intensive tasks such as handling the deployment of complex applications on

Project No 825480.

D2.2 - Requirements, KPIs, evaluation plan and architecture - Intermediate version Page 13

© Copyright Beneficiaries of the SODALITE Project

multiple heterogeneous infrastructures, making this process repeatable with no errors, fine tuning

the execution of applications in order to keep performance and costs under control.

There are many evidences of the complexity of such tasks that have led to the introduction of the
DevOps lifecycle, to reinforce the importance and the advantages of a good cooperation between
Dev and Ops, and to the emergence of the Infrastructure as Code (IaC) paradigm, which implies the
possibility to write software that defines the way applications should be deployed, configured and
executed.

Nowadays, while DevOps and IaC are revolutionizing the way IT-intensive companies work and are

organized, they are still too complex and cumbersome to be adopted by other types of organizations
which, indeed, would certainly take advantage of them. For instance, adopting the IaC paradigm

today means, on the one side, gaining the ability to deploy and configure complex applications very

quickly and automatically, but, on the other side, it means getting acquainted to multiple scripting

languages and to the corresponding execution mechanisms and being able to manage the whole

development process of IaC, including its verification and maintenance.

In this context, SODALITE provides tools to enable simpler and faster development of IaC and

deployment and execution of heterogeneous applications in HPC, Cloud & SW defined
computing environments. Particular focus of SODALITE is on performance, quality, and
manageability of the applications on the underlying infrastructures as well as of the corresponding
IaC.

Consistently with this vision, SODALITE offers smart modelling capabilities to help non-expert

DevOps teams in defining Abstract Application Deployment Models, identification of potential issues

in the defined models, automated generation of IaC code, optimization of application execution

environments for HPC targets, automatic execution of IaC code so to lead to the deployment of the

application, runtime monitoring, efficient scale-in and out or the application and reconfiguration if
needed. These features are offered targeting multiple types of infrastructural resources as execution

environments for application components. In particular, we focus on classical cloud-based Virtual
Machines (VMs), High Performance Computing clusters (HPC), and Kubernetes edge clusters.

While the literature presents several approaches that support some DevOps and IaC activities in a

cloud environment, the main novelty of SODALITE is essentially to create a complete framework
tackling multiple DevOps aspects and targeting multiple types of resources.

2.2 Innovations introduced in the second project year

While in the first project year we have been focusing on developing the basic mechanisms behind

SODALITE (a simple editor, the basis of the semantic support empowering the editor, the integration

with a standard orchestration mechanism and an off-the-shelf monitoring system, as well as some

initial idea concerning verification and runtime optimization), in the second project year the
emphasis has been on extending these basic mechanisms to introduce significant innovations in
each area. More specifically, the main results achieved target the following project aspects:

● Extension of the main services supporting the modelling activity and the corresponding

generation of executable artifacts:

○ Multiview in-sync representation of AADM: textual, tree-based (read-only), form-
based and graphical view representations of the same AADM (and their modelling
elements) are available, offering different synchronized representations of the same
model for different purposes. Tree-based representations are suitable for overviews,

textual representations for fast and efficient modelling and graphical ones for

communication purposes.
○ Automated platform discovery produces a TOSCA description of infrastructure: this

new mechanism allows identification of specific resources and the creation of a
TOSCA resource definition by querying the status of the available infrastructures at

Project No 825480.

D2.2 - Requirements, KPIs, evaluation plan and architecture - Intermediate version Page 14

© Copyright Beneficiaries of the SODALITE Project

a certain point in time. This is particularly important as it relieves the Resource

Expert (RE) from the need to manually model and define resource types, thus saving
significant modelling time. Further details are provided in deliverable D4.2.

○ Improved context assistance in model authoring: Context assistance has been

noticeably improved for authoring both Resource and Application models, but also

implemented for Optimization and Ansible models.

The user can get more recommendations and the model gets semantically validated

under more cases. The context assistance is smarter (receiving context-sensitive
suggestions) from the Knowledge Base (KB) in AADM authoring, but it is also
available for RM. For the validation recommendations that convey associated
solutions, quick fixes are offered to the users, who can then apply them. Context

assistance and validation have been improved by 166%, and 200%, respectively.

○ Support of TOSCA Policies in the Modelling layer: Ontologies have been enriched for

supporting TOSCA Policies both in RMs and AADMs. Using the IDE, the RE and AoE
can include those policies in their models. By supporting policies, not only a relevant
aspect of the TOSCA specification is covered, but also, according to their definition,
the cloud infrastructures could autoscale based on monitor parameters.

Furthermore, during the runtime, resources or nodes offering specific policies could
be selected.

○ Model governance: through the IDE, models created by the user and stored in the KB

can be browsed and retrieved for edition. CRUD operations on stored models are
supported.

○ Improved AADM creation: the process to create an AADM with associated textual and

graphical editors is supported through a wizard.

○ Improved AADM deployment process: an IDE wizard manages the AADM deployment
process and the fulfilment of the required input parameters.

○ Modularization of AADM and RM: infrastructure resources and application
components can be grouped together in logical units or modules, stored in the KB.

Access rights for modules are enabled, restricting the access to those modules to
authorized users. KB assistance is also restricted to search in declared modules,
improving assistance performance and accuracy.

○ Improved scalability in the semantic services:

Now, semantic services are more scalable through extensive experiments by tuning
the configuration of the Knowledge Base, and also by refactoring the reasoning

services.

○ Support for the creation of Ansible scripts integrated with the Resource Models: this

is an add-on that offers users content assistance mechanisms that guide developers
in the creation of scripts that are coherent with the definition of the resource models

in which context they are used. Further details are provided in deliverable 4.2.

○ The MODAK package, a software-defined optimisation framework for containerised
HPC and AI applications, is responsible for enabling the static optimisation of

applications before deployment. MODAK aims to optimise the performance of

application deployment to infrastructure in a software-defined way. Automation in
application optimisation is enabled using performance modelling and container

technology. Further details are provided in deliverable D4.2.

○ Semantic and Analysis Support including: Bug taxonomy; Unified best and bad

practices catalog; Unified smell catalog; Linguistic anti-pattern detection via NLP

and deep learning; Improved support for detecting smells via a semantic approach.
Further details are provided in deliverable 4.2.

Project No 825480.

D2.2 - Requirements, KPIs, evaluation plan and architecture - Intermediate version Page 15

© Copyright Beneficiaries of the SODALITE Project

● Extension of the main runtime mechanisms:

○ Advanced orchestration features, including the possibility to reconfigure part of the
infrastructure or the deployed application, the parallelization of deployment
execution to make it faster, the possibility to restart or resume a failed deployment

from the point of failure as well as the definition of a well-designed REST API and

support for the newly introduced orchestration features. Further details are
provided in deliverable 5.2.

○ Dynamic Monitoring supports the dynamic allocation and configuration of

specialized monitoring probes upon the deployment of applications on target
infrastructure resources and their decommission when those applications complete

their operations. Those probes collect specific metrics on the application and

resources activity, which are aggregated into the common monitoring database.
Further details are provided in deliverable 5.2.

○ Refactoring: A machine learning based methodology for predicting the performance

of alternative deployments of an application; Improved policy-based high-level

support for deployment adaptation; TOSCA compliant resource discovery using
semantic matchmaking; and Improved control theoretic solutions for the
coordinated management of heterogeneous resources through both smart load
balancing and fine-grained resource management. Further details are provided in

deliverable 5.2.
● Productization of the whole platform:

○ Extension of the whole SODALITE architecture and corresponding platform to cope
with authentication and authorization of users as well as to handle the infrastructure

secrets such as RSA keys, tokens, passwords needed to access the underlying

infrastructures. This aspect is described in Section 4.4 of this deliverable.
○ Development of TOSCA/Ansible blueprints and scripts to automate the deployment

of the SODALITE platform itself, in order to simplify adoption and usage by external

users. This aspect is described in [D6.3].

○ Introduction to code quality analysis tools (integrated in SonarCloud), definition of

quality gates and identification of those metrics to be kept into account to increase
code quality. This aspect is described in deliverable 6.3.

3. Updates on requirement elicitation

This section describes the activities carried out in the second year and related to requirements

management. The work we did can be organized around three main dimensions:

● We have maintained the initial set of requirements and modified it properly to keep it up-to-
date. The evolution of the project imposed us to rethink some requirements, retarget a few,

and modify others. This is why Section 3.1 provides the initial set of requirements, which we

presented in D2.1. along with the use cases they belong to, and for each requirement we
briefly describe its current status.

● We also worked on assessing the use cases presented in D2.1 and this activity resulted in the
identification of a new use case, which is reported in Section 3.2.

● Finally, we have continued collecting requirements from our demonstrators, from the

technology providers, and also for the market, interpreted in a wider sense, to always
complement our requirements with possibly new needs and requests. These new

requirements are then presented in Section 3.3.

Project No 825480.

D2.2 - Requirements, KPIs, evaluation plan and architecture - Intermediate version Page 16

© Copyright Beneficiaries of the SODALITE Project

3.1 Initial requirements

This section lists all the requirements identified in D2.1 and provides an indication of their
implementation. On average, we use simple percentages to quantify the fulfilment of each

requirement, and add clarification notes to explain possible delays, deviations, future plans, or

deletions.

Id. Title
Realization

(percentage,

deleted, or Y3)

Comments

UC1.R1 The SODALITE Design-time

environment requires an API

to the
application/Infrastructure

abstract pattern repository

100% Application and infrastructure

abstract patterns can be

stored/retrieved to/from the
repository

UC1.R2 DSL: specification of

application patterns and

models

100% All modelling needs of UCs

have been addressed.

UC1.R3 Authoring of application
abstract models (part of
abstract tuple)

100% AADM/RM for all UCs are
available

UC1.R4 Integration of Application

Developer Editor with

SODALITE SD

100% The specification of the

application abstract models

takes place within the same

IDE that the developer uses for

designing and implementing
her application.

UC1.R5 IntelliJ IDEA IDE extension deleted SODALITE IDE uses XText

technology that supports the
migration of the SODALITE

AADM/RM textual editors to
IntelliJ. However, the lack of

resources prevents us from
addressing this requirement

without compromising others
ranked higher. Besides, this

support does not ease the
development of the other IDE
features for IntelliJ

UC1.R6 Description of application and

standard build and run
options

75% Compilation of application in

to IaC artifacts is achieved
through interface operations

that include Ansible DSL

UC1.R7 Support for microservice-
oriented architecture

90% The deployment of
microservice-oriented

architecture developed

artifacts is supported.

UC1.R8 Abstractions and Mechanisms

for Enforcing Performance,
Security, and Privacy

deleted The abstractions such as Load

Balancer, Queue, Policy
Enforcement Points are

Project No 825480.

D2.2 - Requirements, KPIs, evaluation plan and architecture - Intermediate version Page 17

© Copyright Beneficiaries of the SODALITE Project

implemented by the case

studies as necessary and are
not part of SODALITE stack.

UC1.R9 Augment Application Models,

IaC Models, and Infrastructure
Models for Predicting Control

Objectives

deleted We use benchmarking for

building performance models.
In case of the performance

modelling for deployment
refactoring, the variants in the
deployment models are

models represented using the

feature modelling (a separate

model). Thus, so far, there is
no need for augmenting the

IaC models.

UC1.R10 Modelling language allowing

modelling of all the necessary

information to enable the
generation of deployable IaC

75% Complete Ansible DSL

integration in IDE and

RM/AADM DSL pending

UC2.R1 DSL: specification of
optimization patterns and

models

75% Partially complete.
Abstracting optimizations

strategies can be improved

further.

UC2.R2 Concretization of abstract

models into

deployment/configuration
plans

50% Scenarios of concretization -

resolving node instance

requirements at deployment
time using KB inference not
fully explored

UC2.R3 OpenFaas modelling for
serverless computing actions

Y3 This feature is planned for Y3
of the project.

UC2.R4 SLURM/Torque modelling 100% Supported

UC2.R5 OpenStack modelling 100% Supported

UC2.R6 Use context-aware search and

discovery, matchmaking and

reuse of cloud applications

and infrastructures

100% Supported

UC3.R1 SODALITE Runtime (SR) should

support Ansible playbooks and
TOSCA node definitions for
application deployment in
public cloud

75% AWS and Publicly accessible

Openstack instances are
currently supported by the
SODALITE Runtime Layer

UC3.R2 SR should support Ansible
playbooks and TOSCA node
definitions for application

deployment in HPC

environment

100% Both TORQUE and SLURM
deployments are supported

UC3.R3 SR should support Ansible

playbooks and TOSCA node

definitions for application
deployment on edge

70% Currently support through

Kubernetes Edge cluster

Project No 825480.

D2.2 - Requirements, KPIs, evaluation plan and architecture - Intermediate version Page 18

© Copyright Beneficiaries of the SODALITE Project

UC3.R4 SR should support Ansible

playbooks and TOSCA node
definitions for application
deployment in fog

70% Currently support through

Kubernetes managed and SSH
accessible devices

UC3.R5 Support for SODALITE DSL 100% Supported

UC3.R6 Generation of correct,
complete and deployable IaC

artifacts

100% Supported

UC3.R7 Generation of IaC which

exploits heterogeneous
architectures

100% Supported

UC3.R8 Reporting of errors in input
models which support error
prone and prevent invalid IaC

generation

60% TOSCA and Ansible scripts can
be checked for syntax errors.
The improved support for

control flow errors and the
integration with IDE are
missing.

UC3.R9 Generation of IaC enabling
configuration of runtime

components (monitoring,
optimization and refactoring)
as well as of runtime

management policies

(refactoring policies, security
policies, etc.).

75% Runtime management policies
not yet implemented

(Refactoring policies, security
policies)
Note that, for Refactoring

policies, we use one of the

widely used business rule
languages, Drools, which have
a modelling support, that can

be installed in SODALITE IDE.

UC3.R10 Generation of IaC which

exploits serverless computing
artifacts (cloud functions)

Y3 Planned for Y3

UC3.R11 Orchestrator input 90% Enforcement of TOSCA

policies is pending

UC4.R1 Verification of deployment
descriptions for syntax and

semantic errors

80% Most syntax and semantic
errors for TOSCA are

supported. The syntax error
detection capability needs to

be improved to support the
TOSCA 1.3 version.

UC4.R2 Verification of provisioning

workflows derived

from/specified in the
deployment model

descriptions

25% (Y3) Requirement made explicit.

This feature is planned for Y3

of the project. The basic
support has been developed.

UC5.R1 Predict and Correct
Performance Defects in

Deployment Models

25% (Y3) We renamed the requirement
and this feature is planned for

Y3 of the project. The basic
support has been developed.

Project No 825480.

D2.2 - Requirements, KPIs, evaluation plan and architecture - Intermediate version Page 19

© Copyright Beneficiaries of the SODALITE Project

UC5.R2 Predict and Correct Security

and Privacy Defects in IaC
Artifacts

100% Merged with a UC4

requirement. Detection of
common security/privacy
smells in TOSCA and Ansible

are supported.

UC5.R3 Build an Infrastructure Code

Quality Framework

75% Originally associated with

UC4. Structural IaC metrics
can be calculated. Control
flow metrics are planned in Y3

UC6.R1 SODALITE Runtime supporting
various architectures

90% OpenFaaS support planned in
Y3

UC6.R2 Support for extension plugins 90% OpenFaaS support planned in
Y3

UC6.R3 SR should support Ansible

playbooks and TOSCA node

definitions for application
deployment in private cloud.

100% Private Openstack cloud

supported

UC6.R4 SR plugin supporting Docker

Compose

100% SR dos not support docker

compose but instead enables
modelling and execution of
docker hosts, registries,

volumes, networks, containers

through TOSCA topology

models

UC6.R5 Heterogeneous infrastructure 90% Full support for OpenFaaS and

Kubernetes pending

UC7.R1 Lightweight open source

Message oriented middleware
(MOM) for intra-service

communication

deleted Application owners control

and model their own inter-
component information flow

and middleware - this is an
internal application design
feature

UC7.R2 Smart application scheduling 100% Application requests are
efficiently scheduled by the

Node Manager on fast GPUs or
CPUs according to application
needs (e.g., SLA, current

workload)

UC8.R1 IDE Infrastructure dashboard
(monitoring, deployment,

reconfiguration)

50% The Grafana based dashboard
is available, showing the

monitoring metrics. Additional
deployment and
reconfiguration information

will be rendered in the IDE

governance view, released in

Y3.

UC8.R2 Collect network metrics 75% At present, Skydive metrics
are simply reported to

Prometheus and shown in a
dashboard. Y3 - We want to

Project No 825480.

D2.2 - Requirements, KPIs, evaluation plan and architecture - Intermediate version Page 20

© Copyright Beneficiaries of the SODALITE Project

make dynamic changes based

on these metrics. This
requirement is closely
connected with UC8.R9.

UC8.R3 Collect host metrics (CPU,
memory)

75% Node exporters are providing
the export of data from the

supported infrastructures. The
improvements depend on the
use cases - their further

development is moved to Y3.

UC8.R4 Monitor Overprovisioning

(Performance), Security, and

Privacy Metrics

deleted Other monitoring

requirements include this

requirement

UC8.R5 Monitoring levels 75% Current monitoring support
the collection of metrics a

different levels: a) at
application level, for HPC jobs,

through the HPC exporter, b)
at runtime environment, both
for VMs, through the Node

exporter, and K8s pod,

through the K8s exporter, and
c) and infrastructure level,

through the IPMI and Skydive

exporter. In Y3, additional
metrics required by validation
scenarios will be collected.

UC8.R6 Monitoring infrastructures 75% Current support for the

monitoring from some the

supported platforms,
including Cloud (through the

Node Exporter), HPC (through

the HPC exporter) and EDGE
(through the K8s exporter).

The Y3 plans include to
improve collected metrics for
all required infrastructures,

the detection of anomalous
behaviour in monitored
metrics and their dashboard
visualization.

UC8.R7 End-to-end audit logging 25% (Y3) Basic support for per-
component logging is in-

place, but non-repudiation of

the audit logs will be done in
Y3.

UC8.R8 Visualization of service
deployment and adaptations

Y3 IDE View for service
deployment management is

planned for Y3. View for
deployment metrics is

Project No 825480.

D2.2 - Requirements, KPIs, evaluation plan and architecture - Intermediate version Page 21

© Copyright Beneficiaries of the SODALITE Project

currently available through

the monitoring dashboard.

UC8.R9 Absorb Skydive metrics 75% At present, these metrics are
simply reported to

Prometheus and shown in a
dashboard. Y3 - We want to

make dynamic changes based
on these metrics. This
requirement is closely

connected with UC8.R2.

UC9.R1 Model Control/Optimization

Objectives (Performance,

Privacy, and Security)

Y3 The required Quality of

Service for the application

should be specified.

UC9.R2 Model Design (Adaptation)
Choices

100% The adaptation choices can be
modelled using the feature

modelling and policy-based
adaptation language.

UC9.R3 Find an Optimal Design
Solution Considering Control

Objective Tradeoffs

75% An alternative deployment
model can be selected. But,

the selection process does not
consider tradeoffs in quality

goals.

UC9.R4 Forecast Workload (Multi-

class/tenant)

75% Regression models are used to

forecast workloads. The

implementation reuses the
existing open source libraries.

UC9.R5 Forecast Infrastructure

Dynamics

Y3 This feature is planned for Y3

of the project.

UC9.R6 Predict Violations of Control

Objectives (Performance,
Security, and Privacy)

50% The violations of deployment

policies and performance goals
can be predicted.

UC9.R7 Generate Application and

Infrastructure Adaptation
Plans

deleted These requirements are not

anymore relevant for the
refactorer. The refactorer

generates a new deployment
model variant and sends it to
xOpera, which does the actual

adaptation.

UC9.R8 Enact Application and

Infrastructure Adaptation
Plans

deleted

UC9.R9 Detect and Correct Defects at
Runtime

25% (Y3) This feature is planned for Y3
of the project. The basic

support has been developed.

UC9.R10 Static Provisioning of
Heterogeneous Resources

75% xOpera supports the
provisioning of heterogeneous

resources (e.g.,
OpenStackVMs, AWS VMs, HPC

resources, and Edge
resources). The enforcement
of TOSCA policies (on

scalability) is missing.

Project No 825480.

D2.2 - Requirements, KPIs, evaluation plan and architecture - Intermediate version Page 22

© Copyright Beneficiaries of the SODALITE Project

UC9.R11 Elastic Provisioning of

Heterogeneous Resources

75% Node Manager dynamically

scales existing resources
according to applications’
needs. Deployment Refactorer

can perform ad-hoc changes

to the deployment topology of
the application. The
provisioning of the

deployment topology can be
done at runtime by xOpera.

The integration between Node

Manager and Deployment
Refactoring is missing

UC9.R12 TOSCA inputs to SR 90% Refactoring Through
reconfigured TOSCA
blueprints

UC9.R13 Dynamic Policy-based
restrictions on resource access

from the Edge

50% Blueprint to support
AlertManager integration

missing

UC10.R1 Create and Maintain Runtime

Models

75% The runtime models

maintained by the refactoring

support need to be improved
to cover all SODALITE

scenarios.

UC10.R2 Horizontal Resource
Scalability

Y3 TOSCA auto-scaling policies
need to be implemented for
cluster node types.

UC10.R3 Vertical Resource Scalability 100% Node Manager is able to
vertically scale resources at

runtime according to
applications’ needs

UC11.R1 Create a Taxonomy of
Infrastructure Bugs and
Resolutions

90% Bug and smell taxonomies
need to be validated with a
survey with developers.

UC12.R1 Select Optimisations for
Application and Infrastructure

targets

75% QE selects the optimizations
that can be applied to the

application based on the
available target resources

UC13.R1 Docker Modelling 100% Container runtime is
supported

UC13.R2 Kubernetes Modelling 70% Currently Covered by
deployment to Kuberentes
through Helm charts

UC13.R3 Istio Modelling deleted It can be handled as a Helm
chart. The time was added,

Kubernetes were not fully in
scope.

Project No 825480.

D2.2 - Requirements, KPIs, evaluation plan and architecture - Intermediate version Page 23

© Copyright Beneficiaries of the SODALITE Project

UC13.R4 Ontology Serialization 100% The semantic model is

compliant with OWL2
language

UC13.R5 TOSCA Compliance 75% SODALITE DSLs are TOSCA

compliant

UC13.R6 Authoring of infrastructure
abstract models (part of
abstract tuple)

75% KB content-assistance not
completed for RMs

UC13.R7 IaaS Modelling 90% Abstractions of IaaS

UC13.R8 IaC deployment management

Modelling

90% Generation of effective

infrastructure code

UC13.R9 Description of the available
hardware

90% Partially covered by
automated Platform Discovery

Service and extended
manually by the RE, if needed

UC14.R1 Estimate Performance of

Designs

90% The performance of the

application with many
deployment alternatives can

be estimated using ML based

performance models.

UC14.R2 Estimate Security Level of
Designs

75% The number and type of
security smells can be

calculated.

UC14.R3 Estimate Privacy Level of
Designs

75% The number and type of
security smells can be

calculated.

UC14.R4 Assess the Impact of a Design
Choice

75% The performance of the
changes to a deployment

model variant in terms of
selecting or deselecting

deployment options can be

estimated via ML models.

UC15.R1 Delivery of optimized

application

90% Static application

optimization is supported

through the definition of the

optimization model targeting
specific infrastructure and
executed via MODAK through
the selection of a specific

optimized image to be

deployed on the
infrastructure.

UC15.R2 Optimize Application and

Deployment

30% (Y3) The full implementation of

this feature is planned for Y3
of the project. The Application

Optimiser currently supports

optimisations of AI
applications built from source

using AI TensorFlow, PyTorch,

Project No 825480.

D2.2 - Requirements, KPIs, evaluation plan and architecture - Intermediate version Page 24

© Copyright Beneficiaries of the SODALITE Project

MXnet frameworks, as well as

optimisations through the
usage of graph compilers as
available for a given

framework.

UC16.R6 Lightweight application base

images

100% Application Ops Expert defines

the base image from which to
build the image

3.2 New UC

This section presents the new UC we added in the second year. It is about the discovery of available
platform resources, which can then be used in the foreseen workflows. The approach simplifies the
requirement to model the targeted infrastructure, by providing its model automatically.

UC17: Platform Resource Discovery

Actors: Resource Expert (RE)

Entry condition: A defined Application Deployment Project Domain (ADPD), defined
platform access tokens and undefined platform node types
describing for example: computation nodes, networking, volumes,

security groups ...

Flow of events: ● RE uses IDE to select an ADPD to which s/he adds the

platforms

● RE uses IDE to select the platform type (OpenStack, HPC

Torque/Slurm, Edge), enters the needed access tokens and
connectivity details per platform instance

● RE chooses the triggering for Platform Discovery Process

updates (e.g. manually, time scheduled, by web hook
token) through IDE

● RE saves the Platform Discovery Access Definition (PDAD)
to the KB from IDE

● RE starts the platform discovery process (PDP) for the

selected ADPD through the IDE

● RE gets the results of platform discovery process in TOSCA
and checks the validity of the platform definition

● RE saves the valid TOSCA Platform Resource Definition

(PRD) to KB for the selected ADPD

Exit condition: The platform's resource definition is stored in the KB for the

selected ADPD

Exceptions: Errors in the access token definition (PDAD), inaccessible platform
endpoint, errors in the TOSCA file definition gathered from the

PDP, errors while submitting the PRDs to the KB

Project No 825480.

D2.2 - Requirements, KPIs, evaluation plan and architecture - Intermediate version Page 25

© Copyright Beneficiaries of the SODALITE Project

Associated requirements

Id: UC17.R1 Title
OpenFaaS modelling
for serverless

computing actions

Rationale
OpenWhisk and OpenFaaS a popular and highly

scalable serverless computing / cloud functions
platform that allows for functional logic to be
written and triggered in response to events or

directly via a REST API. These functions play a
key role in modern mobile application

deployment, and must be managed and utilized
alongside other types of conventional

infrastructure.

Scope
Application

Components Library

Use Case
Select

Resource (WP3)

Id: UC17.R2 Title
SLURM/Torque

modelling

Description
Modelling must support SLURM/Torque for HPC.

Rationale

Slurm is an open source, fault-tolerant, and
highly scalable cluster management and job
scheduling system for large and small Linux

clusters. Slurm requires no kernel modifications

for its operation and is relatively self-contained.

Scope

Application
Components Library

Use Case

Select
Resource (WP3)

Id: UC17.R3 Title
OpenStack modelling

Description
Modelling must support besides container

based deployments also Bare Metal and VM
abstractions such as OpenStack.

Rationale
OpenStack is an open source cloud operating

system that controls large pools of compute,
storage, and networking resources throughout a

datacenter, all managed through a dashboard
that gives administrators control while
empowering their users to provision resources

through a web interface.

Scope
Application

Components Library

Use Case
Select

Resource (WP3)

Id: UC17.R4 Title

Use context-aware

search and discovery,

matchmaking and
reuse of cloud
applications and

Description

The existing application designs (or

components) and infrastructure should be able

to be dynamically discovered and used when
optimizing the application.

Project No 825480.

D2.2 - Requirements, KPIs, evaluation plan and architecture - Intermediate version Page 26

© Copyright Beneficiaries of the SODALITE Project

infrastructures

Rationale
The SD needs to use the rule-based semantic
reasoning techniques that are developed by

CERTH for context-aware search and discovery,
matchmaking and reuse of cloud applications
and Infrastructures. The deployment
improvement module should be able to query
and update the semantic repository.

Scope
Application

Components Library

Use Case
Select

Resource (WP3)

3.3 New requirements and their impact on UCs

This section presents the new requirements we collected over the second year. We identified these

requirements in different ways: by working on the first version of the environment, by continuing
listening to the needs of our first users (demonstrators), and also by analysing the state of the art,

which is a continuous activity carried out in the project. Because of the different maturity level of the
project, the way they were identified, and also the process we followed, these requirements are
broader than the previous ones and encompass multiple UCs.

Id: Y2_R1 Title: Alternative distributed field testing Deadline: M36

Use cases

AOE: UC1-10, UC16, UC15, RE: UC 12-
13, QE: UC14

Rationale

SODALITE should support alternative distributed
deployment configurations for field testing

Description

SODALITE should support the design of multiple deployment models, transformations,

execution environments, monitoring and feedback infrastructures. The usage of runtime

optimization should identify new deployments. Within the context of a specific deployment
model, the usage of the control theory-based optimization should adjust resource usage at
runtime. Comparison of HPC and cloud-based scenarios.

Id: Y2_R2 Title: Debugging and testing-oriented pipelines Deadline: M36

Use cases
AOE: UC1-10, UC16, UC15, RE: UC12-

13, QE: UC14

Rationale
SODALITE should support the ability of running a

reduced pipeline for debugging or test runs

Description

The idea is to have the possibility of creating a “playground environment” for running some

components during testing and experiments. We also envision the possibility of defining debug-
level policies that allow us to gather monitoring data needed to check the status of the
execution. The components can be tagged as skipped (similar to xUnit) in the DSL. Then these

components will not be included in the AADM that is sent to WP4 for deployment. If A->B, and B
should be skipped, then the KB returns an error.

Project No 825480.

D2.2 - Requirements, KPIs, evaluation plan and architecture - Intermediate version Page 27

© Copyright Beneficiaries of the SODALITE Project

Id: Y2_R3 Title: Advanced component connectors Deadline: M36

Use cases
AOE: UC1-3, UC16, RE: UC12-13

Rationale
SODALITE should support a more general

implementation of component connectors to cope with
changing workloads

Description

The modelling support should suggest more scalable and de-coupled ways to connect
components so that the portability of the use case and its runtime management could be more
effective.

Id: Y2_R4 Title: Self-adjusting component connectors Deadline: M36

Use cases
AOE: UC1-3, UC16, RE: UC12-13

Rationale
SODALITE should support the adaptation of connectors

when needed at runtime

Description
The runtime support should be able to self-adjust connectors and involved component instances

given the actual workload.

Id: Y2_R5 Title: Parallel workflow executions Deadline: M36

Use cases

AOE: UC1-3, UC16, RE: UC12-13

Rationale

SODALITE should support modelling of HPC workflows

Description

Besides supporting HPC workflow execution based on simple dependency mechanisms,
SODALITE should provide a more extensive support to TOSCA workflows. The runtime layer

should recognise the components that can be executed in parallel and execute accordingly. It
would be good to have parallel deployment, e.g. in the cases of offline ML training or deployment

of independent components for speeding up the deployment time.

Id: Y2_R6 Title: Incremental workflow re-execution Deadline: M36

Use cases
AOE: UC1, UC3, UC4, UC5, UC7, UC8,
UC9, UC10

Rationale
SODALITE should support restarting a workflow from a
failed component

Description

For the cases like in HPC, where the job execution can take several hours (even days), it is not
feasible to restart the workflow from the beginning if the workflow failed at some point. The
components that were already executed before the failed component can be tagged as

Project No 825480.

D2.2 - Requirements, KPIs, evaluation plan and architecture - Intermediate version Page 28

© Copyright Beneficiaries of the SODALITE Project

"skipped". The IDE should refer to previous deployment for workflow re-execution (or for

deployment updates in general) and it is up to the runtime layer to calculate the deltas based on
the current deployment.

Id: Y2_R7 Title: Easy integration of external components Deadline: M36

Use cases

AOE: UC1-7, UC16 RE: UC12-13

Rationale

SODALITE should provide easier integration of
components by providing guidance and suggestion of
integration points for a particular component type

Description

Users will always be allowed to integrate new components by hand (e.g. in refactoring), and the
specific glue code will not be generated automatically. The IDE should however force the

definition of key parameters. For example, for a cloud component, the IDE should stress the
"exposed ports" parameter if there is a dependency between another cloud component and this

one; for HPC components, the "input/output data" should be stressed.

Id: Y2_R8 Title: Heterogenous edge resources Deadline: M36

Use cases

AOE: UC1-UC10, UC17 RE: UC12-13
QE: UC11, UC14

Rationale

SODALITE should support the discovery of
heterogeneous resources at the Edge

Description

SODALITE must be able to understand capabilities of specific Edge Gateways (e.g., through
parsing of custom node labels). It can be triggered by the refactoring. Resources should then be
introduced in the KB. Three aspects: discovery of instances, discovery of their capabilities (lazy

update of the KB based on what is discovered in that particular instance), discovery of resource

availability. Nodes must be provisioned before they can advertise their capabilities. The system
must also check separately whether a device is available and whether it has already been

provisioned.

Id: Y2_R9 Title: Runtime model inference Deadline: M36

Use cases
AOE: UC6, UC9

Rationale
SODALITE should support the runtime discovery of
components

Description
SODALITE should be able to automatically get a model from the running infrastructure such as

current available resources, their amounts and their types.

Project No 825480.

D2.2 - Requirements, KPIs, evaluation plan and architecture - Intermediate version Page 29

© Copyright Beneficiaries of the SODALITE Project

Id: Y2_R10 Title: Edge-optimized containers Deadline: M36

Use cases
AOE: UC1-UC7, UC16, UC17 RE: UC12-

13 QE: UC11, UC14

Rationale
SODALITE should support containers optimized for edge

resources and should allow users to incorporate in these
containers the needed elements (e.g., trained models) so
that they can be shipped to the edge

Description
Edge infrastructures require specific containers. Base models can be trained in the cloud, but
post-processing of the model is required for targeting specific accelerators. This requirement is

also related to data movement and compliance.

Id: Y2_R11 Title: Singularity containers Deadline: M36

Use cases

AOE: UC1-3, UC16

Rationale

SODALITE should support prebuilt optimized Singularity
containers configuration during the IaC generation so

that the container can be executed on any infrastructure
and can be configured for different optimization

Description
SODALlTE should develop containers for the specific case studies. This means developing
containers for different and specific technologies.

Id: Y2_R12 Title: Multi-arch containers Deadline: M36

Use cases

AOE: UC6-7, UC9-10, UC16

Rationale

SODALITE should support multi-arch container images.
These images also include edge deployment; we could

also have multiple variants of containers for different
optimizations.

Description
Image builder and container registry must be able to support the different possible target
architectures for deployment.

Id: Y2_R13 Title: Support for automated optimization options Deadline: M36

Use cases

QE: UC14

Rationale

SODALITE should automate the definition of
optimization options for a target infrastructure

Project No 825480.

D2.2 - Requirements, KPIs, evaluation plan and architecture - Intermediate version Page 30

© Copyright Beneficiaries of the SODALITE Project

Description

SODALITE should allow QEs to specify a target infrastructure, the performance model of which
shall be derived in an automated way. Based on this model, the optimisation options shall be
suggested and/or applied.

Id: Y2_R14 Title: Dynamic probing of running components Deadline: M36

Use cases
AOE: UC8-9

Rationale
SODALITE should support the
validation/monitoring/alerting that the

modelled/discovered components are working properly

Description
The monitoring system must send alerts whenever something does not work. In addition, the RE

should be able to define policies and check the behaviour against them.

Id: Y2_R15 Title: Cloud-to-edge refactoring Deadline: M36

Use cases

AOE: UC1-10, RE: UC12, UC13

Rationale

SODALITE should support an extension of deployment
refactoring for Cloud-to-Edge deployment. In particular,
it should support deployment of microservices for hybrid

multi-architecture clusters

Description
SODALITE should target the provisioning and deployment of Edge instances, microservice

deployment with suitable container images for hybrid multi-arch clusters (Kubernetes), and
serverless functions (OpenFaaS).

Id: Y2_R16 Title: GDPR support Deadline: M36

Use cases
AOE: UC4-6, UC8-10

Rationale
SODALITE should support GDPR awareness and compliance

Description

SODALITE must check privacy compliance and latency at runtime. This also implies the

integrated assessment of TOSCA policies and OPA policies. Policies for GDPR compliance

needs already exist and can be reused.

Id: Y2_R17 Title: Data privacy Deadline: M36

Use cases

AOE: UC1-10, RE: UC12, UC13, QE:

Rationale

SODALITE should support data privacy

Project No 825480.

D2.2 - Requirements, KPIs, evaluation plan and architecture - Intermediate version Page 31

© Copyright Beneficiaries of the SODALITE Project

UC11, UC14

Description
SODALITE should support outgoing data to check the application against possible data leaks.

3.4 Workflow

This section presents the main workflows supported by the SODALITE platform. They are focused on
three major users of SODALITE - Application Ops Experts, Resource Experts and Quality Experts - plus

a secondary user, that is, the system administrator in charge of deploying and configuring the
SODALITE platform itself.

In the following we present the workflows associated with these types of users and highlight the

artifacts produced in these workflows and where they are located during a normal execution of the
SODALITE platform.

3.4.1 The Resource Expert Workflow

Figure 1 - Resource Expert Workflow.

Figure 1 presents the workflow typically followed by the Resource Expert. He/she is in charge of
creating resource models and Ansible playbooks to support the execution of the corresponding
operations. In the case a model of the resource under consideration is already available, for instance,

because the Platform Discovery has automatically defined the resource, the Resource Expert will
limit his/her work to the selection of a specific resource and to the creation or the selection, in case

they are already available, of the Ansible Playbooks that implement the operations to be executed
for that resource if needed.

The Resource Expert performs his/her activities by exploiting two SODALITE tools, the IDE for all
modelling/editing activities and, indirectly, the Platform Discovery.

Project No 825480.

D2.2 - Requirements, KPIs, evaluation plan and architecture - Intermediate version Page 32

© Copyright Beneficiaries of the SODALITE Project

The Knowledge Base is the main data store used in this workflow. It includes the resource models

and it is updated with the URL of the Ansible scripts associated to such resource models. The Ansible
Modules Repository is an off-the-shelf directory offered by the Ansible community and including all
available modules1. The Ansible playbooks used or produced within the context of SODALITE can be

made available on any datastore, including a git repository, that supports their identification

through a proper URI.

3.4.2 The Application Ops Expert Workflows

Application Ops Experts are involved in two types of activities within the context of SODALITE, those

concerning the design of AADMs and those concerning the execution of the corresponding TOSCA
and Ansible scripts and the application runtime.

Figure 2 - Design Time Workflow Executed by Application Ops Experts.

Figure 2 shows the design time activities performed by Application Ops Experts to prepare the
deployment of a complex application. At the beginning they focus on packaging in proper execution
containers the individual application components (we say that they prepare the application

component images), this activity is supported by the Image Builder, and, in parallel, on defining the
Abstract Application Deployment Model (AADM) through the SODALITE IDE. This last one is an

iterative activity that requires the interaction with the SODALITE Knowledge Base and terminates
when the user is satisfied by his/her AADM. When images and the AADM are saved in the Image

Repository and Knowledge Base, respectively, the AOE generates the TOSCA blueprint. If needed,

the optimization of component code and associated containers is performed as part of this phase.
The resulting TOSCA blueprint is stored in any repository, e.g., Git, that offers a URI-based

mechanism for identifying its elements. Finally, the TOSCA Blueprint, together with the associated
Ansible playbooks (defined by the Resource Experts) are analysed to assess the presence of possible

problems and bug smells that, if revealed, bring the AADM back into the modelling phase.

Project No 825480.

D2.2 - Requirements, KPIs, evaluation plan and architecture - Intermediate version Page 33

© Copyright Beneficiaries of the SODALITE Project

Figure 3 - Runtime Workflow Executed by Application Ops Experts.

Figure 3 describes the runtime activities that are overseen by AOEs. They are all automated, but their
result can be inspected through proper dashboards. The process starts with the orchestration of a

TOSCA blueprint and the associated Ansible Playbooks. The result of this step, when successful, is

the complex application ready to start its execution. After execution starts, the continuous activities

concerning monitoring, autoscaling and refactoring are performed. Refactoring can result in
changes in the TOSCA blueprint that trigger a new deployment orchestration step.

In this process, monitoring data are produced by the monitoring platform and exploited by the

autoscaling mechanism for short-term finetuning and by the refactoring for identifying longer term
potential issues. TOSCA blueprints are retrieved and stored, when changed, in any suitable

repository as already discussed in reference to the design time activities.

3.4.3 The Quality Expert Workflow

Figure 4 - Workflow executed by the Quality Expert.

The Quality Expert is in charge of developing proper optimization models that constitute the inputs

to Application Optimiser (MODAK). He/she is assumed to run, externally to SODALITE, benchmarks

to measure the characteristics of available resources. Based on these, he/she defines the
optimization models based on the data acquired during the benchmark phase. The creation of

Project No 825480.

D2.2 - Requirements, KPIs, evaluation plan and architecture - Intermediate version Page 34

© Copyright Beneficiaries of the SODALITE Project

Optimization Models is supported by IDE while the models are stored in the SODALITE Knowledge

Base. Figure 4 provides an overview of the described workflow.

3.4.4 The System Administrator Workflow

The last workflow associated with the usage of SODALITE concerns the activities carried out by the

system administrator in charge of making available the SODALITE platform to other users. Given that

this platform comprises multiple components, it is, by itself, a complex application. As such, its
deployment and configuration has been automated through a proper TOSCA blueprint. This
workflow is then completely automated and it is accomplished by following the instructions

available on the SODALITE GitHub repository2.

4. Architecture

4.1 General architecture changes

In the second year of the project there were some additional general architecture changes. Several
APIs were refactored and released during this period and some new components introduced.

Figure 5 - Updated SODALITE general architecture.

Project No 825480.

D2.2 - Requirements, KPIs, evaluation plan and architecture - Intermediate version Page 35

© Copyright Beneficiaries of the SODALITE Project

4.2. Modelling layer

Figure 6 - Updated SODALITE Modelling Layer Architecture.

Figure 6 shows the internal architecture of the SODALITE Modelling Layer. The interfaces offered by

other components are also highlighted. A set of SODALITE domain ontologies, resulting from the

abstract modelling of the related domains (applications, infrastructure, performance optimisation
and deployment), will be hosted in a SPARQL-served RDF Triplestore (GraphDB), constituting

SODALITE’s Semantic Knowledge Base. A dedicated middleware (Semantic Reasoner) will enable

the exploitation of this repository, mediating for the population of data and the application of rule-

based Semantic Reasoning. Last but not least, an IDE will provide a user interface with a DSL editor,
for the design of deployment models using knowledge retrieved from the Semantic Reasoner. The

IDE will also communicate with other system APIs for the monitoring of the deployment lifecycle.

The main changes introduced in the Modelling architecture compared with D2.1 report are the
following:

● Semantic Reasoner block: Two new components are interacting with Semantic Reasoner.

Namely, it calls the Defect predictor for forwarding warnings of the model to the IDE and is
called by Platform Discovery for saving the new discovered models in KB. Also, the access to

KB is only permitted to authenticated and authorized users, hence the reasoner calls IAM

Introspection API before any operation.

● IDE block: IDE is interacting with two new external components through MonitoringRule API

and PlatformDiscoveryService API. The access to IDE is only permitted to authenticated and

authorized users (AuthN/AuthZ API).

Project No 825480.

D2.2 - Requirements, KPIs, evaluation plan and architecture - Intermediate version Page 36

© Copyright Beneficiaries of the SODALITE Project

4.2.1 Component descriptions

4.2.1.1 SODALITE IDE

Functional Description:

The SODALITE IDE provides complete support for the authoring lifecycle of abstract application
deployment models (AADM in the following), Resource Models (RM), Optimization Models (OM) and
Ansible Models (AM).

The IDE enables Application Ops Experts (AOE in the following) to create AADMs for their
applications. The IDE also permit Resource Experts (RE) to create RMs that defines types of

infrastructure reusable resources, Quality Experts (QE) to define OMs that improves the runtime
performance of application components in target computing infrastructures, and AOEs to create

AMs that defines implementations for the operations of the interfaces adopted by infrastructure
resources and applications.

The IDE assists AOEs, REs and QEs in the textual authoring of the AADM (for these models graphical
authoring is also supported), RMs, OMs, and AMs, thanks to features such as: a) syntax highlighting,

b) autoformatting, c) autocompletion and quick fixes, d) syntactic and semantic validation/error

checking, e) scoping (cross-references), f) outlining, g) context-aware smart content-assistance, etc.

AOEs can describe in the AADM the application topology in terms of components and services, their

constraints and inter-component boundaries, and also express optimisation requirements or
constraints (adopting the QE role) and Ansible implementations for interface operations. RE can

describe in the RM reusable types for infrastructure resources, their properties and attributes, the

capabilities they offer, the requirements they need, or the policies they adhere to.

The IDE checks the authored models for DSL conformance (syntactic validation) and relies on the

Semantic Reasoner for semantic validation (i.e., inconsistencies and/or recommendations). They
are presented to the user in the IDE for further inspection. Eventually, the user can refine/amend the

model based on them. Additionally, the IDE can request the Semantic Reasoner for existing
infrastructure resources that may fulfil requirements expressed in application components or in

other resources. Matching resources are presented to the user in the IDE.

Models can be stored into the Semantic KB. Complete CRUD operations on stored models are

supported from the IDE. Entities (e.g. application components, infrastructure resources) stored in

the KB can be shared with other users.

The IDE also supports the deployment of AADMs into the SODALITE runtime layer by using the IaC
Layer.

Input:

● AADM: AOE knowledge, other reusable resources taken from the KB, references to OMs to
optimize concrete application components, references to AMs for implementations of
operations in interfaces

● RM: RM knowledge, other reusable resources taken from the KB

● OM: OM knowledge
● AM: AOE knowledge, Ansible modules

Output:

1. An AADM to be sent to the Abstract Model Parser and the Orchestrator for deployment

2. An AADM to be sent to the Semantic KB for storage

3. A RM to be sent to the Semantic KB for storage

4. A OM to be bound to AADM components for optimization

5. A AM to be bound to interface operations for AADM components or RM types

Programming languages/tools:

● SODALITE DSL: XText, EMF

Project No 825480.

D2.2 - Requirements, KPIs, evaluation plan and architecture - Intermediate version Page 37

© Copyright Beneficiaries of the SODALITE Project

● SODALITE IDE: Eclipse

● SODALITE IDE DSL Editor: XText, Sirius, Java

Dependencies:

1. Semantic Reasoner REST API

2. Semantic Reasoner query language and OWL notation (Turtle)

3. Semantic Reasoner response schema (JSON)

4. IaC Builder REST API

5. xOpera Orchestrator

6. AAI Keycloak REST API

Critical factors:

The latency accessing the SODALITE KB (and retrieving request responses) from the IDE may prevent

IDE Editor to present real time recommendations, node targets, etc in the code assistance without
some delay. Similar delay could be present when saving models into the KB, or when deploying

AADM into the SODALITE runtime layer.

Models (AADM, RM) need to be serialized in the selected OWL Turtle notation before being submitted
to the Semantic KB for sharing/reutilization. Therefore, SODALITE DSL and KB Schema must be
semantically compatible.

Eclipse DSL technology (XText, EMF, Sirius) might not be fully compatible with a full-fledged Web-
based IDE.

4.2.1.2 Semantic Reasoner (Knowledge Base Service - KBS)

Functional Description:

The KBS is middleware facilitating the interaction with the semantic knowledge base (KB). In
particular, it provides an API to support the insertion and retrieval of knowledge to/from the KB, and

the application of rule-based semantic reasoning over the data stored in the KB.

Input:

1. Requests from the SODALITE IDE for the insertion of domain knowledge from Application
Ops Experts and Resource Experts (abstract and target resource types, resource patterns,

dependencies, inconsistencies, etc.).

2. Requests from the SODALITE IDE for knowledge retrieval in order to present appropriate

content in the IDE, to assure alignment with the DSL, etc.

3. Requests from the SODALITE IDE for the qualitative validation of user input (with the help of

semantic reasoning).

4. Requests from the SODALITE IDE for recommendations based on the user requirements.

5. Requests from the Platform Discovery Service for inserting of the discovered infrastructure

resources into KB.

6. Requests from the Refactoring Option Discoverer for discovering new nodes and resources.

Output:

1. Domain knowledge (abstract and target resource types, resource patterns, dependencies,
inconsistencies, etc.)

2. Detected inconsistencies in a given deployment model.

3. Generated recommendations based on user requirements.

Programming languages/tools:

● Semantic Reasoner API: Java, JAX-RS REST API
● Semantic Population Engine: Java, SPARQL query language

Project No 825480.

D2.2 - Requirements, KPIs, evaluation plan and architecture - Intermediate version Page 38

© Copyright Beneficiaries of the SODALITE Project

● Semantic Reasoning Engine: Java, SPARQL query language

Dependencies:

● Alignment with SODALITE IDE and its DSL

● Bug Predictor REST API

● AuthN/AuthZ REST API

Critical factors: KB Schema and SODALITE DSL must be semantically compatible.

4.2.1.3 Semantic Knowledge Base (KB)

Functional Description:

The KB is SODALITE’s semantic repository that will host the models (ontologies) created in WP3. The

ontologies will be populated with domain knowledge, i.e., abstract and target resource types,
resource patterns, deployment patterns, dependencies, inconsistencies, etc. This component will

interact with the KBS and will offer capabilities for knowledge storage and manipulation.

Input:

Queries from the KBS for the insertion, update, deletion and retrieval of knowledge. More complex
queries will also allow the execution of rule-based semantic reasoning and the inference of

recommendations and/or inconsistencies.

Output:

Requested domain knowledge, recommendations and inconsistencies.

Programming languages/tools:

1. Semantic triplestore with SPARQL support (GraphDB Free version).

2. SPARQL query language.

Dependencies: /

Critical factors:

The triplestore’s scalability needs to be studied, as performance issues might occur upon a great
increase in data and querying load. Currently, we improved the KB performance by using different
configurations, to have the fastest query response.

4.2.2 Use Case Sequence diagrams

The core activity associated with the modelling layer is the one associated with UC1. However, it

depends on the fact that the resources to be used for deploying an application have been specified.

For this reason, we focus first on UC13 – model resources.

Project No 825480.

D2.2 - Requirements, KPIs, evaluation plan and architecture - Intermediate version Page 39

© Copyright Beneficiaries of the SODALITE Project

4.2.2.1 UC13: Model Resources

Figure 7 - Sequence diagram for UC13.

Figure 7 describes how the SODALITE components cooperate to implement the features offered as

part of UC13 - Model Resources. This use case is initiated by the Resource Expert in order to populate
and enrich the KB with new definitions of resource types. New knowledge could regard abstract

and/or specific resource types, relationships between known entities (e.g., dependencies between

resources), patterns and optimisation approaches. The whole process takes place with the use of

the SODALITE IDE and its DSL, assisted by the Semantic Reasoner for the qualitative validation of
input and the interaction with the KB.

Project No 825480.

D2.2 - Requirements, KPIs, evaluation plan and architecture - Intermediate version Page 40

© Copyright Beneficiaries of the SODALITE Project

4.2.2.2 UC1: Define Application Deployment Model

Figure 8 - Sequence diagram for UC1.

Figure 8 models the collaboration between the SODALITE components to implement the features
required in UC1. The Application Ops Expert (AOE) uses the SODALITE IDE in order to define an

application deployment model (ADM). The IDE is charged with presenting existing knowledge (e.g.
resource types), validating user DSL input by detecting inconsistencies, and generating

Project No 825480.

D2.2 - Requirements, KPIs, evaluation plan and architecture - Intermediate version Page 41

© Copyright Beneficiaries of the SODALITE Project

recommendations. The required interaction with the KB is served by the Semantic Reasoner

component. Finally, bugs and software smells are detected by Bug Predictor. The use case output is
a valid ADM.

4.2.2.3 UC2: Select Resources

Figure 9 - Sequence diagram for UC2.

Figure 9 models the interaction between the SODALITE components when implementing the
features offered within UC2 - Select Resources. As soon as an application deployment model,

incorporating abstract resource types, has been defined, a selection of target resources needs to be

made and mapped to the abstract types, in order to enable the deployment process. This flow
includes the generation of suggestions regarding compatible resources and patterns - to which the

Project No 825480.

D2.2 - Requirements, KPIs, evaluation plan and architecture - Intermediate version Page 42

© Copyright Beneficiaries of the SODALITE Project

user will be able to apply filters - and the validation of provided input, with the support of the

Semantic Reasoner and information stored in the Semantic Knowledge Base.

4.2.2.4 UC12: Map Resources and Optimisations

Figure 10 - Sequence diagram for UC12.

Figure 10 describes the interaction between the SODALITE components while implementing UC12 -
Map Resources and Optimisations. This use case describes the process of defining abstract resource

patterns by a Quality Expert (QE). Additionally, actual (target) resources can be mapped to these

patterns. To these ends, the SODALITE IDE retrieves and presents known resource types using the
Semantic Reasoner. Finally, the newly generated knowledge is stored in the Semantic Knowledge
Base and becomes available in related use cases, such as the aforementioned Select Resources.

Moreover, based on the application and available resource types, different optimisations will be

enabled for the QE to select from. The QE will also have to enter the settings for any selected

optimisation. This will be stored in the IaC Model repository.

Project No 825480.

D2.2 - Requirements, KPIs, evaluation plan and architecture - Intermediate version Page 43

© Copyright Beneficiaries of the SODALITE Project

4.2.2.5 UC14: Estimate Quality Characteristics of Applications and Workload

We do not include a separate sequence diagram for this use case as the Quality Expert in this case
performs the quality assessment experiments. In doing so, he/she exploits the whole SODALITE
framework to define the Application Deployment Model (UC1) associated with the experimental

prototypes used in the assessment:

● select the resources he/she wants to assess for performance (UC2),

● generate the IaC code (UC3) and possibly verify it (UC4),

● execute provisioning, deployment and configuration (UC6),

● start the prototype (UC7),

● run the monitor to collect data (UC8) and, finally,

● edit the resource and application models (UC13) and (UC1) to include additional information
about performance.

Alternatively, the Quality Expert could run the experiments in a simulated environment outside the

SODALITE framework and then exploit UC13 and UC1 to update the corresponding models in
SODALITE.

4.3 Infrastructure as Code Layer

The Infrastructure as Code Layer (IaC Layer) is the layer that connects the SODALITE modelling layer
functionalities to Runtime blueprint execution of the models in the SODALITE Runtime Layer. It

offers APIs and data to support the optimization, verification and validation process of both
Resource Models (RM) and Abstract Application Deployment Models (AADM). However, one of the

most important tasks of the IaC Layer is preparing a valid and deployable TOSCA blueprint.

In the second year of the project some of the components were initially released and several were

refactored and significantly improved. During this period Platform Discovery Service has been added
to the layer’s architecture, to expose a REST API which helps to automate the tasks of the Resource

Expert by creating a valid TOSCA platform resource model to be stored into the SODALITE’s
Knowledge Base. These RMs can then be used during the design of the application deployment
models (AADM).

In this period Application Optimizer component exposing a REST API (MODAK) was released and
integrated into the pipeline enabling the SODALITE users to statically optimize the application for a
given target execution platform.

Automation of application optimisation on both HPC and cloud systems requiring models used for

performance prediction have been improved. SODALITE prepares and uses these models for both

pre-deployment (static) performance optimization and runtime (dynamic) performance
optimization.

Additionally, IAM (Identity and Access Management) API and Secret Vault API have been added and
partially integrated into IaC Layer and used by the components that have to protect secrets stored
by the user such as Platform Discovery Service and IaC Blueprint Builder.

During development in the second year of the project a part of the architecture was redesigned

which was also reported in the deliverable D4.2 (IaC Management - Intermediate version) and shown

here in Figure 11.

Project No 825480.

D2.2 - Requirements, KPIs, evaluation plan and architecture - Intermediate version Page 44

© Copyright Beneficiaries of the SODALITE Project

Figure 11 - Updated SODALITE IaC Layer Architecture.

4.3.1 Component Descriptions

4.3.1.1 Abstract Model Parser

Functional Description: The Abstract Model Parser is the central component for the preparation of
the deployable IaC blueprint and related Actuation scripts.

Its main function is to abstract the parsing of the abstract deployment model from building the
deployable IaC. It feeds the IaC Builder component with all the data provided by the App Ops Expert

and needed for the selection and building of IaC Nodes (Blueprint) and preparation of the Actuation

scripts (playbooks).

Input: Takes input from the SODALITE IDE as the reference to the abstract application deployment

model. It is based on the POLIMI extensive knowledge of modelling and parsing UML deployment
diagrams into IaC blueprints, e.g., TOSCA deployment blueprint.

The component allows the SODALITE IDE to:

● start the parsing process

● cancel the parsing process at any given time

● return resulting build time information to the user in a human readable form

Output: Produces the output for the user based on the process of parsing abstract application
deployment model.

Programming languages/tools: Java

Dependencies: This component interacts with different components enabling the user to parse the
abstract application deployment model and build IaC code through REST API calls to other

SODALITE components:

● IaC Blueprint Builder

● IaC Resources Model

Project No 825480.

D2.2 - Requirements, KPIs, evaluation plan and architecture - Intermediate version Page 45

© Copyright Beneficiaries of the SODALITE Project

Critical factors: This component should be able to take input from the SODALITE IDE through a web

API allowing the user to cancel the parsing process at any given time.

4.3.1.2 IaC Blueprint Builder

Functional Description: This component internally produces the IaC blueprint based on the input

provided in the abstract application deployment model passed to the Abstract Model Parser. It

flattens the application model topology in a node list and for any given node:

● returns the best matching IaC node definition from the IaC Resources Model repository

● sets provided parameters

● internally builds relations to other nodes

For any selected node it then checks the artefacts to be deployed on that node.

In case the abstract model holds information about the artefact source and the source is available,
it triggers the call to the Application Optimiser component in order to try to start the compilation

and optimisation, defined in the model.

After all the artefacts are built as runtime binaries and configured, this component calls the Image

Builder component to build and pack the artefact images ready for deployment. This component

integrates with MODAK which updates the optimized images that are deployed.

At the end of the process of creation of the IaC and the building of Artefact images, it saves the

resulting IaC in the IaC Repository and returns the build time information in a human readable form.

Input: Abstract application deployment model, IaC Resources Model

Output: IaC blueprint (TOSCA) with actuation scripts (Ansible playbooks). Returns information about

the IaC building process in human readable form to be shown to the user.

Programming languages/tools: Python

Dependencies:

● SODALITE IDE

● Abstract Model Parser

● IaC Resources Model

● Application Optimiser

● IaC Repository

Critical factors: This component should be able to take input from the SODALITE IDE through a web
API allowing the user to cancel the IaC building process at any given time.

4.3.1.3 IaC Model Repository

Functional Description: IaC Model repository is a part of the Knowledge Base and contains:

● Performance Model of an infrastructure based on benchmarks.
● Performance Model of an Application based on scaling runs done in the past.
● Mapping of optimisations and applications and their suitability for a particular

infrastructure.
● Optimisation recipe for a particular deployment. This contains selected optimisations by the

user for an application and infrastructure target.

Input: Application type, node type

Output: Performance model and optimization recipe

Programming languages/tools: Python/MySQL

Dependencies: IaC Model repository interacts with the SODALITE IDE and contains the Performance

Model of infrastructure and application (offline analysis).

Critical factors: N/A

Project No 825480.

D2.2 - Requirements, KPIs, evaluation plan and architecture - Intermediate version Page 46

© Copyright Beneficiaries of the SODALITE Project

4.3.1.4 Runtime Image Builder

Functional Description: Runtime image builder builds the runtime images used by the orchestrator
at application deployment

Input: Target architecture and artifact definition

Output: A runtime image equipped with configuration, artifact executable binary, configuration

metadata, possibly monitoring artifact. The image is released to the Image repository for
deployment.

Programming languages/tools: Python

Dependencies: Concrete Image Builder

Critical factors: N/A

4.3.1.5 Concrete Image Builder

Functional Description: Implementation of concrete image builder for the execution platform to

handle specifics regarding configuration, deployment, monitoring.

As it seems there can be significant differences between the images built targeting

HPC/Cloud/Kubernetes, Concrete Image Builder implements an adapter pattern to satisfy and

bridge the different approaches for targeting the above-mentioned execution platforms.

The built image could also include monitoring artefacts allowing the post deploy configuration by

the Orchestrator.

Input: Runtime Image Builder configuration and definition of binary runtime.

Output: Runtime Image

Programming languages/tools: Yaml (Docker, Kompose, HPC container technology), Python

Dependencies: Runtime Image Builder

Critical factors: N/A

4.3.1.6 Application Optimiser - MODAK

Functional Description: The MODAK package, a software-defined optimisation framework for
containerised HPC and AI applications considered within the SODALITE use cases, is the SODALITE
component responsible for enabling the static optimisation of applications before deployment.

Input: MODAK requires the following inputs:

1. Job submission options for batch schedulers such as SLURM and TORQUE
2. Application configuration such as application name, run and build commands

3. Optimisation DSL with the specification of the target hardware, software libraries, and

optimisations to encode. Also contains inputs for auto-tuning and auto-scaling.

An image registry contains MODAK optimised containers while performance models, optimisation
rules and constraints are stored and retrieved from the Model repository. Singularity container
technology was chosen to provide a portable and reproducible runtime for the application
deployment, due to better performance and native support for HPC.

Output: MODAK produces a job script (for batch submission) and an optimised container that can be
used for application deployment.

Programming languages/tools: Python, Ruby, CRESTA Autotuning framework

Dependencies: IaC model repository, Runtime Image Builder, Execution Platform

Critical factors: Overhead time for optimisation of an application. Validation of Optimisation may

require support from the execution platform.

Project No 825480.

D2.2 - Requirements, KPIs, evaluation plan and architecture - Intermediate version Page 47

© Copyright Beneficiaries of the SODALITE Project

4.3.1.7 IaC Verifier

Functional Description: This component coordinates the processes of verification of the application
deployment topology and provisioning workflow/plan.

Input:

● IaC models

● Correctness criteria such as well-structuredness, soundness, and application specific
constraints

Output:

● Verification Errors (for invalid artifacts)

● Verification Summary (for valid artifacts)

Programming languages/tools: Java and Python

Dependencies:

● SODALITE IDE

● Verification Model Builder

● Topology Verifier

● Provisioning Workflow Verifier

Critical factors: N/A

4.3.1.8 Verification Model Builder

Functional Description: This component builds the models required to verify the IaC models, for

example, a knowledge base instance for ontological (semantic) reasoning on the topology, and a

petri net representation for the provisioning workflow.

Input: Abstract IaC models; Verification knowledge (from Semantic Knowledge Base)

Output: Verification Models

Programming languages/tools: Java and Python

Dependencies:

● Semantic Knowledge Base

● Topology Verifier

Critical factors: N/A

4.3.1.9 Topology Verifier

Functional Description: This component verifies the deployment topology of the application against

given correctness criteria and application specific constraints.

Input:

● Formal model of the topology

● Correctness criteria

● Application specific constraints

Output:

● Topology Verification Errors (for an invalid topology)

● Topology Verification Summary (for a valid topology)

Programming languages/tools: Java and Python

Dependencies:

● IaC Verifier

● Verification Model Builder

Critical factors: N/A

Project No 825480.

D2.2 - Requirements, KPIs, evaluation plan and architecture - Intermediate version Page 48

© Copyright Beneficiaries of the SODALITE Project

4.3.1.10 Provisioning Workflow Verifier

Functional Description: This component verifies the provisioning workflow of the application against
given correctness criteria and application specific constraints.

Input:

● Formal Model of the Provisioning Workflow

● Correctness criteria

● Application specific constraints

Output:

● Topology Verification Errors (for an invalid provisioning workflow)

● Topology Verification Summary (for a valid provisioning workflow)

Programming languages/tools: Java and Python

Dependencies:

● IaC Verifier

● Verification Model Builder

Critical factors: N/A

4.3.1.11 Bug Predictor and Fixer

Functional Description: This component is responsible for predicting bugs/smells in IaC models,
suggesting corrections or fixes for the detected bugs/smells, and correcting the bugs/smells
applying the fix selected by the Application Ops Expert.

Input: Abstract IaC models

Output: Bugs/Smells, Fixes

Programming languages/tools: Java and Python

Dependencies:

● SODALITE IDE

● Semantic Knowledge Base

● Predictive Model Builder

● IaC Quality Assessor

Critical factors: N/A

4.3.1.12 Predictive Model Builder

Functional Description: This component builds the models that can be used to detect bugs/smells in
IaC models and suggest corrections. The models can include rule-based models, semantic models,
and data-driven (machine learning and deep learning).

Input:

● IaC artifacts

● Bug/Smell and resolution knowledge (ontology and rules)

● IaC datasets

● IaC metrics

Output:

● Ontological Predictive Models

● Data-Driven Predictive Model

● Rule-based Models

Programming languages/tools: Java and Python

Dependencies:

Project No 825480.

D2.2 - Requirements, KPIs, evaluation plan and architecture - Intermediate version Page 49

© Copyright Beneficiaries of the SODALITE Project

● Bug Predictor and Fixer

● Semantic Knowledge Base

Critical factors: N/A

4.3.1.13 IaC Quality Assessor

Functional Description: This component can calculate different IaC metrics for IaC artifacts.

Input: IaC artifacts

Output: IaC metrics

Programming languages/tools: Java and Python

Dependencies:

● Bug Predictor and Fixer

Critical factors: N/A

4.3.1.14 Platform Discovery Service

Functional Description: Platform Discovery Service takes the data needed as input platform such as

platform namespace, project and credentials to access the platform to create a usable TOSCA
Resource Definition from a target. This model can be stored in the SODALITE KB and reused by the

AOE at Application Deployment design time.

Input: Target Namespace, Project, Platform Access Credentials .

Output: TOSCA resource definition template

Programming languages/tools: Python, TOSCA,

Dependencies: xOpera, Ansible, Target platforms, IAM API, Vault Secret API

Critical factors: N/A

4.3.2 Use Case Sequence diagrams

During the intensive development phase of the project several architectural changes were needed

to improve the overall SODALITE IaC Layer integration. The changes to the Sequence Diagrams are
explained in detail in the next subsections describing changes in the UML Use Case Sequence

diagrams in detail.

4.3.2.1 UC3: Generate IaC

Figure 12 - Sequence diagram for UC3 Generate IaC.

Project No 825480.

D2.2 - Requirements, KPIs, evaluation plan and architecture - Intermediate version Page 50

© Copyright Beneficiaries of the SODALITE Project

Figure 12 describes the updated Sequence Diagram showing interaction between the SODALITE

components while in the process of generating IaC Code. The prerequisites for the IaC blueprint to
be built are a well-defined abstract application deployment model and definition of artifacts, be it
source (scripts) or executable binaries with configuration, to be deployed on the infrastructure.
Application Ops Experts initiates the generation of the IaC blueprint through SODALITE IDE with the
reference to the model definition. Abstract Model Parser parses the model and replaces the abstract

node definitions with IaC node definition from the IaC Resource Model which is built into the IaC
Blueprint Builder. Each step is tracked and recorded for subsequent IaC changes reflecting the
model. For each node, artifacts definitions with source code are then optimally compiled by the
Application Optimiser component into an executable binary and optimized images targeting a

specific infrastructure platform. IaC Blueprint builder represents a central point of the AADM to IaC
transformation. After providing optimal artifacts from the Application Optimiser it creates and

registers the TOSCA blueprint with the Orchestrator returning a blueprint registration token. The
build-time results are then returned back to the Application Ops Expert through a registered
blueprint token provided.

4.3.2.2 UC4: Verify IaC

Figure 13 - Sequence diagram for UC4 Verify IaC.

Figure 13 describes the interaction between the SODALITE components while implementing UC4 -
Verify IaC. Application Ops Expert provides the abstract IaC modelling artifacts to the IaC Verifier to

formally verify the artifacts with respect to given correctness criteria. Both the deployment model
and the provisioning workflow of the application needs to be verified. The provisioning workflow
includes the provisioning and configuring of the infrastructure, deployment of the application

components on the infrastructure, and configuring the infrastructure and the application

Project No 825480.

D2.2 - Requirements, KPIs, evaluation plan and architecture - Intermediate version Page 51

© Copyright Beneficiaries of the SODALITE Project

components. Verification Model Builder builds the formal verification models using the verification

knowledge from the Semantic Knowledge Base. Topology Verifier verifies the topology whereas the
Provisioning Workflow Verifier verifies the provisioning workflow. The verification results are
returned back to the Application Ops Expert.

4.3.2.3 UC5: Predict and Correct Bugs

Figure 14 - Sequence diagram for UC5 Predict and Correct Bugs.

Figure 14 describes the interaction between the SODALITE components while implementing UC5 -

Predict and Correct Bugs. Application Ops Expert submits the abstract IaC models via SODALITE IDE
to Bug Predictor and Fixer for detecting the bugs in the application topology and the provisioning
workflow. Bug Predictor and Fixer uses Predictive Model Builder to parse the received IaC models,

and builds the predictive models required for predicting the bugs in them. The bugs are anti-
patterns, design smells, and code smells for security, privacy and performance. The bug prediction

results are shown in SODALITE IDE. Application Ops Expert can select one or more bugs, request
potential fixes for each selected bug, and choose and apply the desired fixes. The Semantic

Project No 825480.

D2.2 - Requirements, KPIs, evaluation plan and architecture - Intermediate version Page 52

© Copyright Beneficiaries of the SODALITE Project

Knowledge Base contains the knowledge required to predict bugs and to recommend

corrections/fixes. Bug Predictor and Fixer can also assess the quality of concrete IaC artifacts in
terms of IaC quality metrics and use the IaC metrics to predict the defect-proneness indices in the
IaC artifacts.

4.2.2.4 UC11: Define IaC Bugs Taxonomy

Figure 15 - Sequence diagram for UC11 Define IaC Bugs Taxonomy.

Figure 15 describes the interaction between the SODALITE components while implementing UC11 -
Define IaC Bugs Taxonomy. Quality Expert identifies, defines, and organizes a vocabulary of the key

concepts used to describe bugs and their resolutions for IaC. Next, Quality Expert uses the
vocabulary to classify, relate, and combine all bugs and resolutions, and builds a taxonomy. Then,

the taxonomy is defined formally as an ontology. The ontological reasoning rules required for

detecting bugs and suggesting fixes for bugs are also defined. Finally, Quality Expert deploys the
ontology and rules in Semantic Knowledge Base.

Project No 825480.

D2.2 - Requirements, KPIs, evaluation plan and architecture - Intermediate version Page 53

© Copyright Beneficiaries of the SODALITE Project

4.3.2.5 UC15: Statically Optimise Application and Deployment

Figure 16 - Sequence diagram for UC15.

Figure 16 describes the interaction between the SODALITE components while implementing UC15 -
Statically Optimise Application and Deployment. This use case describes the process for optimising

the Application and deployment statically. Static optimisation refers to the optimisation before
deployment of the application. The input for this use case is the optimisation recipe created as part
of the Map resources and optimisation (WP3) use case and the output will be an optimised

application executable or a container. The optimisation recipe stored in the IaC Model repository is
retrieved and extracted. For all the tasks in the recipe, the tasks are optimised for different targets
based on the optimisations selected. An optimisation report will be made at the end of this process.

Project No 825480.

D2.2 - Requirements, KPIs, evaluation plan and architecture - Intermediate version Page 54

© Copyright Beneficiaries of the SODALITE Project

4.3.2.6 UC16: Build Runtime images

Figure 17 - Sequence diagram for UC16.

Figure 17 describes the interaction between the SODALITE components while implementing UC16 -

Build Runtime Images. This is an internal process initiated in UC3 - Generate IaC. Runtime Image

Builder builds a runtime image based on tuple definition of target architecture and artifact list for

that architecture. Runtime Image Builder activates a specific Concrete Image Builder based on target

architecture to prepare a runtime image of the artifact and its configuration with added SODALITE
monitoring artifact. The built runtime image is then stored in the Image registry for later
deployment. The build-time information is returned to the calling component IaC Blueprint builder.

Project No 825480.

D2.2 - Requirements, KPIs, evaluation plan and architecture - Intermediate version Page 55

© Copyright Beneficiaries of the SODALITE Project

4.3.2.6 UC17: Platform Discovery Service

Figure 18 - Sequence diagram for UC17 Platform Discovery Service.

Figure 18 describes the interaction between the SODALITE components while implementing UC16 -

Platform Discovery Service. The process is initiated by Resource Expert (RE) by selecting the project

Project No 825480.

D2.2 - Requirements, KPIs, evaluation plan and architecture - Intermediate version Page 56

© Copyright Beneficiaries of the SODALITE Project

domain to which a specific set of platform resources will be added. The data about defined project

domains is retrieved by Semantic Reasoner API which, based on user privileges defined in the access
token, checks the validity and the list of project domains the user is authorized to approach. For
every platform added to the project domain the RE adds a specific set of values needed by the

Platform Discovery Service to execute the platform discovery. The set of values includes a

namespace definition for the created resource, project domain, and platform access keys. The data
is stored in a central Secret Vault and accessible by the Platform Discovery Service provided a valid
access token for retrieving data in the Secret Vault. The user can manually initiate the discovery of

the infrastructure resources through IDE. Once the Platform Discovery Service has access to the
platform it executes the discovery using platform specific tools that return a JSON description of the

resources. In the next step Platform Discovery Service executes a JSON to TOSCA service template

transformation and returns the results to the caller as TOSCA service template definition of the
platform or stored into the Knowledge base, depending on the call parameters.

4.3 Runtime Layer

Figure 19 - Updated SODALITE Runtime Layer Architecture.

The Runtime layer of SODALITE (see Figure 19) is in charge of the deployment of SODALITE
applications into heterogeneous infrastructures, its monitoring and the refactoring of the
deployment in response to violations in the application goals. It is composed of the following main

blocks:

● Orchestrator - receives the application to be deployed or re-deployed as a blueprint

expressed in TOSCA, deploying the application components on the appropriate
infrastructure.

● Monitoring - monitors the application components and the infrastructure where they are
deployed to be used by Refactoring and the interested SODALITE actors.

● Refactoring - is able to propose a new application model to fulfil the application goals. When

it modifies the model in the Semantic Reasoner, it calls the Deployment Preparation, which

will trigger the generation of a new blueprint that arrives to the Orchestrator to initiate the

redeployment.

Project No 825480.

D2.2 - Requirements, KPIs, evaluation plan and architecture - Intermediate version Page 57

© Copyright Beneficiaries of the SODALITE Project

The main changes introduced in the runtime architecture w.r.t. the version reported in D2.1 are the

following:

● Orchestration block: the drivers supported and integrated within the orchestrator are made
explicit, namely the Openstack (OS), Torque, K8S, OpenFaaS and the AWS drivers, which

interfaces Openstack HPC schedulers, Kubernetes, OpenFaaS and AWS infrastructures,

respectively. It also incorporates additional required interfaces for AAI (e.g.
IAMIntrospectionAPI) and for the retrieval of deployment secrets (e.g. SecretVaultAPI).

● Monitoring block: this block includes new components not previously included in the former

architecture:
○ Monitoring Dashboard: this frontend provides monitoring specialized visual reports

for selected target application components and execution environments.

Dashboard uses the MonitoringAPI REST interfaces to query monitoring data.

○ Monitoring Alert Manager: manages defined alerting rules to trigger notifications to

subscribers when the rule condition holds for the target monitoring statistics. The
AlertingAPI REST interface is used by the Orchestrator, Node Manager and
Deployment Refactorer components to subscribe themselves to concrete alerts.

● Refactoring block: the internal interactions among this block components have been made

explicit in the architecture, through the REST API exposed by each component.

4.3.1 Component Descriptions

4.3.1.1 xOpera REST API

Functional Description: The xOpera Orchestrator manages the lifecycle of an application deployed in
heterogeneous infrastructures. xOpera REST API is deployed as a dockerized component that

encapsulates xOpera orchestrator and provides additional functionalities to the API clients, such as
TOSCA blueprint registration, deployment session handling, blueprint and session persistence with

the possibility to share registered TOSCA blueprints among different users.

Input: TOSCA/Ansible Blueprint Deployment plan

Output: Configuration of target infrastructures and applications +

Programming languages/tools: Python, Ansible

Dependencies: Target infrastructures: HPC (TORQUE/SLURM), OpenStack, AWS, Kubernetes

Critical factors: Each orchestrator has its own limitations. This results in limitations concerning the
possibility to apply certain actions on the managed application. For instance, since Cloudify does

not support SubstitutableNodes, it does not support the Refactoring feature.

4.3.1.2 Monitoring + Exporters

Functional Description: Gathers metrics from the heterogeneous infrastructure and application

execution, provided by standard and specialized exporters, allowing query and aggregation on
them.

Input: Heterogeneous infrastructure

Output: Metrics

Programming languages/tools: Prometheus, Prometheus query language and API, Go for exporters

Dependencies: Probes or exporters that monitor the target infrastructure components and reports

back metrics .

Critical factors: Certain metrics could be difficult to get in some infrastructures.

Project No 825480.

D2.2 - Requirements, KPIs, evaluation plan and architecture - Intermediate version Page 58

© Copyright Beneficiaries of the SODALITE Project

4.3.1.2 Monitoring Dashboard

Functional Description: offers visual, customizable, specialized views that renders different
monitoring facets of target infrastructures or applications.

Input: monitoring metrics

Output: monitoring views

Programming languages/tools: Grafana

Dependencies: Monitoring metrics collected from querying the monitoring component

Critical factors: Certain metrics could be difficult to get in some infrastructures.

4.3.1.2 Alert Manager

Functional Description: this component is notified by the monitoring component upon the detection
of monitoring violations specified in registered alert rules. The manager conducts an analysis of the
accompanying metrics and reports associated alerts to the interested registered subscribers.

Input: monitoring alert + associated metrics

Output: alert notification send to subscribers

Programming languages/tools: Python, Flask, Gunicorn

Dependencies: registration in monitoring as alert manager, SODALITE subscribers registered.

Critical factors: N/A.

4.3.1.3 Deployment Refactorer

Functional Description: This component refactors the deployment model of an application in

response to violations in the application goals. It also derives the node-level goals from the

application goals. The goals are monitored at runtime by collecting the necessary metrics. A
machine learning based predictive model is used to predict the performance of multiple alternative
deployment model variants, and to select a suitable deployment model variant for the application

(the new deployment model) if the current deployment model leads performance violations. The
new deployment model is deployed through Orchestrator. The new refactoring options can also be

discovered at runtime, enabling deriving new deployment model variants. The Refactorer can also
detect various anomalies in the performance of a given application deployment at runtime using
machine learning based models, and generate the alerts, enabling executing the corrective actions.

Input:

● IaC topology model

● Refactoring option model

● Application goals

● QoS metrics

Output: (Topology) Adaptation Plan or New Deployment Model (in TOSCA and IaC Scripts)

Programming languages/tools: Java

Dependencies:

● Refactoring Option Discoverer

● Node Manager

● Deployment Preparation

● Orchestrator

● Semantic Reasoner

● Monitoring Agent

Critical factors: N/A

This component addresses the following application goals:

Project No 825480.

D2.2 - Requirements, KPIs, evaluation plan and architecture - Intermediate version Page 59

© Copyright Beneficiaries of the SODALITE Project

● satisfy performance (latency and throughput)

● minimize cost/price
● minimize resource usage

And uses these data retrieved from the monitoring infrastructure:

● application workload, latency, and throughput

● cost/price
● infrastructure resource usage metrics such as CPU, Memory, and Network
● other metrics such as energy metrics, and HPC-specific metrics

If data is not sufficient or of good quality, the accuracy and effectiveness of the
refactoring/adaptation decisions may decrease. Thus, as necessary, the Refactorer will use the

existing techniques [8][9] for handling uncertainty and variable quality of the monitored data.

4.3.1.4 Node Manager

Functional Description: This component is responsible for managing node resources including the
overall node capacity/throughput while maintaining the node goals assigned by the Deployment

Refactorer. The node goals are monitored at runtime by collecting the necessary metrics. The Node

Manager oversees multiple concurrent applications. The Node Manager schedules incoming
requests for execution on GPUs and CPUs exploiting custom heuristics and continuously scales CPU
cores using control-theory according to applications’ needs.

Input:

● Node goals

● QoS metrics

● Available resources

Output:

● Load balancing on heterogeneous resources
● Resource Allocation

Programming languages/tools: Python, Kubernetes

Dependencies:

● Deployment Refactorer

● Orchestrator

● Semantic Reasoner

● Monitoring Agent

Critical factors: N/A

4.3.1.5 Refactoring Option Discoverer

Functional Description: This component is responsible for discovering new refactoring options and
changes to existing refactoring options. To select refactoring options, it uses various matchmaking

criteria based on the properties, capabilities, requirements, usage policies of resources. For
example, a new node that may offer a specific security policy (e.g., the node is placed only on a data
center in a given set of regions) or scaling policy (e.g., the node can be autoscaled up to 5 instances).

Input: Search (matchmaking) criteria

Output: Refactoring options

Programming languages/tools: Java

Dependencies:

● Deployment Refactorer

● Monitoring Agent

● Semantic Reasoner

Project No 825480.

D2.2 - Requirements, KPIs, evaluation plan and architecture - Intermediate version Page 60

© Copyright Beneficiaries of the SODALITE Project

Critical factors: N/A

4.3.2 Sequence Diagrams

4.3.2.1 UC6: Execute Provisioning, Deployment and Configuration

Figure 20 - Sequence diagram for UC6.

Figure 20 describes the interaction between the SODALITE components while implementing UC6 -

Execute Provisioning, Deployment and Configuration. Once an AADM (abstract application

deployment model) has been defined, an Application Ops Expert initiates the deployment via the
SODALITE IDE. The SODALITE IDE provides the AADM to the IaC Blueprint Builder, which in turn
creates a CSAR (Cloud Service Archive - an archive that contains TOSCA blueprints and metadata,
and the deployment and implementation artifacts) and passes it to the Orchestrator.

The Orchestrator saves the CSAR and returns a Blueprint ID to the IaC Blueprint Builder, which is

further passed back to SODALITE IDE. At this point, the deployment is registered in the Orchestrator

system and can be later referred through its Blueprint ID, e.g. for the deployment execution or
deployment updates.

Project No 825480.

D2.2 - Requirements, KPIs, evaluation plan and architecture - Intermediate version Page 61

© Copyright Beneficiaries of the SODALITE Project

Once the Blueprint ID is received by the SODALITE IDE, it directly requests the Orchestrator to start

the deployment and receives a Session ID to monitor the deployment progress. Optionally, a set of
inputs can be passed along the request to parameterise the deployment. Then, the Orchestrator
starts the deployment by executing the deployment workflow specified in the blueprint.

For each execution platform specified in the blueprint, its resources are instantiated, and the
application components are deployed on top of them. As such:

● In IaaS clouds, before the deployment of the application components, the virtual resources
must be first provisioned. For that, the Orchestrator issues provision requests to the IaaS

resource manager (e.g. OpenStack, AWS EC2) to create a set of virtual machines (VMs) and
other resources that the application demands, e.g. security group, network and storage. The

LRE is then installed on VMs as a runtime for the execution of the application components.

Upon the installation, the Orchestrator configures and deploys application components,

pulling them from specified image registries.

● Kubernetes automates the resource provisioning and the application deployment by
exposing an endpoint, through which the deployment and configuration descriptions are
passed. Hence, the Orchestrator submits these descriptions to Kubernetes, which
configures and deploys the application components, pulled from specified image registries.

● When resource management systems are selected (e.g. Torque or Slurm), the Orchestrator
pre-uploads the artifacts (e.g. pulling required container images) and the job description
script to the user workspace (e.g. home directory of the user) on login (front-end) nodes and

then submits the job to the batch system. UC7 describes the start of applications, deployed
using one of the resource management systems.

At this point, the deployment of the heterogeneous application components is performed on

different resources, and the application is started. Optionally, the configuration of a monitoring

platform can be additionally performed if such mechanism is requested to the Orchestrator. First,
for each allocated Execution Platform (EP), one or more different Monitoring Exporters (i.e. a
monitoring probes) are registered and configured within the monitoring agent.

Then, a similar exporter registration and configuration process is conducted for each application

component that requires a specialized exporter.

Project No 825480.

D2.2 - Requirements, KPIs, evaluation plan and architecture - Intermediate version Page 62

© Copyright Beneficiaries of the SODALITE Project

4.3.2.2 UC7: Start Application

Figure 21 - Sequence diagram for UC7.

Figure 21 describes the interaction between the SODALITE components while implementing UC7 -
Start Application. UC7 is accompanying UC6 by describing in detail the start of batch applications,
i.e. applications that take an input, process it and give the results, unlike the services (e.g. web

servers, REST APIs), which start right after deployment and run continuously. Furthermore, these

applications can be deployed once and executed several times with different inputs.

When a job is submitted to the batch system, it does not start immediately, but it is firstly enqueued
to specified or default queue. It starts, once the job's turn comes in the queue, and it leaves the

queue for its execution. It may take some time depending on the resources' availability in the queue.

During the deployment (or redeployment), when the resource management system is selected as an
execution platform, the Orchestrator submits a job and monitors its state, whether it is running or
finished. When the job is finished, the Orchestrator determines whether the execution was

Project No 825480.

D2.2 - Requirements, KPIs, evaluation plan and architecture - Intermediate version Page 63

© Copyright Beneficiaries of the SODALITE Project

successful or failed. The deployment terminates when the execution is failed, otherwise the

deployment continues with the next application component. In this case of HPC scheduling, the
precise start time for job execution (after being dequeued) is unpredictable, as it depends on the
eventual availability of the requested resources. Therefore, job monitoring must start at queue time,

as it is requested by the orchestrator to the Monitoring System, which, at this point, starts collecting

statistics describing the application job status.

From then on, the Orchestrator can initiate the collection of metrics for its purposes (e.g., to check

application job health).

4.3.2.3 UC8: Monitor Runtime

Figure 22 - Sequence diagram for UC8.

Figure 22 describes the interaction between the SODALITE components while implementing UC8 -

Monitor Runtime. The Monitor component collects system statistics on an ongoing basis. On each
host (whether physical or virtual) there are one or more exporters (i.e. probes) that interact with the

Monitoring component and report back to it some standard (but also specialized) statistics about
their target, which could be either the execution platform or the application component. Statistics

are usually collected on each target by reading various counters and registers that hold updated
system statistics.

Periodically, Monitoring collects the statistics from all the registered exporters and stores them into
its internal database for further inspection, upon the reception of queries requested from external
clients. High level reports on standard statistics are available to be consulted by AOEs in the
Monitoring Dashboard that is accessible from the SODALITE IDE.

Some monitoring alerts could also be triggered by the Monitoring Alert Manager to the Deployment
Refactor, for those situations where a condition (defined within a dynamic alerting rule) holds on

concrete monitoring stats.

In such cases, the Deployment Refactor component could make placement decisions based on the

resource usage. In other cases, it may be desirable to inspect some specific non-standard monitoring
figures in order to isolate the cause of some observed anomaly. In this case, the AOE can request
such a report by using the Monitoring Dashboard component, which, in turn, creates and issues to

Project No 825480.

D2.2 - Requirements, KPIs, evaluation plan and architecture - Intermediate version Page 64

© Copyright Beneficiaries of the SODALITE Project

the Monitoring component all the queries required to create the report. Using the results to those

queries returned by Monitoring, the dashboard presents the aggregated report to the AOE.

4.3.2.4 UC9: Identify Refactoring Options

Figure 23 - Sequence diagram for UC9.

Figure 23 describes the interaction between the SODALITE components while implementing UC9 -
Identify Refactoring Options. The Deployment Refactorer is initialized with the IaC models for the

initial deployment, the initial set of refactoring options, and application goals. It uses the Node

Managers of each of the nodes in the application topology to manage the resources in those nodes.
The node resource management is based on the node level goals derived from the application goals.

Via the Monitoring Alert Manager, the Deployment Refactorer is eventually notified when any of the

Project No 825480.

D2.2 - Requirements, KPIs, evaluation plan and architecture - Intermediate version Page 65

© Copyright Beneficiaries of the SODALITE Project

defined application goals are violated. Upon such circumstances, the Deployment Refactorer tries

to find a new deployment model for the application that can resolve the detected application goal
violations.

If a new deployment model cannot be found, the Application Ops Expert is alerted. The new
deployment is enacted via the Deployment Preparation component. The Deployment Refactorer
also may reassign node-level goals as necessary. The Refactoring Option Discoverer can find the new
refactoring options as well as the changes to the existing refactoring options using patterns and anti-

patterns (bugs). It uses the Semantic Reasoner for this purpose. Both the Deployment Refactorer
and the Node Manager use the Monitoring Agent to collect data to determine the impacts of the
refactoring decisions and to update the predictive models used for refactoring option selection and
node resource allocation, respectively.

4.3.2.5 UC10: Execute Partial Redeployment

Figure 24 - Sequence diagram for UC10.

Project No 825480.

D2.2 - Requirements, KPIs, evaluation plan and architecture - Intermediate version Page 66

© Copyright Beneficiaries of the SODALITE Project

Figure 24 describes the interaction between the SODALITE components while implementing UC10 -

Execute Partial Redeployment: SODALITE tries to apply partial redeployment through changes in

TOSCA blueprints on any infrastructure. A redeployment (or deployment updates) is an act of
modifying application topology or application parameters at runtime. The partial redeployment

refers to updates of only affected components of application, i.e. those components that require

modifications during the runtime of application as opposed to the modification of the whole
application topology. As an example, a certain application component needs the updates of the
container image or it requires scaling to improve the performance. Another example might be the

changes in application topologies, when new components are introduced or old components need
to be removed.

In SODALITE, partial redeployment can be triggered via the SODALITE IDE when the Application Ops

Expert manually changes a AADM or he/she confirms one of the Refactoring Options suggested by
Refactorer as described in UC9. Refactorer may also be configured to automatically request a

redeployment if it detects any Refactoring Options at runtime. In both cases, a reference to a
particular Blueprint ID, which is obtained after execution of UC6, should be used.

When a redeployment is triggered manually by the Application Ops Expert, the SODALITE IDE then
requests IaC Blueprint Builder to register a new CSAR from the updated AADM and to redeploy the

blueprint in the Orchestrator. After that, SODALITE IDE directly requests the Orchestrator to start the
deployment updates and it receives a Session ID to monitor the redeployment progress.

Alternatively, when a redeployment is triggered automatically by Refactorer, it creates a CSAR,
which reflects the updated deployment, and updates the blueprint in the Orchestrator. Similarly, it

then directly requests the Orchestrator to start the deployment updates and receives Session ID to

monitor the redeployment progress.

At this point, the deployment updates are executed by the Orchestrator. The Orchestrator derives
the difference between current and updated deployments and applies adaptation actions until the

current state of deployment becomes the updated state. Such adaptation actions are performed on
the Execution Platforms used for the redeployment.

If the selected platform is IaaS Cloud or Kubernetes, the actions that might be performed are the

following:

● any form of scaling (in/out/up/down),
● migration to another Execution Platform,

● deployment of the new application components introduced by the Application Ops Expert

and removal of current components.

It should be noted that Kubernetes, being itself an orchestration platform, is enforcing partial

redeployment.

For what concerns resource management systems (common in HPC), these Execution Platforms lack

flexibility in scaling at runtime, hence the scaling actions are not present as possible adaptation
actions; however, all the other actions can be executed as well (migration, deployment and removal
of components).

4.4 Security Pillar

SODALITE provides tools and methods to authenticate and authorize actions on API endpoints using
open-source Identity management and Secure Secret handling tools. While authorization is required

- a single SODALITE endpoint can manage different infrastructures belonging to different domains.
Apart from proper authentication and authorization of user actions, safe secret management across
the whole deployment pipeline is also required and ensured by SODALITE.

Sample IAM workflow is shown in Figure 25.

Project No 825480.

D2.2 - Requirements, KPIs, evaluation plan and architecture - Intermediate version Page 67

© Copyright Beneficiaries of the SODALITE Project

Figure 25 - Sample IAM authentication workflow.

4.4.1 Security Pillar Toolkit

As a basis for authorization the OAuth 2.0 protocol was chosen, which is the de-facto industry

standard for authorization. As for IAM provider, SODALITE uses Keycloak3 - a popular and widely used

open source tool which simplifies the creation of secure services with minimal coding for
authentication and authorization. It allows wide customization of options exceeding the needs of

Project No 825480.

D2.2 - Requirements, KPIs, evaluation plan and architecture - Intermediate version Page 68

© Copyright Beneficiaries of the SODALITE Project

SODALITE. Apart from the basic authentication mechanism provided by Keycloak, SODALITE could

also support such features as 2-factor authentication and seamless integration with third party
identity providers like Google or GitHub.

For issuing JWT (JSON Web Token) Access Token OAuth 2.0 Resource Owner Password Credentials
Grant flow is used, since the whole flow is confined inside SODALITE there is no insecure exposure
of credentials to the client. A JWT Access Token, once issued by Keycloak, is then used across the
whole SODALITE workflow. Keycloak allows the creation of different clients for different

components, e.g., one set of rules can be applied to users logins from IDE and others for Automation
components like Deployment Refactorer. Each client has a client secret assigned that is provided to
Keycloak upon token creation to validate Token Endpoint API calls. Once JWT token is issued it can
be validated by Keycloak using 2 standard mechanisms:

● Introspection endpoint

● JSON Web Key Sets

Introspection mechanism provides a more secure way for validating tokens as the token can be
revoked before expiration. It is up to component developers to choose the exact mechanism but
token introspection is encouraged to be used as the default one.

Different Resource Models, Application Deployment Models may refer to different Project Domains,

meaning that only a certain group of end users should be granted access to these resources. To
ensure that mechanism Client roles and Groups are used in Keycloak. Each role provides access to a
certain project domain. Client roles are stored as JWT claims signed by Keycloak client private key,

Groups are used to facilitate user management between different Domains. One user can belong to
many Project Domains and thus have any number of client roles assigned to him.

Apart from properly authoring users actions other concerns are also addressed - properly handling

infrastructure secrets, like RSA keys, tokens, passwords. This involves 2 points to be addressed:

● Security of data in use

● Security of data at rest

First one is mitigated by properly handling the secrets across the whole pipeline: not storing

unencrypted information, no logging for security critical parts, proper user management on virtual

containers that host SODALITE components. While SODALITE allows not storing any secrets at all

and providing them in inputs, storing secrets in a vault allows to automate workflow and

additionally ensure its safety. For that purpose Hashicorp Vault4 was chosen, which is probably the
most widely used open source tool for secret management. This approach would allow SODALITE

operators to integrate it with their own Vault installations that are not part of SODALITE stack.

Hashicorp Vault configuration matches the one of Keycloak - roles have one to one correspondence,

such that policies ensure access to secret management and each project domain has its own secret
storage. Upon accessing a secret any SODALITE component must provide a client role and a valid

access token issued by Keycloak. This token is validated by Vault using Keycloak and a short lived
token is issued by Vault itself and returned. A role must be configured to have access to this project

secrets. Then this token along with the secret address is used to retrieve a secret.

Both Keycloak and Hashicorp Vault are deployed as a part of SODALITE stack. Configuration of the

components is done on the fly, basically these two components are ready to use after deployment.
Admin credentials, roles, groups, clients, policies are created automatically, additional
configuration can be done via API calls or component Web UIs.

5. KPIs and evaluation plan

This section summarises the work done on KPIs, on their evaluation, and on quality metrics used to
probe and assess the artifacts developed by the project. Besides restating the original KPIs, we
include the definition of the processes that will lead to the evaluation of SODALITE based on

Project No 825480.

D2.2 - Requirements, KPIs, evaluation plan and architecture - Intermediate version Page 69

© Copyright Beneficiaries of the SODALITE Project

foreseen measurements. The actual results obtained through this analysis will be presented in

deliverable D6.3.

5.1 Technical KPIs

For the sake of completeness and simplicity, the following table lists all the technical KPIs proposed

in the description of work.

Id Description

KPI 1.1 Abstraction of application and infrastructure.

KPI 1.2 Abstraction of Infrastructure Performance Patterns.

KPI 1.3 Abstraction of execution constraints and possibilities.

KPI 2.1
Increase of abstracted application performance on abstracted infrastructure
by using Infrastructure performance abstraction patterns

KPI 2.2
Increase of concretized (deployed) application performance running on
targeted infrastructure through Predictive Deployment Refactoring.

KPI 3.1 Reduction in software and/or application development time and cost.

KPI 3.2

Reduction in software management (redeployment, reconfiguration) time and

cost.

KPI 4.1 Component compatibility

KPI 5.1 Open source release

KPI 5.2 Extension of existing projects

5.2 Quality metrics associated with the SODALITE development process

As foreseen in the first release of this document, the consortium has adopted Sonar and
sonarcloud.io5 as our means for the continuous assessment of the quality of the code of developed

assets. The tool, one of the most-widely used solutions in these years, easily integrates with the
project’s GitHub repositories and gives developers the ability to easily check code maintainability,
reliability, and security in development branches and pull requests to allow early handling of issues
in the development workflow. Sonar is installed as a plugin of Jenkins. After each git push it analyses

the quality status of the updated project. Sonar was also enriched with plugins (such as Jacoco for

Java and coverage.py for Python) that provide code coverage values (with respect to executed tests).

More specifically, the tools highlight:

● Bugs, that is, critical errors that can lead to non-executable code;

● Vulnerabilities, that is, possible problems that may lead to unsecure code and thus security
issues;

● Security hotspots, that is, code that must be checked manually to see whether there are

security issues;

● Code smells, that is, possible problems in the code that indicate the need for further analyses

and possibly some specific reactions to improve the overall organization/quality of the code;

● Coverage, that is, the percentage of code lines that is covered (executed) by the tests
associated with the particular piece of code and run automatically in the build process

through dedicated Jenkins pipelines (as described in deliverable D6.3).

● Code duplications, that is, clearly duplicated pieces of code that hamper the quality of the

code and should be removed properly.

Project No 825480.

D2.2 - Requirements, KPIs, evaluation plan and architecture - Intermediate version Page 70

© Copyright Beneficiaries of the SODALITE Project

After the analysis, the data are pushed to sonarcloud.io that stores them and provides a public

dashboard: https://sonarcloud.io/organizations/sodalite-eu/projects. The values currently
measured are reported in deliverable D6.3.

5.3 Evaluation plan

This section presents the different solutions, processes, and tools we designed to assess the
different KPIs presented in Section 5.1. Each table restates the original target measure and clarifies
it, if needed. It identifies involved layers and used metrics. It then presents a baseline, if applicable,
and the foreseen measurement process and machinery. The official deadlines, as in the description

of work, and possible additional comments complete the table. The current data on the KPIs is

provided as part of the evaluation in D6.3.

KPI 1.1

Original formulation Abstraction of application and infrastructure

Target Lower bound is 25% coverage of all application

and infrastructure scenarios in the scope of
SODALITE case-studies

Involved layer SODALITE Modelling Layer

Clarifications This KPI refers to the capability of the modelling

layer to support the defined use cases in terms
of abstract application and infrastructure

structures

Used metrics (A set of clearly defined metrics
that will be used for checking the fulfilment of

the KPI)

resource models / # needed resource models
AADMs / # needed resource models

type definitions / # type definitions

components (templates) / # components

(templates)

Baseline (A clearly defined baseline, initial

numbers, and their sources)

Not applicable

Measurement process and machinery (how we

plan to collect numbers and if the process is
automated)

The current numbers can be automatically

derived by querying the KB for the respective
constructs. The number of needed elements is

given by the use case users

Official deadline (taken from DoW) M24

Comments (any other important aspect)

KPI 1.2

Original formulation Abstraction of Infrastructure Performance
Patterns

Target Lower bound is 80% of all performance

patterns found in HPC and Cloud

infrastructures

Involved layer SODALITE Modelling Layer

https://sonarcloud.io/organizations/sodalite-eu/projects

Project No 825480.

D2.2 - Requirements, KPIs, evaluation plan and architecture - Intermediate version Page 71

© Copyright Beneficiaries of the SODALITE Project

Clarifications The KPI refers to performance patterns found in

the demonstrating use cases. We use the use
case requirements to map this and calculate the
lower bound

Used metrics (A set of clearly defined metrics
that will be used for checking the fulfilment of
the KPI)

% of use case performance requirements
modelled in WP3

Baseline (A clearly defined baseline, initial
numbers, and their sources)

None

Measurement process and machinery (how we

plan to collect numbers and if the process is

automated)

No automated process. The collection is

performed manually by analysing the

requirements formulated by the owners of the
case studies.

Official deadline (taken from DoW) M33

Comments (any other important aspect)

KPI 1.3

Original formulation Abstraction of execution constraints and

possibilities

Target Lower bound is coverage of 80% of execution

scenarios

Involved layer SODALITE Modelling Layer

Clarifications The KPI refers to execution constraints on

computing, memory, network, and storage

resources, and to the possibilities found in the
demonstrating use cases. We use use case
requirements to map this and calculate the

lower bound

Used metrics (A set of clearly defined metrics

that will be used for checking the fulfilment of

the KPI)

percentage of execution constraints and

possibilities found in the demonstrating use

cases that are modelled in WP3

Baseline (A clearly defined baseline, initial
numbers, and their sources)

None

Measurement process and machinery (how we
plan to collect numbers and if the process is

automated)

No automated process. The collection is
performed manually by inspecting the

requirements formulated by case study users
and reported in D2.1 and in this document.

Official deadline (taken from DoW) M33

Comments (any other important aspect)

Project No 825480.

D2.2 - Requirements, KPIs, evaluation plan and architecture - Intermediate version Page 72

© Copyright Beneficiaries of the SODALITE Project

KPI 2.1

Original formulation Increase of abstracted application performance
on abstracted infrastructure by using

Infrastructure performance abstraction patterns

Target Application performance increased by 15%. The

performance metric to be used will depend on

the specific case study.

Involved layer Case studies, SODALITE Modelling Layer,

Infrastructure as Code Layer, Runtime, and Case

studies

Clarifications When AOEs exploit abstractions in their
application code, we expect an increase in
performance of 15%

Used metrics (A set of clearly defined metrics

that will be used for checking the fulfilment of
the KPI)

Speedup measured based on application run

time

Baseline (A clearly defined baseline, initial

numbers, and their sources)

Baseline defined in d3.3

Measurement process and machinery (how we
plan to collect numbers and if the process is

automated)

Measure the application run time with and
without MODAK optimisation and calculate

speedup

Official deadline (taken from DoW) M30

Comments (any other important aspect) Skyline extraction is evaluated on TensorFlow

v1.1 using the resnet50 neural network model as

a base. Resnet 50 is a convolutional neural

network which is composed of 50 neural layers
and incorporates skip connections that make
bypassing layers possible.

KPI 2.2

Original formulation Increase of concretized (deployed) application
performance running on targeted infrastructure

through Predictive Deployment Refactoring.

Target

Lower bound target is 20% improvement over

the baseline

Involved layer
SODALITE Infrastructure as Code Layer,
SODALITE Runtime

Clarifications Applications that are run on a heterogeneous
infrastructure require a dedicated resource

management approach that takes into account

the different computational power,

functionalities, cost, and scaling and sharing
capabilities of available executor devices (e.g.,
CPUs, GPUs). The two components in charge of

resource management are Node Manager and

Project No 825480.

D2.2 - Requirements, KPIs, evaluation plan and architecture - Intermediate version Page 73

© Copyright Beneficiaries of the SODALITE Project

Deployment Refactorer. The former optimizes

existing resources through smart load balancing
vertical scalability. The latter optimizes the
deployment (e.g., resource migration and

topology changes) and changes the goal of the
Node Manager when needed.

Used metrics (A set of clearly defined metrics

that will be used for checking the fulfilment of
the KPI)

- Management capabilities: list of

management actions provided by the solution
- SLA violations: number of times that a system
violates the desired performance and security
constraints, Accuracy and efficiency of

predicting performance of alternative

deployment variants.
- Resources allocated: amount of resources

allocated by the system (in cores*seconds)
- Performance anomalies detected: accuracy

of detecting performance anomalies, number
of performance anomalies failures detected

Baseline (A clearly defined baseline, initial
numbers, and their sources)

Node Manager

- Kubernetes Horizontal Pod Autoscaler and

Vertical Pod Autoscaler.

- Rule-based approach (number of SLA

violations)

- Rule-based approach (total resources

allocated)

Deployment Refactorer

The baseline is the statically optimized version

of the application/case study (for a given

workload).

Measurement process and machinery (how we

plan to collect numbers and if the process is

automated)

Node Manager

To evaluate the Node Manager and retrieve

meaningful data for the aforementioned

metrics, we deployed it in isolation on the

Azure public cloud.

We used a cluster of three virtual machines:

one VM of type HB60rs with a CPU with 60

cores and 240GB of memory, and two VMs of

type NV 6 equipped with a NVIDIA Tesla M60

GPU and a CPU with 6 cores and 56GB of

memory. We also used an additional instance

of type HB60rs for generating the client

workload. The experiments exploited four

existing ML applications: Skyline Extraction

Project No 825480.

D2.2 - Requirements, KPIs, evaluation plan and architecture - Intermediate version Page 74

© Copyright Beneficiaries of the SODALITE Project

from the Snow UC, ResNet, GoogLeNet, and

VGG16. We used differently-shaped, highly-

varying synthetic workloads. Applications were

run in different combinations concurrently on

the servers.

Deployment Refactorer

Different deployment switching cases will be

evaluated with SODALITE cases and

benchmark applications (e.g., RUBiS and

TeaStore).

Official deadline (taken from DoW) M30

Comments (any other important aspect) The evaluation of the Node Manager is based
on the work presented in the technical report

by Baresi et. al.6.

KPI 3.1

Original formulation Reduction in software and/or application
development time and cost.

Target Lower bound target is 10% improvement over

the baseline and will be evaluated through
external parties where possible. The

improvement will be measured by considering
the time needed to develop an application

manually and then with SODALITE.

Involved layer SODALITE Modelling layer

Clarifications The focus will be on development of

deployment descriptions, not application code.

Used metrics (A set of clearly defined metrics
that will be used for checking the fulfilment of

the KPI)

Time needed to develop a complete blueprint.
Corresponding cost considering the salary of

involved people

Baseline (A clearly defined baseline, initial
numbers, and their sources)

Manual development of blueprints for the three
case studies. The exact baseline numbers are
defined as part of the controlled experiment

Measurement process and machinery (how we
plan to collect numbers and if the process is

automated)

We plan to run a controlled experiment to
demonstrate reduction of time and cost against

the baseline. The experiment will include three
groups of participants:

1. non-expert developers (e.g., students),
2. use case owners

3. TOSCA experts
All users will receive a tutorial concerning the
SODALITE IDE. The ones who are not expert in

TOSCA will also receive a tutorial about TOSCA.
The request for all user groups will be to develop

Project No 825480.

D2.2 - Requirements, KPIs, evaluation plan and architecture - Intermediate version Page 75

© Copyright Beneficiaries of the SODALITE Project

a blueprint both manually and using SODALITE.

Groups 2 and 3 will focus on the development of
the SODALITE use cases. Group 1 will be asked
to focus on a simpler example.

Each participant will keep track of the time
dedicated to each task. We will also prepare a

questionnaire to collect their subjective
feedback on the experience. Moreover, we will
check that the result of the work is correct, i.e., it

executes correctly.

Since repeating each task twice (without and

with SODALITE) may introduce a bias, we will
have different participants performing the task
in a different order and we will compare the
results we will obtain.

Official deadline (taken from DoW) M24

Comments (any other important aspect) Experiments described in Section 5.4

KPI 3.2

Original formulation Reduction in software management

(redeployment, reconfiguration) time and cost.

Target Lower bound target is 30% improvement over

the baseline and will be evaluated through

external parties where possible. The
improvement will be measured by changing the
way we re-deploy the app.

Involved layer SODALITE Runtime

Clarifications This reduction specifically refers to resource
management.

Used metrics (A set of clearly defined metrics
that will be used for checking the fulfilment of
the KPI)

Time needed to redeploy and reconfigure an
application. Also, time needed for configuring
the management tools, e.g., monitoring.

Corresponding cost considering the salary of the
involved people

Baseline (A clearly defined baseline, initial

numbers, and their sources)

Manual modification and redeployment of

blueprints for the three case studies. The exact
baseline numbers are defined as part of the
controlled experiment

Measurement process and machinery (how we

plan to collect numbers and if the process is

automated)

We plan to run a controlled experiment to

demonstrate reduction of time and cost against

the baseline.
The experiment will include three groups of

participants:
1. non-expert developers (e.g., students),
2. use case owners

3. TOSCA experts
All users will receive a tutorial concerning the

Project No 825480.

D2.2 - Requirements, KPIs, evaluation plan and architecture - Intermediate version Page 76

© Copyright Beneficiaries of the SODALITE Project

SODALITE IDE and SODALITE monitoring tool.

The ones who are not expert in TOSCA will also
receive a tutorial about TOSCA.
The request for all user groups will be to modify

a blueprint both manually and using SODALITE.
The groups 2 and 3 will focus on the

development of the SODALITE use cases. Group
1 will be asked to focus on a simpler example.
Each participant will keep track of the time

dedicated to each task. We will also prepare a

questionnaire to collect their subjective

feedback on the experience. Moreover, we will
check that the result of the work is correct, i.e., it
executes correctly.
Since repeating each task twice (without and

with SODALITE) may introduce a bias, we will

have different participants performing the task
in a different order and we will compare the
results we will obtain.

Official deadline (taken from DoW) M24

Comments (any other important aspect) Experiments described in Section 5.4

KPI 4.1

Original formulation Component compatibility

Target The target is 95% of SODALITE component
compatibility

Involved layer All components

Clarifications Integration of the SODALITE system allows for
combined use of all its components.

Used metrics (A set of clearly defined metrics
that will be used for checking the fulfilment of
the KPI)

Counting the number of components integrated
in the SODALITE platform / total number of
SODALITE components

Baseline (A clearly defined baseline, initial
numbers, and their sources)

Not applicable

Measurement process and machinery (how we
plan to collect numbers and if the process is

automated)

Will be assessed in terms of the # of components

Official deadline (taken from DoW) M33

Comments (any other important aspect) Components should provide

- expected API usage/samples
- requirements regarding usage
- map expected callers

Project No 825480.

D2.2 - Requirements, KPIs, evaluation plan and architecture - Intermediate version Page 77

© Copyright Beneficiaries of the SODALITE Project

KPI 5.1

Original formulation Open source release

Target Minimum 80% of code released under open-
source license

Involved layers All components

Clarifications

Used metrics (A set of clearly defined metrics

that will be used for checking the fulfilment of
the KPI)

LOC released as open source / LOC produced by

SODALITE to build the platform

Baseline (A clearly defined baseline, initial
numbers, and their sources)

Not applicable

Measurement process and machinery (how we
plan to collect numbers and if the process is

automated)

Counting the LOCs in the SODALITE repositories

Official deadline (taken from DoW) M36

Comments (any other important aspect)

KPI 5.2

Original formulation Extension of existing projects

Target Minimum 60% of code extending the existing
projects, to be upstreamed

Involved layer All components

Clarifications The meaning is that given the subset of the
SODALITE code that is built extending an
existing open source project, 60% of this code is

donated back to the existing project. To check
the fulfilment of this KPI we need to identify the
reference projects we extend.

Used metrics (A set of clearly defined metrics

that will be used for checking the fulfilment of
the KPI)

LOC developed by SODALITE for a component

and donated to OS / LOC developed by
SODALITE for the corresponding component

Baseline (A clearly defined baseline, initial
numbers, and their sources)

Not applicable

Measurement process and machinery (how we
plan to collect numbers and if the process is

automated)

We collect information about the contributions
to other projects and we compute the metric

Official deadline (taken from DoW) M36

Comments (any other important aspect) The list of contributed open-source projects is
provided in deliverable D6.3.

Project No 825480.

D2.2 - Requirements, KPIs, evaluation plan and architecture - Intermediate version Page 78

© Copyright Beneficiaries of the SODALITE Project

5.4 Controlled experiments

Experiment with students and other external stakeholders

The purpose of this controlled experiment is to compare the time needed to define correct

deployment code without and with SODALITE. Each experiment participant will go through the
following steps:

1. (One hour) Training on the usage of the TOSCA language and on the usage of the SODALITE
IDE (this is made available either as an eclipse plugin or as a dockerized component)

2. (Two hours) Development of two exercises. Half of the group will realize the two exercises
(see below) in the order first A and then B, half will realize the exercises in the opposite order,
first B and then A.

3. (15 mins) Questionnaire and interviews to discuss the results of the experiment. The purpose
is to understand the following:

a. How long each individual took to complete each of the tasks, including the two

training activities (this could also be measured by someone observing the work).

b. Which problems each individual encountered (did not understand the languages,
could not use the tool, could not use the tool, could not save the file, could not
generate the code, …)

c. Another aspect to be checked, but this could be done by us, is whether the
developed code actually works with xOpera.

Description of the Application used for the experiments

Figure 26 - Structure of ML exemplar application.

Figure 26 shows the structure of the distributed machine learning application. It consists of 1) a
database that stores training data (as a RESTFul service), 2) a component that trains a machine

learning model (as a RESTFul service) 3) a repository that stores trained machine learning models

(File System or volume), 4) a component that makes predictions/inferences based on the trained
models (a RESTFul service).

Exercise A - Development of a deployment blueprint in TOSCA

Develop the TOSCA blueprint needed for describing the above-mentioned machine learning
application

Project No 825480.

D2.2 - Requirements, KPIs, evaluation plan and architecture - Intermediate version Page 79

© Copyright Beneficiaries of the SODALITE Project

Exercise B - Development of an AADM using the SODALITE IDE

Develop the Abstract Application Deployment Model needed for describing the above-mentioned

machine learning application.

Experiment with case study owners

We give them the M18 version of the AADM for their cases and ask them to study them and extend

them by adding the new aspects considered in their case study.

We could reuse the material developed for the first experiment to support training and collection of
feedback.

In the second step, for the purpose of checking the achievement of KPI3.2, we will ask the case study
owners to introduce a new change in their deployment and to modify the AADM accordingly.

Experiment with TOSCA experts

We give to the expert a TOSCA model and ask them to develop the corresponding AADM. They would

need to take the SODALITE IDE tutorial. An ad hoc questionnaire should be defined for them. Also,
we should decide with examples we should give to them as input.

In the second step, for the purpose of checking the achievement of KPI3.2, we will ask the TOSCA
experts to modify the AADM to include monitoring aspects.

6. Conclusions and Future Work

This document presented an updated and self-contained version of the work done on the

requirements: current status of year-one requirements, new use case, and new requirements the
described architecture of the SODALITE environment identified the major changes we applied in the
second phase of the project and also the new elements released since the first milestone. The

architecture described here complies with Milestone MS6. The section on KPIs gives a detailed,
improved description of each KPI, its scope, and of the evaluation workflow we defined and applied.

The next and last version of this document will be presented at month 30.

Project No 825480.

D2.2 - Requirements, KPIs, evaluation plan and architecture - Intermediate version Page 80

© Copyright Beneficiaries of the SODALITE Project

7. References
1. https://docs.ansible.com/ansible/latest/collections/index_module.html

2. https://github.com/SODALITE-EU/iac-platform-stack

3. https://www.keycloak.org/ Open Source Identity and Access Management for Modern Applications and

Services

4. https://www.vaultproject.io/ Secure, store and tightly control access to tokens, passwords, certificates,

encryption keys for protecting secrets and other sensitive data using a UI, CLI, or HTTP API.

5. https://sonarcloud.io/

6. L. Baresi, A. Leva, G. Quattrocchi, and N. Rasi, Service Level Guarantees for Machine Learning Applications

[Technical Report], 2020. Available at: http://hdl.handle.net/11311/1145281

